首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Agricultural intensification, besides increasing land productivity, also affects weed communities. We studied weed shifts in cropping sequences differing in the identity and number of crops grown. We also evaluated whether dissimilar weed communities in different cropping systems converge towards more similar communities, when the same sequence is cropped during 2 years. In three locations in the Rolling Pampa, Argentina, field experiments were conducted including five cropping systems in the first year (winter cereal/soyabean, field pea/soyabean, and field pea/maize double crops, and maize and soyabean as single crops), while the same sequence was grown in the following 2 years (wheat/soyabean double crop and maize). Changes in weed community composition and structure were analysed through multivariate analyses and frequency–species ranking plots. Weed communities differed first among sites, while weed shifts within each site were mainly associated with growing season and crop type. Differences among crop sequences were higher in the first year, mostly related to specific crop grown, rather than to the number of crops in the sequences. Differences were reduced when the same sequence was grown during two consecutive seasons. Frequency of highly common weeds was negatively associated with the number of days with high crop cover. Our findings contribute to understand weed shifts in consecutive growing seasons, which may help readapting crop sequences to reduce the occurrence of abundant weed species.  相似文献   

2.
Weed competition and nutrient scarcity often restrict organic cereal production, especially where the availability of livestock manure is limited. While harrowing of annual weeds and legume cover crops can be used, these methods are both executed in early spring and may hinder each other. Two cycles of a 2‐year crop rotation were carried out in south‐east Norway (60°42′N, 10°51′E, altitude 250 m) with weed harrowing and undersown cover crops (WHCC) at two fertiliser rates (40 and 100 kg nitrogen ha?1). The effect of the WHCC treatments was measured by weed density and species, weed biomass, changes in weed seedbank and grain yield. The weed density depended on the interaction between WHCC, fertiliser and year. On average, pre‐emergence weed harrowing reduced weed density by 32% and weed biomass by 49%, while pre‐ and post‐emergence weed harrowing reduced weed density by 59% and weed biomass by 67% compared with the untreated control. Spergula arvensis became more abundant at low rather than at high fertiliser rates. On average, white clover cover crop sown after pre‐emergence weed harrowing resulted in the highest yields for both oat (+12.1%) and wheat (+16.4%) compared with the untreated control. Despite differences in weed population density and biomass among WHCC treatments within years, the weed biomass, weed density and seedbank increased for all WHCC treatments over the 4‐year period. More research is required into improving the efficacy of mechanical and cultural weed suppression methods that organic systems rely on.  相似文献   

3.
Cultivated plants are known to readily hybridise with their wild relatives, sometimes forming populations with weedier life‐history strategies than their progenitors. Due to altered precipitation patterns from human‐induced global climate change, crop‐wild hybrid populations may have new and unpredictable environmental tolerances relative to parental populations, which would further challenge farming and land‐management weed control strategies. To recognise the role of seed dormancy variation in weed invasion, we compared seedbank dynamics of two cross‐type populations (wild radish, Raphanus raphanistrum, and crop‐wild hybrid radish, R. raphanistrum × R. sativus) across a soil moisture gradient. In a seed‐burial experiment, we assessed relative rates of seed germination, dormancy and seed mortality over two years across cross types (crop‐wild hybrid or wild) and watering treatments (where water was withheld, equal to annual rainfall, or double annual rainfall). Weekly population censuses in 2012 and 2013 assessed the frequency and timing of seedling emergence within a growing season. Generally, germination rates were two times higher and seed dormancy was 58% lower in hybrid versus wild populations. Surprisingly, experimental soil moisture conditions did not determine seedbank dynamics over time. Yet, seed bank dynamics changed between years, potentially related to different amounts of annual rainfall. Thus, variation in seedbank dynamics may be driven by crop‐wild hybridisation rates and, potentially, annual variation in soil moisture conditions.  相似文献   

4.
Galinsoga quadriradiata and Galinsoga parviflora are very troublesome weeds in many organic vegetable crops in Europe. A very straightforward method to keep Galinsoga infestations under control is by targeting the Galinsoga seedbank. To identify cropping systems able to reduce the seedbank size in vegetable‐based cropping systems, the relationships between the seedbank size of Galinsoga species and prevailing soil/crop management practices and pedo‐hydrological conditions were investigated. Hereto, the seedbank of the 0–20 cm topsoil layer was sampled in 50 organic vegetable fields and analysed according to the seedling emergence method. Field history data were collected for the past 5 years, and physical, chemical and microbial soil quality was determined. Galinsoga quadriradiata was the most frequent and abundant Galinsoga species in the weed seedbank. The genus Galinsoga was present in 90% of the soil weed seedbanks of organic vegetable fields but displayed wide variation in abundance. Smallest Galinsoga seedbanks were found in fields that were predominantly tilled with non‐inversion implements or rotationally ploughed, and continuously cropped with competitive crops during the entire growing season (April 15‐November 15). Contrary to G. quadriradiata, seedbank size of G. parviflora was closely related to soil organic carbon content and sand fraction. Remarkably, soils with a low level of easily plant‐available phosphorus and concomitant high activity of arbuscular mycorrhizae had smaller G. quadriradiata seedbanks. To reduce Galinsoga infestations, fields should preferably be tilled without soil inversion, fertilised with organic amendments with low content of readily plant‐available phosphorus and cropped with competitive crops all season long.  相似文献   

5.
Echinochloa colona and Trianthema portulacastrum are weeds of maize that cause significant yield losses in the Indo‐Gangetic Plains. Field experiments were conducted in 2009 and 2010 to determine the influence of row spacing (15, 25 and 35 cm) and emergence time of E. colona and T. portulacastrum (0, 15, 25, 35, 45 and 55 days after maize emergence; DAME) on weed growth and productivity of maize. A season‐long weed‐free treatment and a weedy control were also used to estimate maize yield and weed seed production. Crop row spacing as well as weed emergence time had a significant influence on plant height, shoot biomass and seed production of both weed species and grain yield of maize in both years. Delay in emergence of weeds resulted in less plant height, shoot biomass and seed production. However, increase in productivity of maize was observed by delay in weed emergence. Likewise, growth of both weed species was less in narrow row spacing (15 cm) of maize, as compared with wider rows (25 and 35 cm). Maximum seed production of both weeds was observed in weedy control plots, where there was no competition with maize crop and weeds were in rows 35 cm apart. Nevertheless, maximum plant height, shoot biomass and seed production of both weed species were observed in 35 cm rows, when weeds emerged simultaneously with maize. Both weed species produced only 3–5 seeds per plant, when they were emerged at 55 DAME in crop rows spaced at 15 cm. Infestation of both weeds at every stage of crop led to significant crop yield loss in maize. Our results suggested that narrow row spacing and delay in weed emergence led to reduced weed growth and seed production and enhanced maize grain yield and therefore could be significant constituents of integrated weed management strategies in maize.  相似文献   

6.
T Hyvönen  S Ramula 《Weed Research》2014,54(3):245-255
Climate change is predicted to affect range expansion of harmful C4 weeds into the boreal region, given that they are able to successfully colonise both C3 and C4 crops. We studied the impact of a 3°C elevation in temperature on the establishment and maintenance of populations of two annual C4 weeds (Amaranthus retroflexus and Echinochloa crus‐galli) with and without a competing C3 (barley) or C4 (maize) crop. Data obtained from field and glasshouse experiments were modelled using a periodic matrix population model. Competition of a weed with a crop appeared to be a more important factor for limiting the maintenance of weed populations than elevation in temperature, as neither of the weed species was able to maintain populations in competition with crops. Even an increase in the frequency of warm years did not result in viable weed populations establishing. However, A. retroflexus was able to form persistent populations in competition with maize when released from competition every fifth year. Simulations parameterised from glasshouse data predicted that both weed species would persist without competition in the current climate, whereas simulations parameterised from field data suggested only A. retroflexus to be able to persist. These results demonstrate that competition affects the range expansion of arable weed species more than elevation in temperature, necessitating the inclusion of crop–weed interactions in models of range shifts as a consequence of climate change.  相似文献   

7.
Weed seeds in and on the soil are the primary cause of weed infestations in arable fields. Previous studies have documented reductions in weed seedbanks due to cropping system diversification through extended rotation sequences, but the impacts of different rotation systems on additions to and losses from weed seedbanks remain poorly understood. We conducted an experiment in Iowa, USA, to determine the fates of Setaria faberi and Abutilon theophrasti seeds in 2‐, 3‐ and 4‐year crop rotation systems when seed additions to the soil seedbank were restricted to a single pulse at the initiation of the study. Over the course of the experiment, seedlings were removed as they emerged and prevented from producing new seeds. After 41 months, seed population densities dropped >85% for S. faberi and >65% for A. theophrasti, but differences between rotation systems in the magnitude of seedbank reductions were not detected. Most of the reductions in seedbank densities took place from autumn through early spring in the first 5 months following seed deposition, before seedling emergence occurred, suggesting that seed predation and/or seed decay was important. For S. faberi, total cumulative seedling emergence and total seed mortality did not differ between rotation systems. In contrast, for A. theophrasti, seedling emergence was 71% lower and seed mortality was 83% greater in the 3‐ and 4‐year rotation systems than in the 2‐year system. Results of this study indicate that for certain weed species, such as A. theophrasti, crop rotation systems can strongly affect life‐history processes associated with soil seedbanks.  相似文献   

8.
The basic mechanism of soil inversion tillage for control of annual weeds is based on the vertical translocation of weed seeds from the soil surface to deeper soil layers. Buried weed seeds either remain dormant in the soil seedbank and are exposed to biological and chemical decay mechanisms, or they germinate but the seedlings cannot reach the soil surface (fatal germination). However, depending on the seed biology of the respective target species, frequent inversion tillage can lead to a build-up of the soil seedbank. For soil seedbank depletion based on available knowledge of the biology of Alopecurus myosuroides seeds, soil inversion tillage is suggested to be reduced to every third or fourth year with reduced or even no-tillage (direct seeding) in between (rotational inversion tillage systems). Including spring crops in the crop rotation could further help dampening the population growth and hence the seed return into the seedbank. This study investigated the effect of rotational inversion tillage in combination with reduced tillage or direct seeding on the soil seedbank and population development of A. myosuroides. In a long-term field trial, set up in 2012, these tillage strategies were compared with continuous inversion tillage in a 3-year crop rotation with two consecutive years of winter wheat (Triticum aestivum) followed by spring barley (Hordeum vulgare). The results showed a significant decline in the soil seedbank following the spring crop, irrespective of the tillage system. The continuous inversion tillage system and inversion tillage before spring cropping with reduced tillage (shallow tillage with a disc harrow) before winter wheat both led to accumulation of seeds in the soil seedbank. In contrast, inversion tillage before spring cropping with direct seeding of winter wheat depleted the soil seedbank significantly after only one crop rotation. Although only covering one intensively studied field site, these findings highlight the need for diversified cropping systems and indicate potential avenues for reducing soil tillage while controlling economically important weeds.  相似文献   

9.
Diversified cropping systems can have high soil microbial biomass and thus strong potential to reduce the weed seedbank through seed decay. This study, conducted in Iowa, USA, evaluated the hypothesis that weed seed decay is higher in a diversified 4‐year maize–soyabean–oat/lucerne–lucerne cropping system than in a conventional 2‐year maize–soyabean rotation. Mesh bags filled with either Setaria faberi or Abutilon theophrasti seeds and soil were buried at two depths in the maize phase of the two cropping systems and sampled over a 3‐year period. Setaria faberi seed decay was consistently greater at 2 cm than at 20 cm burial depth and was higher in the more diverse rotation than in the conventional rotation in 1 year. Abutilon theophrasti seeds decayed very little in comparison with seeds of S. faberi. Separate laboratory and field experiments confirmed differences in germination and seed decay among the seed lots evaluated each year. Fusarium, Pythium, Alternaria, Cladosporium and Trichoderma were the most abundant genera colonising seeds of both species. A glasshouse experiment determined a relationship between Pythium ultimum and S. faberi seed decay. Possible differences in seed susceptibility to decay indicate the need to evaluate weed seedbank dynamics in different cropping systems when evaluating overall population dynamics and formulating weed management strategies.  相似文献   

10.
Reduced tillage provides ecological and economic benefits to arable land on the Loess Plateau of China, where soil erosion has long been a serious problem and soil water availability is largely restricted. However, high abundances of weeds in reduced tillage systems cause significant yield losses. In this study, we explored the effects of no-tillage and stubble retention on the number and density of weeds and weed seeds in a 12-year maize-winter wheat-common vetch rotation on the Loess Plateau. Four treatments including conventional tillage, no-tillage, conventional tillage+stubble retention and no-tillage+stubble retention were designed and applied. We found that no-tillage increased the number of weed species and weed density in most of the crops, while stubble retention decreased weed density in maize and tended to suppress weeds in both no-tillage treatments(no-tillage and no-tillage+stubble retention). No-tillage led to an increase in the number of weed species in the weed seedbank and tended to increase seed density during the spring growth of winter wheat, but it decreased seed density during post-vetch fallow. Stubble retention tended to reduce seed density during the spring growth of winter wheat and post-vetch fallow. We concluded that no-tillage can promote weeds in the experimental crop rotation, while stubble retention suppresses weeds in untilled fields. The combined effects of stubble retention and no-tillage on weed suppression varied among the three crops. Based on these results, we recommend stubble retention in untilled legume-crop rotations on the Loess Plateau to improve the control of weeds.  相似文献   

11.
H ALBRECHT 《Weed Research》2005,45(5):339-350
All of the arable land of a farm in southern Germany was investigated during an 8-year period, starting 2 years before and ending 6 years after the change to organic farming. The first 3 years after the conversion, the total seed number in the soil increased from 4050 to 17 320 m−2. From the fourth to the sixth year, it dropped back to 10 220 m−2. The number of seeds increased particularly at sites with a low crop cover and a high density of weed plants at the soil surface. The increase predominantly occurring on the more fertile soils may have been caused by the rotation commencing with less competitive crops. Crops which increased the seedbank by 30–40% were winter cereals, sunflowers and lupins. Potatoes and sown fallow caused no significant change and grass–clover mixtures even reduced the number of seeds by 39%. Among 44 species occurring frequently enough for statistical analysis, 31 increased and only 3 decreased. The change of management particularly increased summer annual, perennial and dicotyledonous weeds. This can be attributed to both operations which are characteristic of organic farming (e.g. replacing herbicide applications by mechanical weed control) and to general modifications of the management practice which may also occur in non-organic farming systems (increasing the percentage of broad leaved and spring sown crops in crop rotation). The present study confirms investigations into the aboveground vegetation that indicate that arable organic farming favours plant species diversity and provides evidence that the conversion need not encourage the dominance of a few noxious weeds.  相似文献   

12.
Increased demand for pesticide-free food and the development of herbicide-resistant weed populations have created a need for non-chemical weed-control tools. A candidate mechanical tool for controlling weeds in the seeding line (intra-row zone) is the finger weeder. This study thus aimed to evaluate the safety and weed-control efficacy of the finger weeder in various irrigated field crops. Eight field trials were conducted in processing tomato, sweet corn, sunflower, cotton, and beetroot over 2 years. The finger weeder treatments were applied as the sole weed-control method (single or double treatments) and in combination with herbicides. A mini meta-analysis was used to evaluate the overall effect of the finger weeder treatments on crop stand and yield and on weed control efficacy. Weed density in the control not treated with herbicides nor a finger weeder ranged between 2 and 62 weeds m−2. The finger weeder treatments resulted in a significant reduction in weed density, which ranged between 40% and 90%. The weed density following the double finger weeder treatment was not significantly different from that for the conventional herbicide-based treatment (p = 0.32) and could therefore be considered as an effective environmentally friendly alternative. Furthermore, a single FW treatment integrated with herbicide application gave better weed control than the conventional herbicide treatment (p = 0.04). This treatment was safe for the crops with no significant stand (p = 0.19) or yield (p = 0.29) reductions compared to commercial treatment. The results of this study demonstrate the promise of the finger weeder as an effective tool within integrated weed management systems for conventional agro-systems. The tool offers a rational weed-control solution for sustainable systems under irrigation.  相似文献   

13.
Biofumigation from Brassica cover crops may be used to control soilborne pests and weeds. A study was conducted to understand the influence of biofumigation on key processes of annual weed population dynamics. Five combinations of Indian mustard (M) and oat (O) cover crop treatments were assessed in a 3 year field study at two locations in Québec, Canada. Treatments included four spring/fall cover crop combinations (M/M, M/O, O/M, O/O) and a weedy check control with no cover crop. Prior to mowing and incorporation of cover crops, weed identification, count and biomass measurements were recorded to evaluate the total weed density, to calculate the relative neighbour effect (RNE) and weed diversity metrics and to perform principal co‐ordinates analyses. Indian mustard cover crops had no impact on weed establishment in 2014 due to low biofumigant potential compared to the oat cover crop. In 2015 and 2016, Indian mustard isothiocyanate (ITC) production increased and weed establishment within the Indian mustard cover crop decreased. Moreover, post‐cover crop incorporation decreased the next year spring weed emergence. Allelopathic interference of Indian mustard was significant when plant tissues produced more than 600 μg of allyl‐ITC g?1. It is now possible to rationalise the use of Brassica cover crops and biofumigation for weed control with an enhanced understanding of the impact of biofumigation on key processes of weed population dynamics.  相似文献   

14.
Mechanical weed control in low competitive, organic vegetable production systems is challenging, particularly in fields with large populations of Galinsoga spp. (Asteraceae). Various false seedbed techniques are used prior to crop planting or sowing to prevent weed emergence, albeit with variable success. This study investigated the impact of machinery type (flamer, hoe and harrow), number of passes (2 and 4), tillage depth (1–4 cm) and intensity (double and single hoeing, and hoeing with or without additional harrowing) on weed emergence and seedbank density in 0–5 cm topsoil of organic vegetable fields. False seedbed machinery that did not or minimally disturb the soil was most appropriate for preventive control of Galinsoga quadriradiata (Hairy galinsoga) and total weed seeds, with reductions in seedling emergence up to 99% and 73%, respectively, for flaming, and 74% and 67%, respectively, for 1 cm deep hoeing, 1 month after false seedbed creation. Compared with 1 cm deep hoeing, 1 cm deep harrowing was 16% less effective in the control of emerged seedlings, while flaming was highly effective in preventing weed seedling emergence, even after a low number of passes. Tillage intensity was less important than tillage depth for the reduction in weed emergence and seedbank density. Overall, tillage was more effective for seedbank reduction than flaming.  相似文献   

15.
Approaches to the biological control of weeds in arable crops and integration of biological weed control with other methods of weed management are broadly discussed. Various types of integrative approaches to biological control of weeds in crops have been studied within the framework of a concerted European Research Programme (COST‐816). During the period 1994–99, some 25 institutions from 16 countries have concentrated on five target weed complexes. Some major scientific achievements of COST‐816 are: (i) combination of the pathogen Ascochyta caulina with an isolated phytotoxin produced by this fungus to control Chenopodium album in maize and sugar beet; (ii) the elaboration and preliminary field application of a system management approach using the weed:pathogen system Senecio vulgaris:Puccinia lagenophorae to reduce the competitiveness of the weed by inducing and stimulating a disease epidemic; (iii) combination of underseeded green cover with the application of spores of Stagonospora convolvuli to control Convolvulus species in maize; (iv) assessment of the response of different provenances of Amaranthus spp. to infection by Alternaria alternata and Trematophoma lignicola, the development of formulation and delivery techniques and a field survey of native insect species to control Amaranthus spp. in sugar beet and maize; (v) isolation of strains of different Fusarium spp. that infect all the economically important Orobanche spp. and development of novel, storable formulations using mycelia from liquid culture. Although no practical control has yet been reached for any of the five target weeds, potential solutions have been clearly identified. Two major routes may be followed in future work. The first is a technological approach focusing on a single, highly destructive disease cycle of the control agent and optimizing the efficacy and specificity of the agent. The second is an ecological approach based on a better understanding of the interactions among the crop, the weed, the natural antagonist and the environment, which must be managed in order to maximize the spread and impact of an indigenous antagonist on the weed.  相似文献   

16.
Over‐winter mortality, that is, winterkill, reduces cereal crop competitive ability and yield. While management and environmental variables are known to affect winterkill, the extent to which weeds contribute to increased winterkill is largely unknown. Winter annual weeds may increase winterkill through resource competition and by increasing incidence of and damage from plant pathogens that cause winterkill. We evaluated the impact of summer annual (Avena fatua) and winter annual (Bromus tectorum) weeds on the over‐winter survival rate of winter wheat over three winters, during which plots were covered with snow. Pink snow mould (Microdochium nivale), a winterkill pathogen known to infect B. tectorum and winter wheat, was common in wheat stands. In weed‐free treatments, mortality rates were initially near zero, but increased by nearly 45% in each subsequent winter, presumably due to an increase in snow mould disease in continuously cropped winter wheat. Whereas A. fatua infestation had no impact on crop survival rates, winter wheat survival in B. tectorum‐infested plots was 50% less than the weed‐free control in the second and third years of this study. Among B. tectorum‐infested plots, winter wheat over‐winter survival declined with increasing weed seed produced in the previous summer. Overall, this study demonstrated that winter annual weed infestations can reduce crop stand densities below replanting thresholds by reducing fall‐sown cereal winter survival. The effects of winter annual weeds on winter wheat may be meditated by increased proliferation of snow mould disease.  相似文献   

17.
In Northern Europe, inter-row hoeing has become a popular tactic for controlling weeds in organic cereals. Hoeing is highly effective and can be implemented from crop emergence until stem elongation to maintain a nearly weed-free inter-row zone. However, hoeing has a lesser effect on weeds growing in the intra-row zone, where crop–weed proximity results in heightened competition. In the hoed cereal system, it is investigated whether tall-growing, competitive, cruciferous weeds in the intra-row zone affect crop biomass, yield and thousand kernel weight (TKW). An additive experimental design is employed to enable the fitting of rectangular hyperbolas, describing and quantifying the effects of increasing intra-row surrogate weed density on crop growth parameters. Regressions were studied under the influence of crop (spring barley and spring wheat), row spacing (narrow [12.5 or 15.0 cm] and wide [25.0 cm]) and nitrogen rate (50 and 100 kg NH4-N/ha). Cruciferous surrogate weeds were found to impact crop yield and quality severely. For example, ten intra-row plants/m2 of surrogate weed Sinapis alba reduced grains yields by 7%–14% in spring barley and by 7%–32% in spring wheat with yield losses becoming markedly greater in wheat compared to barley as weed density increases. Compared to wheat, barley limited yield and quality losses and suppressed intra-row weed growth more. Row spacing did not have a consistent effect on crop or weed parameters; in one of six experiments, the 25 cm row spacing reduced yields and increased intra-row weed biomass in wheat. Nitrogen rate did not affect crop or weed parameters. Results warrant the implementation of additional tactics to control intra-row weeds and limit crop losses.  相似文献   

18.
Summary There is a lack of information on the combined effects of preceding crop, reduced tillage (especially no-tillage) and the time of herbicide application on the development of weed populations and the efficiency of weed control in winter wheat in humid temperate climates. An experiment was conducted with a crop rotation (winter wheat – oilseed rape – winter wheat – maize) on a sandy loam and a loamy silt soil in the Swiss midlands to investigate the impact of different preceding crops and pre- and post-emergence control of weeds in conventional tillage (CT; mouldboard plough), minimum tillage (MT; chisel plough) and no-tillage (NT; no soil disturbance systems). When winter wheat was grown after maize and winter wheat was grown after oilseed rape, the ranking order of weed density in treatments without herbicide application was NT < MT < CT and CT < MT < NT respectively. Analysis of variance and canonical discriminant analysis showed that Epilobium spp., Sonchus arvensis , Myosotis arvensis and volunteer crops were more abundant in NT than in MT and CT. The efficiency of post-emergence weed control was generally better than that of pre-emergence weed control, regardless of tillage intensity.  相似文献   

19.
Experiments comparing conventional and organic systems often report similar yields despite substantially higher weed abundance in the organic systems. A potential explanation for this observation is that weed–crop competition relationships differ between the two types of systems. We analysed weed and crop yield data from the Rodale Institute Farming Systems Trial (FST), which provides a unique 27-year dataset of a conventional (CNV) and two organic [manure (MNR) and legume (LEG)] soyabean ( Glycine max (L.) Merr.) and maize ( Zea mays L.) cropping systems. Average soyabean yields were similar between the MNR and CNV systems and only slightly reduced in the LEG system, whereas average maize yields did not differ among systems despite the two organic systems having more than four and six times greater weed biomass in soyabean and maize respectively. Plot-level weed biomass–crop yield relationships indicated that weed–crop competition differed between the two organic and CNV systems in maize, and was strongest in the CNV system, intermediate in the LEG system and weakest in the MNR system. These results suggest that organic cropping systems may be able to tolerate a greater abundance of weeds compared to conventional systems and that fertility management within organic systems may influence weed–crop competition.  相似文献   

20.
Understanding how weed communities assemble as a function of biotic and abiotic filters and transform through time has important implications for the sustainable management of agronomic systems. In a three‐year study, we evaluated weed community responses to lucerne (Medicago sativa, perennial) vs. continuous spring wheat (Triticum aestivum, annual, CSW) and weed management practices where weeds in the CSW system were managed with three contrasting approaches (herbicide, tillage or sheep grazing). Our results indicated no differences in weed diversity between the perennial and annual crops or across the different management practices in CSW. However, there were differences in weed community composition. Lucerne, with the exception of the establishing year, impeded the growth and reproduction of several annual weeds, including Amaranthus retroflexus, Thlaspi arvense, Lamium amplexicaule and Chenopodium album, but favoured perennial broad‐leaved weeds such as Taraxacum officinale and Cirsium arvense. The replacement of herbicide treatments in pre‐plant and post‐harvest in CSW with soil tillage or sheep grazing selected for different weed communities beyond the second year of establishment. The weed species driving the differences in CSW systems were Androsace occidentalis, more common in CSW managed chemically; Asperugo procumbens, more common in CSW managed with tillage; and T. officinale and Lactuca serriola, more common in CSW managed with sheep grazing. Understanding how cropping systems modify weed communities is a necessary step to shift from reactive weed control programmes to predictive management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号