首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many recently described Phytophthora species detected using high-throughput sequencing have never been isolated into culture. NARH is a commonly used isolation medium containing cornmeal agar with n ystatin 22.72 ppm, a mpicillin 100 ppm, r ifampicin 10 ppm, and h ymexazol 50 ppm. We investigated whether the antimicrobial compounds in this medium selectively inhibit growth of some Phytophthora species. Growth of 10 Phytophthora species from 10 Phytophthora clades was tested in NARH medium with antimicrobials in a range of concentrations, singly and in combination: nystatin 12.5–100 ppm, ampicillin 62.5–500 ppm, rifampicin 5–40 ppm, hymexazol 12.5–100 ppm and in addition, chloramphenicol 5–40 ppm. Two combinations of antimicrobials that supported good growth of the greatest number of species were selected: (a) nystatin 12.5 ppm, ampicillin 250 ppm, rifampicin 10 ppm, and hymexazol 12.5 ppm, and (b) these compounds with the addition of chloramphenicol 5 ppm. Subsequently the growth of 47 Phytophthora species from all clades was tested in media with these two combinations and standard NARH, both in aseptic culture and in plates with leaf baits infected from soils known to be infested with Phytophthora. Although growth of some Phytophthora species was better with the new combinations of antimicrobials in aseptic culture, suppression of competing microorganisms was best in standard NARH. Sensitivity to the NARH antimicrobials is not the reason for the difficulty or failure of isolating many species detected using high-throughput sequencing. NARH is a robust and appropriate medium for isolation of Phytophthora species from all clades.  相似文献   

2.
A new disease of rose was noticed in Chiba Prefecture of Japan in 1968, and the pathogen was initially identified as Phytophthora megasperma based on morphological characteristics. Similar Phytophthora isolates have since been collected from rose plants in Chiba, Kanagawa, and Shizuoka Prefectures. In 2005, several Phytophthora isolates were recovered from crowns of strawberry plants in Hokkaido Prefecture. These were considered to be members of a new species. In this study, we re-examined all these isolates using morphological and physiological studies and a multilocus phylogenetic analysis. The rose and strawberry isolates were mostly similar morphologically and physiologically, with some exceptions. The rose isolates differed significantly from P. megasperma sensu stricto and other related Phytophthora species. The rose and strawberry isolates had external proliferation of sporangia, characteristic funnel-shaped oogonia, predominantly paragynous antheridia, and fast growth rates of 10.5 mm/24 h at an optimum temperature of 28 °C. In the multilocus phylogenetic tree constructed using sequences from the rDNA ITS regions, rDNA LSU, and the translation elongation factor 1-α, β-tubulin and coxI genes, they formed a distinct monophyletic group in clade 7 with strong bootstrap support. The rose and strawberry isolates separated into two distinct groups. The results indicate that the rose and strawberry isolates constitute two separate species, designated here as Phytophthora nagaii and P. fragariaefolia.  相似文献   

3.
A new homothallic Phytophthora species, isolated from rhizosphere soil and roots of declining or dead Rubus anglocandicans (European blackberry) in south-west Western Australia, is described as Phytophthora bilorbang sp. nov. It produces non-papillate sporangia, smooth-walled oogonia containing thick-walled oospores, and paragynous antheridia. Although morphologically similar to several species within ITS Clade 6 and sub-clade II, namely P. gibbosa, P. gregata and P. megasperma, phylogenetic analyses of the ITS, cox1, HSP90, BT and NADH gene regions demonstrate that P. bilorbang sp. nov. is a distinct species. Additionally, P. bilorbang differs from these species in its growth and colony morphology on several media. Pathogenicity tests indicate that P. bilorbang could be responsible for the decline syndrome of blackberry within the Warren and Donnelly River catchments in the south-west of Western Australia.  相似文献   

4.
Several Phytophthora spp. are known to cause a range of symptoms on citrus, resulting in significant crop losses worldwide. In South Africa, Phytophthora remains a destructive citrus disease, but the species and their distribution have not been well documented. A total of 162 Phytophthora isolates was collected from 60 citrus orchards in seven provinces of South Africa (Eastern Cape, Kwazulu-Natal, Limpopo, Mpumalanga, Northern Cape, North West and Western Cape). Isolates were identified to the species level through PCR-RFLP (restriction fragment length polymorphism) analyses of the internal transcribed spacer region. The identity of a subset of the isolates was confirmed using morphological and sequence analyses. Phytophthora nicotianae was the predominant species (76 % of isolates) and occurred in 80 % of the orchards in all of the provinces, followed by P. citrophthora (22 % of isolates in 28 % of orchards). The P. citrophthora isolates were further subdivided into two previously identified subgroups, G1 and G2, with most (69 %) of the isolates belonging to the G1 subgroup. Other Phytophthora species included P. multivora in the Western Cape Province, and an unknown species in the Eastern Cape Province with high sequence similarity (98 %) to a putative new species submitted to GenBank as Phytophthora taxon Sisuluriver. Phytophthora palmivora, a known citrus pathogen, was not identified. Most of the P. nicotianae isolates (79 %) were of the A1 mating type. The P. citrophthora isolates were mostly sterile (64 %), including most of the G1 isolates (81 %). The remaining G1 isolates (19 %) belonged to the A1 mating type, whereas almost all G2 isolates belonged to the A2 mating type except for one isolate that was sterile.  相似文献   

5.
Invasive Phytophthora species are responsible for severe tree diseases in many forest ecosystems in Europe. In Hungary, the symptoms were first noted when P. alni infection led to a serious decline and mortality of alder stands in the late 1990s. Between 2001 and 2009, over 300 soilborne Phytophthora isolates were collected from declining broadleaf forests in Hungary, and 10 Phytophthora species identified based on morphological traits and the molecular characteristics of the internally transcribed spacer (ITS) regions of the nuclear ribosomal DNA. The most diverse species spectrum, found in diseased alder stands, included P. gonapodyides, P. gregata, P. inundata, P. lacustris, P. megasperma, P. plurivora, one informally designated taxon: P. taxon hungarica, and one unnamed species P. sp.1. P. cactorum and P. plurivora isolates were prevalent in the soil of a declining eastern black walnut forest, and three species, P. gonapodyides, P. multivora and P. plurivora were recovered from a declining oak stand. More than one ITS-based genotype was identified for four species, including six genotypes for P. gonapodyides, and two each for P. cactorum, P. plurivora and P. inundata. The high genetic diversity of the P. gonapodyides isolates may indicate that the species is indigenous to the region. In contrast, the frequently recovered, widely distributed P. lacustris with a single ITS genotype may represent a recent colonizer. The P. multivora isolates are, to date, the first reported from a European native forest.  相似文献   

6.
The genus Phytophthora is one of the genera of organisms that poses the most threat to plant health worldwide. Statutory monitoring for Phytophthora species focuses on the species regulated in the European Union and recommended for regulation by EPPO (Plant Health Directive 2000/29 EC and the EPPO A2 List). This research provides details of the Phytophthora species detected from trade and non‐trade environments in Ireland between 2013 and 2015. The results of statutory surveys for the regulated species Phytophthora ramorum, Phytophthora kernoviae and Phytophthora lateralis from 2003 to 2015 are also presented. Testing of more than 11 000 samples was carried out using morphological and/or DNA identification with specifically designed Phytophthora conserved primers. This led to the detection of 19 species and 3 informally designated taxa of Phytophthora, including 8 new records for Ireland. Eight species were found in both trade and non‐trade locations, and three informally designated taxa were also detected. Phytophthora ramorum was found on the most hosts (30 hosts), followed by Phytophthora syringae (6 hosts) and Phytophthora kernoviae (3 hosts). Rhododendron was the host on which Phytophthora species were most frequently detected (12 Phytophthora species). The role of the plant trade in spreading invasive Phytophthora species is discussed.  相似文献   

7.
During surveys conducted in 2010–2013, a complete breakage or bending of the trunk and a dry basal stem rot were observed on containerised Brahea armata, B. edulis, Howea forsteriana and Trachycarpus princeps plants in different nurseries located in eastern Sicily (southern Italy). A cylindrocarpon-like species was consistently obtained from diseased palm tissues, while known pathogens of these hosts such as Ganoderma, Phytophthora and Thielaviopsis were not found associated with symptomatic tissues or isolated on standard or selective media. A total of 40 cylindrocarpon-like isolates were collected and characterised based on morphology and DNA phylogeny. Multigene analyses based on the β-tubulin, histone H3, translation elongation factor 1-α, and the internal transcribed spacers (ITS1, 5.8S, ITS2) genes facilitated the identification of a new species, described here as Ilyonectria palmarum. The pathogenicity of one representative isolate collected from each palm species was tested on plants cultivated under nursery conditions and in a growth chamber. All isolates were pathogenic to B. armata, B. edulis, H. forsteriana, and T. princeps and symptoms identical to that observed in nurseries were reproduced. Dry basal stem rot and stem bending caused by Ilyonectria palmarum represents a potentially serious problem for nurseries cultivating containerised palms.  相似文献   

8.
Samples of water and sediment were taken from drains, reservoirs and wells from four commercial hardy ornamental nurseries with water recirculation systems. The samples were taken on seven different dates throughout a single year from August 1994 to July 1995. The samples were screened for Phytophthora species using five different methods: direct plating, three bait tests (using lupin seedlings, apples and Rhododendron leaves) and a DAS-ELISA (double-antibody sandwich enzyme-linked immunosorbent-assay) with two antisera. In the nurseries with old water recirculation systems, Phytophthora species were detected in the drains and in the reservoirs. In the nursery with a new recirculation system, the pathogens were only present in the drains. None of the water samples from wells in any of the nurseries were contaminated. Phytophthora species were present in the water as well as in the sediment samples from drains and reservoirs. They were detected in the water recirculation systems irrespective of the season. The number of isolates increased about sevenfold between late summer and spring. At least 12 different Phytophthora species were identified: some isolates were previously unrecorded species. The epidemiology of the pathogens in outdoor water recirculation systems as well as the importance of the results for commercial nurseries is discussed.  相似文献   

9.
Forests in Europe are threatened by increased diversity of Phytophthora species, but effects on trees of simultaneous infections by Phytophthora and ecological consequences of their coexistence are unknown. This study explored variation in early survival of Quercus ilex to Phytophthora infections and assessed interactions between Phytophthora species when trees were co‐infected. Three Phytophthora species (P. cinnamomi, P. gonapodyides and P. quercina), seeds from 16 populations of Q. ilex (ballota and ilex subspecies) and two infection times were used as sources of variation in two experiments. The influence of Phytophthora species, Q. ilex subspecies and populations on plant germination and survival were analysed using generalized linear mixed models and survival analysis techniques. Germination rates were not influenced by Phytophthora spp. (= 0.194) but by the subspecies and populations of Q. ilex (< 0.001). In Phytophthora‐infested soils, Q. ilex subsp. ilex germinated at higher rates than Q. ilex subsp. ballota. Plant survival was strongly influenced by Phytophthora species (< 0.001), not by the subspecies and populations of Q. ilex. Seedling mortality was reduced and delayed if a less virulent Phytophthora species infected plants prior to infection by a more virulent Phytophthora species. The results help to explain oak decline syndrome and the lack of natural and artificial regeneration of Q. ilex forests. Lack of interspecific variability of early survival to Phytophthora spp. discourages direct sowing for artificial reforestation programmes. Large, thick seeds, giving plants rapid growth, are advantageous traits when soils are infested with Phytophthora spp.  相似文献   

10.
Emergent plant pathogens represent one of the most significant threats to biodiversity, and exotic Phytophthora species have recently emerged as a serious problem in restored habitats in California and in nurseries producing the plant stock. It is hypothesized that ‘best management practices’ prescribed through a Phytophthora Prevention Programme (PPP) could be useful in minimizing phytophthora disease incidence. To understand the magnitude of the problem and the efficacy of the PPP, plants in restoration nurseries were evaluated for (i) the Phytophthora species assemblage present in the absence of the PPP, and (ii) the effectiveness of the PPP to reduce them. Sampling included 203 plants grown in the absence of the PPP, and 294 grown implementing the PPP. Only samples collected in the absence of the PPP were Phytophthora-positive, and cumulatively yielded 55 isolates from 13 different taxa, including 1 putative interspecific hybrid genotype. There were 21 novel Phytophthora–plant species combinations. The most common Phytophthora species was P. cactorum. Four plant species had the highest disease incidence, namely: Diplacus aurantiacus (50 ± 11.2%), Heteromeles arbutifolia (33 ± 9.6%), Ceanothus thyrsiflorus (30 ± 8.4%), and Frangula californica (30 ± 8.4%). Disease incidence in nurseries after the implementation of the PPP dropped to zero (< 0.001), and was unaffected to any significant degree by nursery differences, or plant species tested. This study identifies a large number of novel ‘plant species × Phytophthora species’ combinations, and provides for the first time strong evidence that the PPP significantly reduced Phytophthora in plant stock for habitat restoration.  相似文献   

11.
Ascochyta blight caused by Didymella rabiei (anamorph: Ascochyta rabiei) is an important foliar disease of chickpea in many countries. The fungus is heterothallic and requires the pairing of two compatible mating types for the teleomorph to develop. In nature, the teleomorph only develops on chickpea debris that overwinters on the soil surface in the presence of both mating types. When natural and synthetic agar media were seeded with conidial suspensions of compatible isolates of D. rabiei from Spain and the United States and incubated under favourable conditions for teleomorph development, the teleomorph only developed on 2?% water agar amended with powdered chickpea stems or hot water extracts of chickpea stems, but not on 14 other natural or synthetic media. Ascospore isolates of D. rabiei from pseudothecia that developed on agar media were indistinguishable in cultural and morphological characteristics from isolates of the fungus from chickpea. Production of pseudothecia and ascospores on the best culture medium was always lower than on stem pieces of chickpea straw used as a control treatment. Ascospores discharged from pseudothecia that developed on powdered chickpea stem media onto chickpea seedlings were pathogenic, inducing symptoms identical to those caused by ascospores from chickpea stem pieces or conidia from a chickpea isolate of the fungus. This is the first report of the teleomorph of D. rabiei developing on culture media.  相似文献   

12.
The evergreen holm oaks (Quercus ilex subsp. ilex and Q. ilex subsp. ballota) are the most representative tree species in the Iberian peninsula and the main tree species in oak‐rangeland ecosystems (dehesas). Oak decline in western, central and southern parts of Spain has been associated with root rot caused by Phytophthora cinnamomi for decades. However, Phytophthora species such as P.  quercina and P. psychrophila have recently been found associated with Quercus decline in eastern Spain where calcareous soils are predominant. Soil and root samples from two Quercus forests presenting decline symptoms in two different geographical areas in eastern Spain (Carrascar de la Font Roja and Vallivana) were analysed by amplicon pyrosequencing. Metabarcoding analysis showed Phytophthora species diversity, and revealed that an uncultured Phytophthora taxon, named provisionally Phytophthora taxon ballota, was the predominant species in both areas. In addition, a real‐time PCR assay, based on the pyrosequencing results, was developed for the detection of this uncultured Phytophthora taxon, and also for the detection of P. quercina. TaqMan assays were tested on soil and root samples, and on Phytophthora pure cultures. The new assays showed high specificity and were consistent with metabarcoding results. A new real‐time PCR protocol is proposed to evaluate the implication of different Phytophthora spp. in oak decline in eastern Spain.  相似文献   

13.
In Australia, Phytophthora cinnamomi is the only species reported as the causal agent of stem canker and root rot in macadamia. In other countries, five Phytophthora species have been reported to cause diseases in macadamia, which led us to question if more than one Phytophthora species is responsible for poor tree health in macadamia orchards in Australia. To investigate this, samples were collected from the rhizosphere, stem, and root tissues of trees with and without symptoms, nurseries, and water sources from 70 commercial macadamia orchards in Australia. Phytophthora isolates were identified based on morphological characteristics and DNA sequencing. P. cinnamomi was the most predominant and widely distributed species, and was obtained from the different types of samples including symptomless root tissues. In addition to P. cinnamomi, only P. multivora was isolated from diseased tissue (stem canker) samples. Six other Phytophthora species were obtained from the rhizosphere samples: P. pseudocryptogea, P. citrophthora, P. nicotianae, P. gondwanense, P. sojae, and a new Phytophthora taxon. Only P. cinnamomi was obtained from macadamia nursery samples, while five Phytophthora species were obtained from water sources. Of the heterothallic Phytophthora species, mating type A2 isolates were dominant in P. cinnamomi isolates, whereas only mating type A1 isolates were obtained for P. nicotianae, P. pseudocryptogea, and P. citrophthora. Pathogenicity assays revealed that P. cinnamomi and P. multivora caused significantly larger stem and leaf lesions than P. citrophthora, P. nicotianae, and P. pseudocryptogea. Phytophthora sp. and P. sojae were nonpathogenic towards leaves and stems.  相似文献   

14.
The Phytophthora complex associated with Castanea sativa Mill. was investigated in five European countries in 35 regions and with respect to various domestication levels. Annual precipitation and length of drought season were the main parameters that regulated the presence of Phytophthora species in the chestnut stands. Seven species of Phytophthora were detected; three of these, P. megasperma, P. cryptogea and P. syringae had not been previously reported on sweet chestnut. P. cinnamomi. P. cambivora and P. citricola were most frequently isolated. P. cinnamomi and P. cambivora were the species significantly associated with declining trees with symptoms of Ink Disease. P. cinnamomirequired distinct ecological conditions compared to the other species. P. cinnamomi was never detected in sites characterized by minimum temperatures below 1.4 °C, maximum temperature above 28 °C, or soil pH below 5.4. The results obtained provide useful information for modeling the probability of Ink Disease, crown decline and associated Phytophthora species in chestnut groves in global climatic change scenarios.  相似文献   

15.
Bacterial leaf spot (BLS) caused by seed-borne xanthomonads is a serious disease of tomato (Solanum lycopersicum L.), causing significant losses in both yield and quality. To identify more effective control measures, we evaluated crude extracts from 84 plant species in in vitro and in planta assays for antibacterial activity against BLS of tomato. In the in vitro assays, 20.2?% of the tested plant extracts totally inhibited growth of bacteria when seed washings from treated seeds were plated on nutrient agar medium. In the in planta assays, 17.8?% of the tested plant extracts reduced BLS incidence by 100?% in tomato seedlings. The most effective seed treatments were obtained with extracts from Aloe vera, Betula pendula, Coffea arabica, Glycyrrhiza uralensis, Juniperus communis, Ocimum basilicum, Quercus robur, Rheum palmatum, Rosmarinus officinalis, Ruta graveolens, Sinapis alba, Yucca schidigera and Salvia officinalis. Seed treatment of tomato with these extracts completely inhibited Xanthomonas perforans in both in vitro and in planta assays. Extracts from A. vera, C. arabica and Y. schidigera were tested three times using tomato seeds of cultivars Tanya, Cal-J and Moneymaker in Tanzania. Treatment of tomato seeds with these extracts had a positive effect on the number of normal seeds and had no effect on seedling vigor, height and weight. These results indicate that plant extracts from A. vera, C. arabica and Y. schidigera are potential candidates for seed treatment against seed-borne xanthomonads of tomato in Tanzania.  相似文献   

16.
Plant pathogens, especially Phytophthora and bacterial species, in re-circulated irrigation water present a significant health risk to nursery and greenhouse crops. Heat treatment at 95°C for 30?s is one of the most reliable technologies for irrigation water decontamination. The primary objective here was to examine whether the water temperature required to inactivate major pathogens in re-circulated irrigation water can be lowered from 95°C to conserve energy and improve horticultural profitability while reducing environmental footprint. Specifically, we investigated the effect of water temperature on Phytophthora nicotianae zoospore survival in the laboratory and on annual vinca under greenhouse conditions. We also assessed the effect of water temperature on survival of chlamydospores of P. nicotianae, oospores of P. pini, six plant pathogenic bacterial species and Escherichia coli. The zoospores of P. nicotianae did not survive and cause any disease on annual vinca when exposed to 42°C for 12?h or 48°C for 6?h. No chlamydospores of P. nicotianae survived 42°C for 24?h or 48°C for 6?h, nor did the oospores of P. pini at 42°C for 12?h or 48°C for 6?h. In addition, none of the seven bacterial species survived 48°C for 24?h. These results indicate that the required water temperature to eliminate Phytophthora and bacterial species may be lowered substantially from 95°C by longer exposure time, improving the economics and environmental footprint, without sacrificing efficacy of heat treatment.  相似文献   

17.
X. Yang  C. X. Hong 《Plant pathology》2016,65(7):1118-1125
Agricultural run‐off sedimentation reservoirs are an emerging aquatic system of critical importance to plant biosecurity, water and environmental sustainability. Oomycete pathogens such as Phytophthora and Pythium species in irrigation water have been demonstrated to pose significant risks to ornamental crops, but little is known about their diversity and populations in sediments of agricultural irrigation systems. This study investigated the oomycete communities including Phytophthora (Ph.), Phytopythium (Pp.) and Pythium (Py.) species in sediments at various depths of an agricultural run‐off sedimentation reservoir in Virginia during the winters of 2011 and 2015. The recovery of these oomycetes declined sharply with sediment depth from surface to 0·8 m and none was recovered from sediments deeper than 1·4 m. A total of 47 oomycete species were recovered, with all four species of Phytophthora and five of Phytopythium exclusively from the surface. Recovered species included many important plant pathogens such as Ph. nicotianae, Ph. pini, Ph. tropicalis, Pp.  vexans, Py. irregulare and Py. monospermum. These results underline the importance of decontaminating sediments excavated from top layers (0–1·4 m) of the sedimentation reservoir before reuse in plant production.  相似文献   

18.
A fruit rot, similar to brown rot, occurred on extremely early ripening Satsumas in Saga Prefecture in the early autumn of 1999. A single species of Phytophthora was isolated from the affected fruit. After nonwounding inoculation of healthy fruits of Citrus spp. including Satsuma with the isolated fungus, the fungus was reisolated from fruit with symptoms similar to those in nature. On the basis of its morphology and molecular analysis of the rDNA-internal transcribed spacer regions, the pathogen was identified as P. palmivora. This is the first report of P. palmivora as a causal pathogen of citrus brown rot in Japan.  相似文献   

19.
Since the 1990s, a new Phytophthora species hybrid has been jeopardizing the natural population of alders throughout Europe. This new Phytophthora, P. alni, has been suggested as a natural hybrid between two closely related species of Phytophthora. Little is known about the epidemiology of this pathogen, because its direct isolation is not always satisfactory. In this study we developed three pairs of Polymerase Chain Reaction (PCR) primers derived from Sequence Characterized Amplified Regions (SCAR) that allow discrimination among the three subspecies of P. alni: P. alni subsp. alni, P. alni subsp. uniformis and P. alni subsp. multiformis. These molecular tools were successfully used to detect P. alni directly in different substrates such as infested river water and soil, and necrotic alder bark, without the need for any prior baiting or isolation stages. An Internal Amplification Control (IAC) was included to help discriminate against false negative samples due to the potential presence of inhibitory compounds in DNA extracts. These molecular tools should be useful for epidemiological studies on this emerging disease.  相似文献   

20.
In September 2014, Phytophthora rot on wasabi plants [Wasabia japonica (Miq.) Matsum.] was found for the first time in the city of Okutama, Tokyo, Japan. A Phytophthora sp. strain was constantly isolated from brown stem bases and rhizomes of infected plants. The same symptoms as those observed in the field were produced in vitro through inoculation of test plants with the isolated Phytophthora sp. The fungus was identified as Phytophthora drechsleri based on morphological and DNA sequence comparison. Phytophthora rot, “eki-byo” in Japanese, is proposed for this disease common name.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号