首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapid expansion of the alien invasive Parthenium hysterophorus is a new agricultural and environmental problem for Nepal. Although the weed was first recorded in 1967, the most significant expansion has occurred in the last 20 years. The weed is thought to have entered Nepal from India and currently is found in the Tarai, Siwalik and hill regions of Nepal. A CLIMEX modelling projection has shown these regions to be climatically suitable for the growth of P. hysterophorus, both under the present and a future projected increased temperature. From the initially invaded roadside vegetation, the weed has now spread into cropping land and forests. Vehicle movement and transportation of agriculture products are the main means by which its seed is spreading. The weed has reduced plant species richness and changed species composition in grasslands, while fodder collectors have developed contact dermatitis from the plant. To date, no sustainable management strategy has been developed for this weed. However, the fortuitous arrival of the biological control agents Zygogramma bicolorata and Puccinia abrupta var. partheniicola has had some impact upon the weed's growth and abundance. A CLIMEX modelling projection identifies many suitable locations for Z. bicolorata outside of its present range and within areas where the weed is likely to spread, both under the present and under a future projected climate of increased temperature. Mapping of the currently invaded areas, management through community involvement and further releases of new and redistribution of current biological control agents are required to manage P. hysterophorus in Nepal.  相似文献   

2.
Cultivated plants are known to readily hybridise with their wild relatives, sometimes forming populations with weedier life‐history strategies than their progenitors. Due to altered precipitation patterns from human‐induced global climate change, crop‐wild hybrid populations may have new and unpredictable environmental tolerances relative to parental populations, which would further challenge farming and land‐management weed control strategies. To recognise the role of seed dormancy variation in weed invasion, we compared seedbank dynamics of two cross‐type populations (wild radish, Raphanus raphanistrum, and crop‐wild hybrid radish, R. raphanistrum × R. sativus) across a soil moisture gradient. In a seed‐burial experiment, we assessed relative rates of seed germination, dormancy and seed mortality over two years across cross types (crop‐wild hybrid or wild) and watering treatments (where water was withheld, equal to annual rainfall, or double annual rainfall). Weekly population censuses in 2012 and 2013 assessed the frequency and timing of seedling emergence within a growing season. Generally, germination rates were two times higher and seed dormancy was 58% lower in hybrid versus wild populations. Surprisingly, experimental soil moisture conditions did not determine seedbank dynamics over time. Yet, seed bank dynamics changed between years, potentially related to different amounts of annual rainfall. Thus, variation in seedbank dynamics may be driven by crop‐wild hybridisation rates and, potentially, annual variation in soil moisture conditions.  相似文献   

3.
Over‐winter mortality, that is, winterkill, reduces cereal crop competitive ability and yield. While management and environmental variables are known to affect winterkill, the extent to which weeds contribute to increased winterkill is largely unknown. Winter annual weeds may increase winterkill through resource competition and by increasing incidence of and damage from plant pathogens that cause winterkill. We evaluated the impact of summer annual (Avena fatua) and winter annual (Bromus tectorum) weeds on the over‐winter survival rate of winter wheat over three winters, during which plots were covered with snow. Pink snow mould (Microdochium nivale), a winterkill pathogen known to infect B. tectorum and winter wheat, was common in wheat stands. In weed‐free treatments, mortality rates were initially near zero, but increased by nearly 45% in each subsequent winter, presumably due to an increase in snow mould disease in continuously cropped winter wheat. Whereas A. fatua infestation had no impact on crop survival rates, winter wheat survival in B. tectorum‐infested plots was 50% less than the weed‐free control in the second and third years of this study. Among B. tectorum‐infested plots, winter wheat over‐winter survival declined with increasing weed seed produced in the previous summer. Overall, this study demonstrated that winter annual weed infestations can reduce crop stand densities below replanting thresholds by reducing fall‐sown cereal winter survival. The effects of winter annual weeds on winter wheat may be meditated by increased proliferation of snow mould disease.  相似文献   

4.
L Ziska 《Weed Research》2013,53(2):140-145
Soyabean (Glycine max) was grown at ambient and projected levels of atmospheric carbon dioxide (+250 μmol mol?1 above ambient) over two field seasons with and without the presence of a weed, Abutilon theophrasti, to quantify the potential effect of rising atmospheric carbon dioxide concentration on weed–crop interactions and potential yield loss in soyabean. Under weed‐free conditions, elevated CO2 resulted in stimulations in soyabean seed yield and associated components, including pod number. At an approximate density of 6 plants m?2, A. theophrasti competition resulted in a significant reduction (?40%) in soyabean seed yield. Although differences in seed yield reduction by A. theophrasti were observed as a function of year, the relative decrease in seed yield with A. theophrasti biomass did not differ in response to CO2. Although careful weed management will be necessary if CO2‐induced increases in seed yield for soyabean are to be achieved, these data suggest that soyabean seed yield may be more resilient in competition with A. theophrasti as a function of rising atmospheric levels of carbon dioxide.  相似文献   

5.
T K Das  D K Das 《Weed Research》2018,58(3):188-199
Variable dormancies result in periodicity in the germination of weeds and make weed control a repetitive practice. Under some conditions, repeated applications of selective herbicides can lead to the dominance of perennial weeds like Cyperus rotundus . Our hypothesis was that applying a chemical dormancy breaker (DB ) plus herbicide mixture would better control a mixture of weed species. Three experiments were designed to develop a cost‐effective DB treatment and to evaluate its dose with herbicides tank‐mixtures for effective weed management. KNO 3 and gibberellic acid GA 3 as dormancy breakers offered comparable effects, but KNO 3 was more economical than GA 3. KNO 3 at a 6% concentration was more effective in promoting weed germination than a 3% concentration in soyabean. A combination of KNO 3 (6%) and pre‐emergence pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 controlled annual weeds by 99% and reduced C. rotundus growth by 83%. This treatment gave significantly higher soyabean yield and net returns. Similarly, a tank‐mixture comprising of clodinafop 0.06 kg a.i. ha?1 + metsulfuron 0.006 kga.i. ha?1 was more effective against weeds than pre‐emergence tank‐mix application of pendimethalin 0.75 kg a.i. ha?1 + carfentrazone‐ethyl 0.02 kg a.i. ha?1 and isoproturon 0.75 kg a.i. ha?1. The use of pre‐emergence tank‐mixture of pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 should exhaust seed/tuber bank if repeated and reduce the application cost of herbicides by 50% and the dose, residue and cost of pendimethalin by 25%.  相似文献   

6.
Diversified cropping systems can have high soil microbial biomass and thus strong potential to reduce the weed seedbank through seed decay. This study, conducted in Iowa, USA, evaluated the hypothesis that weed seed decay is higher in a diversified 4‐year maize–soyabean–oat/lucerne–lucerne cropping system than in a conventional 2‐year maize–soyabean rotation. Mesh bags filled with either Setaria faberi or Abutilon theophrasti seeds and soil were buried at two depths in the maize phase of the two cropping systems and sampled over a 3‐year period. Setaria faberi seed decay was consistently greater at 2 cm than at 20 cm burial depth and was higher in the more diverse rotation than in the conventional rotation in 1 year. Abutilon theophrasti seeds decayed very little in comparison with seeds of S. faberi. Separate laboratory and field experiments confirmed differences in germination and seed decay among the seed lots evaluated each year. Fusarium, Pythium, Alternaria, Cladosporium and Trichoderma were the most abundant genera colonising seeds of both species. A glasshouse experiment determined a relationship between Pythium ultimum and S. faberi seed decay. Possible differences in seed susceptibility to decay indicate the need to evaluate weed seedbank dynamics in different cropping systems when evaluating overall population dynamics and formulating weed management strategies.  相似文献   

7.
Ochradenus baccatus is a widely distributed shrub in desert regions of the Middle East and North Africa. This plant's nematicidal activity against the root‐knot nematode Meloidogyne javanica was evaluated because it has been found to contain exceptionally high levels of glucosinolates. In in vitro assays with aqueous extracts of the plant, 100% of second‐stage juveniles were immobilized after exposure to 4% root‐core extract for 48 h; 8% root‐core extract suppressed their hatching by 87%, whereas stem, flower and root bark showed lower activity. Incorporation of root core or bark into the soil, as fresh or dry powder at 1 and 0·5% (w/w), respectively, reduced the number of nematodes recovered from the soil by 95–100%, whereas the flower and stem were much less effective. Results from further pot experiments indicated that only the root bark consistently contains nematicidal compounds which are effective in soil, whereas the nematicidal activity of the root core in soil was inconsistent. The presence of non‐volatile lipophilic and lipophobic nematicidal compounds in the root bark was suggested by extraction with different polar solvents, but these compounds do not seem to be isothiocyanates – glucosinolate‐hydrolysed compounds with nematicidal activity. Very poor host status of Ochradenus baccatus to M. javanica, Mincognita and M. hapla, but with root‐penetration rates of juveniles similar to those in tomato roots, suggest that this plant may be used as a cover plant or trap plant to reduce nematode populations in the soil.  相似文献   

8.
T Hyvönen  S Ramula 《Weed Research》2014,54(3):245-255
Climate change is predicted to affect range expansion of harmful C4 weeds into the boreal region, given that they are able to successfully colonise both C3 and C4 crops. We studied the impact of a 3°C elevation in temperature on the establishment and maintenance of populations of two annual C4 weeds (Amaranthus retroflexus and Echinochloa crus‐galli) with and without a competing C3 (barley) or C4 (maize) crop. Data obtained from field and glasshouse experiments were modelled using a periodic matrix population model. Competition of a weed with a crop appeared to be a more important factor for limiting the maintenance of weed populations than elevation in temperature, as neither of the weed species was able to maintain populations in competition with crops. Even an increase in the frequency of warm years did not result in viable weed populations establishing. However, A. retroflexus was able to form persistent populations in competition with maize when released from competition every fifth year. Simulations parameterised from glasshouse data predicted that both weed species would persist without competition in the current climate, whereas simulations parameterised from field data suggested only A. retroflexus to be able to persist. These results demonstrate that competition affects the range expansion of arable weed species more than elevation in temperature, necessitating the inclusion of crop–weed interactions in models of range shifts as a consequence of climate change.  相似文献   

9.
A better understanding of weed seed production is a key element for any long‐term management allowing some weeds to shed seeds. The challenge with measuring seed production in weeds is the large effort required in terms of time and labour. For the weed species Echinochloa crus‐galli, it was tested whether the number of seeds per panicle dry weight or per panicle length can be used to estimate seed production. Experiments were conducted in three maize fields in north‐eastern Germany. The effect of factors that could influence this relationship, such as the time of seedling emergence, the density of E. crus‐galli, the control intensity of other weeds, seed predation and field, was included. A few days before maize harvest, all panicles were removed and weighed, panicle length was measured, and for a subsample of 178 panicles, the number of seeds was counted manually. Panicle dry weight predicted the number of seeds per panicle better (R2 = 0.92) than did panicle length (R2 = 0.69). The other factors except for ‘field’ and ‘seed predation’ had no effect on these relationships. The relationships between seed number and panicle dry weight found in this study closely resembled those reported in an earlier study. Based on our results, we conclude that both plant traits are appropriate for the estimatation of seed production, depending on required level of precision and availablilty of resources for the evaluation of sustainable weed management strategies.  相似文献   

10.
Enhanced understanding of soil disturbance effects on weed seedling recruitment will help guide improved management approaches. Field experiments were conducted at 16 site‐years at 10 research farms across Europe and North America to (i) quantify superficial soil disturbance (SSD) effects on Chenopodium album emergence and (ii) clarify adaptive emergence behaviour in frequently disturbed environments. Each site‐year contained factorial combinations of two seed populations (local and common, with the common population studied at all site‐years) and six SSD timings [0, 50, 100, 150, 200 day‐degrees (d°C, base temperature 3°C) after first emergence from undisturbed soil]. Analytical units in this study were emergence flushes. Flush magnitudes (maximum weekly emergence per count flush) and flush frequencies (flushes year?1) were compared between disturbed and undisturbed seedbanks. One year after burial, SSD promoted seedling emergence relative to undisturbed seedbanks by increasing flush magnitude rather than increasing flush frequency. Two years after burial, SSD promoted emergence through increased flush magnitude and flush frequency. The promotional effects of SSD on emergence were strongest within 500 d°C following SSD; however, low levels of SSD‐induced emergence were detected as late as 3000 d°C following SSD. Accordingly, stale seedbed practices that eliminate weed seedlings should occur within 500 d°C of disturbance, because few seedlings emerge after this time. However, implementation of stale seedbed practices will probably cause slight increases in weed population densities throughout the year. Compared with the common population, local populations exhibited reduced variance in total emergence measured within sites and across SSD treatments, suggesting that C. album adaptation to local pedo‐climatic conditions involves increased consistency in SSD‐induced emergence.  相似文献   

11.
Cambodia has experienced a rapid shift from transplanted to hand broadcast seeded rice, with a consequent increase in seeding rates from 25–30 to 100–200 kg ha?1. To reduce costs, farmers keep their own seed for sowing with the risk of greater weed seed contamination of the sowing seed. A survey of weed seed contamination in harvested rice paddy was conducted in two provinces of Cambodia (Battambang and Takeo) at the end of the wet season in 2016. Farmers were interviewed about rice‐seeding practices, and a total of 110 farmers' fresh paddy samples were inspected for weed seed contamination from the two provinces. Sowing seed samples collected from 28 seed producer lots and 71 samples of farmer‐kept seed were also analysed for weed seed contamination. In both provinces, the majority of farmers kept their own seed or bought seed from a neighbour. Farm‐kept seed for sowing accounted for 88% of sown seed in Battambang and 89% in Takeo. Seeds of 41 different weed species from 13 plant families were found in the farmers' freshly harvested paddy samples. Overall, farmers managed to reduce the number of weed propagules by 60% and seed producers by 95%. There was no significant difference between farmer‐kept seed and seed producer/seed company seed for the total number of weed seeds present. When shown photos, farmers' rankings of the 10 most common weed species found in freshly harvested paddy did not closely correspond to the actual weed seed frequency in the paddy. When farmers were asked to rank the frequency of weeds in their fields without the option to choose from a list, they ranked the weeds differently. Farmers ranked Ischaemum rugosum, Echinochloa spp. and Fimbristylis miliacea as the three most frequent weed species in their fields. The most frequent weeds in harvested paddy, apart from weedy rice, were Irugosum and Melochia corchorifolia. Farmers did not rank M. corchorifolia as a frequently occurring weed, and most farmers could not recognise M. corchorifolia from photographs. The priority for improved seed hygiene is to place the emphasis on assisting farmers to further improve their seed purification techniques and to caution them to inspect seed before purchasing from neighbours, seed producers and seed companies in the absence of the implementation of seed certification regulation.  相似文献   

12.
Z Song  R H Zhang  W D Fu  T Zhang  J Yan  G L Zhang 《Weed Research》2017,57(3):204-211
Bacteria are important soil components as both decomposers and plant symbionts and play a major role in plant–microbe interaction processes. However, little is known about the diversity of bacterial communities in the rhizosphere of the invasive plant Flaveria bidentis. In this study, we used high‐throughput sequencing to investigate bacterial communities in the rhizosphere of F. bidentis, compared with those of native crop maize and control plant Setaria viridis. We obtained >70 000 analysis reads from the three samples and used bioinformatics and multivariate statistics to analyse the results. An analysis of indicators showed that F. bidentis samples had lower richness but higher diversity than maize and S. viridis samples. Operational taxonomic unit (OTU)‐based bioinformatics and statistical analysis also demonstrated that F. bidentis significantly altered the bacterial rhizosphere community. Higher abundance of Actinobacteria and lower abundance of Firmicutes were observed in F. bidentis rhizosphere than those of maize and S. viridis. Redundancy analysis (RDA) revealed the correlations between soil bacteria communities, soil nutrients and the abundance of bacterial groups. Our results provide a starting point for investigations of the effects of F. bidentis on soil bacterial diversity and a theoretical basis for the microecological mechanism of F. bidentis invasion.  相似文献   

13.
Parthenium hysterophorus is a noxious invasive weed of both agricultural and natural ecosystems, spreading aggressively in Nepal. Management of this weed in Nepal has been limited, mainly because of the lack of geo‐referenced data concerning the weed's distribution. We conducted a nationwide survey of P. hysterophorus and its coleopteran biological control agent Zygogramma bicolorata from 2013 to 2016 to determine their spatial distribution. Both were widespread, with the distribution of Z. bicolorata lagging behind the invasion front of P. hysterophorus. The weed was present in 21.2% of the 4838 locations examined, including several isolated satellite populations. The weed was found in the Tarai, Siwalik, Middle Mountains and High Mountains regions, reaching up to 2000 m asl. It has invaded natural and modified ecosystems including all six protected areas in the Tarai and Siwalik regions. Road access appears to be the major pathway for its long‐distance dispersal. Zygogramma bicolorata had spread from the east to the west and was present in 15.4% of the weed occurrence locations, inflicting a low amount of damage. A CLIMEX modelling projection revealed the presence of additional geographic areas in Nepal which are climatically suitable for both P. hysterophorus and Z. bicolorata. Eradication of satellite populations of the weed by physical and chemical measures, and the release of Z. bicolorata into new, but climatically suitable, locations should be prioritised for P. hysterophorus management in Nepal. In conclusion, P. hysterophorus has rapidly become widespread in Nepal and the currently available biological control agent has not been able to prevent further spread of the weed.  相似文献   

14.
Cover crops can suppress weeds within agricultural fields due to competitive and allelopathic effects. Glasshouse experiments were conducted to evaluate the relative proportions of allelopathic effects to the total weed inhibition. Six different cover crop species were combined with three weed species in the presence or absence of active carbon over a period of four weeks. Active carbon was used as an adsorbent for allelopathic substances in the soil. Our study revealed that the competition between cover crops and weeds shifted, possibly due to the minimisation of allelopathic effects by active carbon in the soil. We assume that the degree of cover crops allelopathic effects on weeds is species‐specific, both on the side of cover crops and on the weed side. The cover crops Raphanus sativus, Fagopyrum esculentum and Avena strigosa showed the highest allelopathic weed suppression with up to 28%. Additionally, Stellaria media turned out to be the most sensitive weed against allelopathic effects induced by all cover crops, except for Linum usitatissimum and Guizotia abyssinica. The knowledge about the contribution of competitive and allelopathic effects by cover crops would help to create cover crop mixtures with high weed suppressive ability.  相似文献   

15.
Lettuce corky root (CR) is caused by bacteria in the genera Rhizorhapis, Sphingobium, Sphingopyxis and Rhizorhabdus of the family Sphingomonadaceae. Members of this family are common rhizosphere bacteria, some pathogenic to lettuce. Sixty‐eight non‐pathogenic isolates of bacteria obtained from lettuce roots were tested for control of CR caused by Rhizorhapis suberifaciens CA1T and FL1, and Sphingobium mellinum WI4T. In two initial screenings, 10 isolates significantly reduced CR induced by one or more pathogenic strains on lettuce seedlings in vermiculite, while seven non‐pathogenic isolates provided significant CR control in natural or sterilized field soil. Rhizorhapis suberifaciens FL11 was effective at controlling all pathogenic strains, but most effective against R. suberifaciens CA1T. The other selected isolates controlled only pathogenic strains belonging to their own genus. In a greenhouse experiment, a soil drench with selected biocontrol agents (R. suberifaciens FL11, Sphingomonas sp. NY3 and S. mellinum CA16) controlled CR better than seed treatments or application of alginate pellets. In microplots infested with R. suberifaciens CA1T, seed treatment with R. suberifaciens FL11 provided complete control and a soil drench with FL11 significantly reduced the disease. Pathogenicity tests with FL11 on 23 plant species in 10 families resulted in slight yellowing on roots of lettuce and close relatives; similar yellowing appeared on some roots of non‐inoculated lettuce plants. This research showed that biocontrol agents can be genus‐specific. Only one isolate, FL11, provided more general control of various pathogenic strains causing CR even in field soil in pots and microplots.  相似文献   

16.
During the last decade, maize has become the crop with the second largest acreage in Germany. Therefore, agricultural advisors and the plant protection sector are interested in an overview of the weed species composition in maize fields, their determining factors and trends. From 2001 to 2009, a weed survey was conducted in 1460 maize fields throughout Germany. Data on crop management and soil characteristics were collected via farmer questionnaires. Principal component analysis and redundancy analysis were used to analyse patterns in weed species composition. The late spring and summer germinating species Chenopodium spp., Echinochloa crus‐galli and Solanum nigrum occurred with high densities and frequencies, but their occurrence was determined by different factors. Other frequent weed species were those that typically accompany autumn‐sown crops. The variation in species composition was significantly related to environmental factors (9.1% explained variance), particularly geographical latitude and precipitation, and management factors (4.7% explained variance), particularly crop sequence. The relative importance of these factors seems universal, when compared with surveys in other crops and regions. The factor ‘year’ was of minor importance (0.9% explained variance). Over the 9‐year period, no changes in weed species composition could be determined. The results suggest that despite the limited impact of crop management on weed species composition, farmers can use crop sequence to suppress individual species. The survey furthermore sets a baseline against which future changes can be measured in a landscape of rapidly changing agricultural land use.  相似文献   

17.
Fusarium oxysporum f. sp. lactucae (FOL) is a soil‐ and seedborne pathogen and the causal agent of fusarium wilt on lettuce. Four races have been identified within FOL, with different worldwide distribution. Several molecular techniques have been used to detect and identify this pathogen; however, not all of them have the optimal characteristics in terms of sensitivity to perform FOL detection in plant and seed material. A loop‐mediated isothermal amplification (LAMP) assay was developed based on the sequence‐characterized amplified region (SCAR) obtained in a previous rapid amplification of polymorphic DNA (RAPD) study. The LAMP assay has been validated according to the EPPO standard PM7/98. The LAMP assay was tested with lettuce seeds, soil and plant material, and can be used successfully to amplify DNA from each of these matrices. In seed lots artificially inoculated with FOL, the detection limit of the LAMP test was 0.004% infected seed.  相似文献   

18.
Weeds tend to aggregate in patches within fields, and there is evidence that this is partly owing to variation in soil properties. Because the processes driving soil heterogeneity operate at various scales, the strength of the relations between soil properties and weed density would also be expected to be scale‐dependent. Quantifying these effects of scale on weed patch dynamics is essential to guide the design of discrete sampling protocols for mapping weed distribution. We developed a general method that uses novel within‐field nested sampling and residual maximum‐likelihood (reml ) estimation to explore scale‐dependent relations between weeds and soil properties. We validated the method using a case study of Alopecurus myosuroides in winter wheat. Using reml , we partitioned the variance and covariance into scale‐specific components and estimated the correlations between the weed counts and soil properties at each scale. We used variograms to quantify the spatial structure in the data and to map variables by kriging. Our methodology successfully captured the effect of scale on a number of edaphic drivers of weed patchiness. The overall Pearson correlations between A. myosuroides and soil organic matter and clay content were weak and masked the stronger correlations at >50 m. Knowing how the variance was partitioned across the spatial scales, we optimised the sampling design to focus sampling effort at those scales that contributed most to the total variance. The methods have the potential to guide patch spraying of weeds by identifying areas of the field that are vulnerable to weed establishment.  相似文献   

19.
This study was carried out to compare the diversity in seed production and the soil seed bank in a dryland and an irrigated agroecosystem in the dry tropics. Both agroecosystems showed a comparable number of species, but only 25% and 38% similarity during the winter and rainy cropping seasons, respectively. In the irrigated agroecosystem, the amount of seed production diversity was almost double in the winter season, compared to the rainy season. The weed seedbank diversity was low but was sensitive to cropping practices and seasons in both agroecosystems. A considerably smaller soil seedbank size in the irrigated agroecosystem (cf. dryland) was related to lowered weed seed production. The dryland agroecosystem showed a greater accumulation of the seeds of broad‐leaved weeds, whereas the irrigated agroecosystem accumulated more seeds of the grasses or sedges. About three‐fourths of the seeds during the winter season were accounted for by Anagallis arvensis and Chenopodium album in the dryland agroecosystem and by C. album and Melilotus indica in the irrigated agroecosystem. However, during the rainy season, Ammannia baccifera, Echinochloa colona and Cyperus rotundus dominated in both agroecosystems. The changes in the weed seed bank and its diversity are mainly attributed to differences in water management, which tends to reduce species diversity, especially at a lower depth, but leads to the dominance of some potentially noxious weeds (e.g. Phalaris minor and M. indica). Approximately double the soil seedbank size and a greater diversity at a lower depth might indicate an adaptive mechanism in the storage of weed seeds in the dryland agroecosystem.  相似文献   

20.
Fimbristylis miliacea, a weed in rice, has evolved resistance to acetolactate synthase (ALS) inhibitors. This study aimed to investigate the competitive abilities of ALS‐resistant (R) and ALS‐susceptible (S) F. miliacea with rice. A replacement series experiment was conducted in the glasshouse at the Federal University of Pelotas, Brazil. The proportions of rice to F. miliacea were 100:0, 75:25, 50:50, 25:75 and 0:100, with 1060 plants m?2. The experimental units were arranged in a completely randomised design with four replications. A follow‐up study was conducted at the University of Arkansas, Fayetteville, USA, in a split‐plot design with four replications. The main plot was species mixture (rice × R, rice × S, R × S). The subplot was competition partitioning (below‐ and above‐ground, below‐ground only, above‐ground only and no interspecific competition). Leaf area, plant height and shoot dry mass were recorded. Rice was more competitive than the R or S F. miliacea. In equal proportions of rice and F. miliacea, regardless of ecotype, the relative leaf area, height and dry mass of rice were greater than that of F. miliacea. The ALS‐resistant ecotype was less competitive with rice than the S ecotype. Intraspecific competition among rice plants was stronger than rice competition with F. miliacea. Competition for below‐ground resources was the most critical aspect of interference among rice and F. miliacea. In production fields, high infestation levels of F. miliacea results in significant yield losses; thus, resistance to ALS inhibitors needs to be curtailed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号