首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为合理进行风沙土地区灌溉管理,将水肥控制在根区范围内并满足大豆生长需求,以灌水量为试验因素,基于作物冠层蒸发皿蒸发量设置0.4(W1)、0.6(W2)、0.8(W3)、1.0 Epan(W4)和1.2 Epan(W5)5个灌溉水平,研究不同灌水量对大豆根区硝态氮和水分分布的影响。结果表明:增加灌水量会使土壤水分入渗深度增加10~30 cm,增大根区土壤水分分布的不均匀性,苗期W5处理剖面水分平均值较W1处理增大40.22%,W4、W5处理能够维持大豆根区6%~7%的土壤含水率。硝态氮有明显表聚现象,随着灌水量的增大,淋洗深度增加且不均匀性增大,根区土壤硝态氮平均含量降低,当灌水量高于1.0 Epan时,硝态氮含量低于10 mg·kg-1。W2、W3和W4处理能保证大豆根区在生育前、中、后期处于15~22 mg·kg-1的硝态氮浓度区间,垂直方向上灌水量与硝态氮呈负相关关系。风沙土土壤剖面含水率均在4%~10%之间,灌水量是影响风沙土硝态氮含量和分布的主要因素之一;各处理硝态氮含量在10~30 mg·kg-1之间。综合考虑作物对根区土壤水分和硝态氮含量的需求,以及土壤水分和硝态氮在根层的分布特征,推荐灌溉水量为1.0 Epan。  相似文献   

2.
水肥供应对马铃薯根层养分及产量的影响   总被引:1,自引:0,他引:1  
以陕北地区普遍种植的马铃薯品种荷兰15号为供试材料,设置灌水水平和施肥量两因素,研究水肥供应对马铃薯根层养分及产量的影响。以100%ET0(W1)和当地推荐施肥量(F1,N-P2O5-K2O为240-120-300 kg·hm-2)为基础,3个灌水量处理分别为W1,W2(80%ET0)和W3(60%ET0),3个施肥水平分别为F1,F2(75%F1)和F3(50%F1),以60%ET0灌水水平和不施肥处理为对照组(CK),共10个处理。结果表明:不同水肥供应对马铃薯各生长阶段耗水量及水分利用效率有显著的影响,随着灌水量增加,土壤水分逐渐向下层迁移;在马铃薯整个生育期,W3F2处理水分利用效率最高,为44.69 kg·hm-2·mm-1,其次为W2F2(44.41 kg·hm-2·mm-1),比CK分别高39.64%和38.75%;W3F1处理在10~60 cm土层硝态氮含量平均值最高,比CK高166.1%,W2F2在10~60 cm土层铵态氮含量平均值最高,比CK高61%,W3F3在10~60 cm土层电导率平均值最高,比CK增高48.44%。W2F2处理的土壤养分含量较高,主要集中在10~30 cm土层;W2F2处理的产量最高,为12 539.33 kg·hm-2,比CK处理的产量高55.65%,且变异系数小。因此,该地区推荐的灌水量为80%ET0,施肥量N-P2O5-K2O为180-90-225 kg·hm-2。  相似文献   

3.
加气灌溉对温室番茄生长、产量及品质的影响   总被引:1,自引:0,他引:1  
本试验目地是探明加气灌溉不同灌水量和加气灌水频率对温室番茄生长、产量和品质的影响,为实际生产应用奠定基础。采用温室小区对照试验,设置3个不同作物-皿系数Kcp(Kcp=0.8、Kcp=1.0、Kcp=1.2)和2个加气灌水频率(1次/3d、1次/6d)共组成6个处理,均以对应的不加气灌溉为对照,比较不同处理对番茄植株生长及果实产量和品质的影响。结果表明,在相同的灌溉频率及灌水量下,加气灌溉可以提高番茄的生长量、产量及品质,加气灌溉的番茄株高较不加气灌溉增加1.44%、茎粗增加3.02%、产量增加19.49%;加气灌溉有利于温室番茄茎粗、株高的生长,并且对番茄的产量和品质均有利。加气灌溉处理时,在相同的灌水量条件下,1次/6d较1次/3d的加气灌水频率,株高增加了8.08%,茎粗增加了6.33%,产量增加了26.01%。由此得出:加气灌溉对植株生长量及果实产量和品质的影响明显优于不加气处理;灌水频率为1次/6d且Kcp=1.0的处理最有利于番茄生长量的积累、产量的提高和品质的改善。  相似文献   

4.
探究生物炭对亏缺灌溉下温室重壤土栽培番茄产量和品质的影响,确定番茄产量和综合品质最优的灌水量及生物炭添加量,为重壤土地区温室番茄栽培提供灌水及生物炭施加依据。采用桶栽试验,设置3个生物炭添加量(0,3%,6%,按干土重的百分比计)和3个灌水水平(充分灌溉W1:75%~85%θf;中度亏缺W2:55%~65%θf;重度亏缺W3:40%~50%θf。θf为田间持水量),共9个处理。结果表明:无生物炭添加时,亏缺灌溉下番茄产量降低了13.8%~54.0%(P<0.05),果实硬度、果色指数、VC、可溶性固形物、有机酸含量等营养品质指标均显著降低,果型指数、番茄红素则呈现增加的趋势,灌溉水利用效率在重度亏缺下降低了10.9%(P<0.05);在充分灌溉条件下添加生物炭,番茄产量和灌溉水利用效率分别提高了12.3%~22.0%和23.3%~28.6%,可溶性固形物含量降低了6.4%~17.7%(P<0.05),对VC、番茄红素、有机酸含量及外观品质无显著影响;在亏缺灌溉条件下添加生物炭不利于增产,C1W3、C2W3处理产量较C0W3处理分别降低了37.6%(P<0.05)、17.1%(P>0.05),但外观品质指标、VC、可溶性固形物均有一定幅度的提升,对灌溉水利用效率的影响表现为低添加量时降低而高添加量时提高。综合分析表明,各灌水水平下添加生物炭均能提高番茄品质的综合排名,充分灌溉下生物炭低添加量效果较好,而亏缺灌溉下高添加量较优,尤其是C2W2处理,番茄品质综合排名可达到充分灌溉的效果。综合考虑番茄品质、产量及灌溉水利用效率,C1W1处理(灌水水平为75%~85%θf,施炭量为3%)为最优处理。  相似文献   

5.
采用盆栽控水试验,研究了5种土壤水分条件(分别为土壤田间持水量的50%、60%、70%、80%、90%,记为T1~T5)对夏玉米蒸发蒸腾量(ET)及抽雄期光合性能的影响。结果表明:土壤含水量对夏玉米生长过程中的ET、株高、叶面积和光合性能均有显著影响。与T1处理相比较,T2~T5水分处理下的夏玉米主要生育期内ET依次增加了23.66%、39.17%、43.33%和49.84%,呈线性增大的趋势;在夏玉米耗水强度最旺盛的抽雄期,与T1处理相比较,T2~T5处理下的蒸腾速率(Tr)分别增长了63.74%、75.65%、78.83%和81.77%,气孔导度(Gs)分别增长了71.97%、82.63%、83.91%和84.87%,二者均随着土壤含水量的增大呈指数函数变化,但土壤含水量超过田间持水量的70%后增幅显著减小;光合速率(Pn)分别增长了47.51%、60.65%、57.51%和55.87%,Pn、株高、叶面积随着土壤含水量的增大呈现抛物线形变化趋势,即先增加后减小的规律,在T3和T4处理水平下达到最大值,依次为28.14 μmol·m-2·s-1(T3)、256.5 cm(T4)、628.6 cm2(T3)。从提高夏玉米光合效率和水分生产效率、减少无效蒸发蒸腾耗水的角度考虑, 夏玉米抽雄期的土壤含水量控制在田间持水率的80%左右为宜。  相似文献   

6.
为实现大田作物灌溉的精细化管理,研究了基于气象因素的生育期ET0预测模型。采用灰色理论对ET0与日均、日最高、最低温度,日均风速,相对湿度以及日照时数进行灰色关联度分析,结果表明ET0与温度(包括日均、最高、最低温度)及相对湿度的灰色关联度较高。在分析ET0与上述气象因素间的相关系数基础上,采用日均温度、日均风速以及日照时数作为模型的输入,ET0作为输出,建立了BP神经网络(BPNN)预测模型;采用日均温度、日均风速、日照时数及灰色关联度作为输入,建立了模糊最小二乘支持向量机(FLSSVM)预测模型。研究结果表明,BPNN模型的训练值决定系数为0.8643,平均相对误差6.29%,预测值决定系数为0.8099,平均相对误差7.83%;FLSSVM模型的训练值决定系数为0.9684,平均相对误差2.89%;预测值决定系数为0.9663,平均相对误差3.43%。BP神经网络与FLSSVM模型的精度均较高,可以用来预测ET0日值,这为大田作物的精细化灌溉管理提供理论与技术支持。  相似文献   

7.
不同水肥配合对马铃薯产量的影响   总被引:1,自引:0,他引:1  
通过马铃薯膜下滴灌水肥耦合盆栽试验,以补水时期(X1)、补灌定额(X2)、施氮量(X3)、施磷量(X4)、施钾量(X5)为试验因素,采用5因素5水平(1/2实施)的二次旋转回归正交组合试验设计。研究了不同氮、磷、钾配施对马铃薯产量的影响,创建了马铃薯产量与补水时期、氮、磷、钾施用量和灌水量关系方程。结果表明:各因素的作用顺序为:X5>X4>X3>X2>X 1,各因子的交互项对马铃薯产量的影响顺序为X4X5>X3X5>X2X4>X2X5>X2X3;在以产量为目标函数时,最高产量为33.785 t·hm-2时,补水时期为苗期灌水总量为灌溉定额的25%、现蕾期灌水总量为灌溉定额25%、初花期灌水总量为灌溉定额的50%;水肥耦合关系为灌溉定额为822 m3·hm-2,施氮量、施磷量、施钾量分别为73.5 kg·hm-2、224.4 kg·hm-2、223.8 kg·hm-2。  相似文献   

8.
于2014年在宣威市农业技术示范基地开展了玉米间作马铃薯集雨保墒抗旱栽培复合技术试验研究。试验处理包括:T1:玉米+开沟覆膜‖马铃薯;T2:玉米+打塘覆膜‖马铃薯;T3:玉米+平作覆膜‖马铃薯;T4:玉米平作覆膜单作;T5:马铃薯单作。结果表明,T1和T2处理玉米土壤含水量均高于其它处理,T1、T2处理0~7.6 cm土层玉米平均土壤含水量比T4处理最多增加28.32%,0~20 cm土层最多增加28.12%;间作处理马铃薯的土壤含水量均高于马铃薯单作,T1、T2处理马铃薯平均土壤含水量在0~7.6 cm和0~20 cm两个土层分别比T5处理最多增加23.52%和12.78%;T1、T2处理玉米产量、复合产量和土地当量比(LER)均高于T3处理,其中,T2处理的土地当量比最大(LER=1.20),比T3处理增加10.52%,产量效益明显。  相似文献   

9.
基于1961—2013年滇中地区48个气象站逐日气象数据和2014—2018年5个水稻灌溉试验站的水稻生育期观测资料,利用Penman-Monteith公式和单作物系数法,并结合线性趋势和Mann-Kendall法计算分析了近53 a滇中不同分区水稻不同生育期需水量(ETc)、有效降雨量(Pe)、净灌溉需水(IR)和灌溉需水指数(IRI)的时空分布特征。结果表明:1961—2013年滇中地区ETcPe、IR和IRI平均值分别为546.34、235.96、310.38 mm和0.57,ETcPe均呈显著减少趋势,IR和IRI呈波动上升趋势,每10 a其变化幅度分别为-4.358、-6.468、1.2 mm和0.8%。ETc减小趋势主要集中在滇中I-2区和干热河谷Ⅵ区,Pe减小趋势主要集中在滇中I-3区和滇中I-4区,IRI上升趋势主要集中在滇中I-3区和滇中I-4区,ETcPeIRI显著变化主要出现在拔节孕穗期、分蘖期和乳熟期。1961—2013年滇中水稻ETc呈分蘖期>抽穗开花期>乳熟期>拔节孕穗期>返青期>黄熟期,Pe呈抽穗开花期>分蘖期>拔节孕穗期>乳熟期>返青期>黄熟期,IRI呈返青期>分蘖期>黄熟期>乳熟期>拔节孕穗期>抽穗开花期。滇中水稻不同生育期ETc呈现中北高中东低,减小幅度高值区主要分布在中北部,上升幅度高值区主要分布在中东部,PeIRI则呈相反的变化特征。Pe是影响ETcIR和IRI变化的主导因素。  相似文献   

10.
以太行红豆杉幼苗为材料,将土壤含水率阈值分别设置为田间持水率的90%~100%(W1)、80%~90%(W2)、70%~80%(W3)、60%~70%(W4)和50%~60%(W5),定时测量红豆杉幼苗的叶片气体交换参数和叶绿素荧光参数,并于试验后期测量红豆杉幼苗的生长状况。结果表明:红豆杉幼苗叶片叶绿素相对含量、气孔导度、净光合速率和蒸腾速率在W2处理达到最大值,分别比W5增长了10.17%、35.91%、53.03%和85.60%。且W2土壤含水率处理下红豆杉幼苗叶片qP、ETR和Y(Ⅱ)值最高,分别比W5增长了15.38%、30.74%和21.76%。随着土壤含水率的下降,红豆杉幼苗叶片NPQ升高,叶片热耗散能力增强,W5的NPQ值达1.4347,比W1增长了36.78%。W2显著提升了叶片rETRmax和半饱和光强Ik,与W1、W3、W4和W5相比,rETRmax分别增长了24.40%、4.93%、12.60%和26.15%;Ik分别增长了25.06%、7.70%、18.20%和27.08%。不同土壤含水率处理对红豆杉幼苗生长指标影响显著,W2处理的红豆杉幼苗株高、地径和叶面积指数LAI值分别为58.95 cm、7.76 mm和4.01,且显著高于其他处理。因此,在试验阈值范围内,土壤含水率阈值为80%~90%(W2)时有利于红豆杉幼苗光合作用的进行和植株的生长。  相似文献   

11.
为了研究不同冬灌量对苜蓿越冬和返青期土壤水热状况、返青期苜蓿生长及第一茬饲草产量的影响,采用随机区组设计,设置4个冬灌量水分梯度(T1为600 m~3·hm~(-2)、T2为900 m~3·hm~(-2)、T3为1 200 m~3·hm~(-2),以1 500 m~3·hm~(-2)为CK),开展地下滴灌不同冬灌量单因素试验。结果表明:苜蓿草田不同冬灌量对土壤水热状况影响差异明显,各处理冻融期历时为CK=T3T2T1,分别达6、6、12 d和18 d,冻结期历时为CKT3T2T1,分别达51、61、63 d和67 d,随灌水量的增加冻融期和冻结期历时变短且延迟;消融期随冬灌量增加历时延长且逐步提前,各处理消融期历时为CKT3=T2T1,相差在1~4 d之间,以CK的3月5日结束期为最早。在苜蓿越冬期内,各处理0~100 cm土层土壤贮水消耗量随冬灌量的增加而增加,T1耗水量为53.70 m~3·hm~(-2),T2为102.95 m~3·hm~(-2),T3为301.5/hm~2,CK为469.16 m~3·hm~(-2),且以40~60 cm土层耗水量最高;60~100 cm土层土壤贮水变化表现不一致,T1和T2贮水量增加且增幅随冬灌量增加而下降,T3和CK贮水量下降,且随冬灌量增加降幅增大。在苜蓿返青期始末,各处理0~100 cm土层土壤贮水均呈消耗状态,以冬灌量900 m~3·hm~(-2)的T2土壤贮水消耗量为最高值,达212.87 m~3·hm~(-2)。越冬率、第一茬草产量均与冬灌量呈正相关关系,一级分枝数各处理间差异不显著;以苜蓿越冬率、一级分枝数、第一茬草产量、越冬期和返青期耗水量为指标,采用隶属函数法对各处理进行综合评价,各处理隶属函数平均值大小为:T2T3T1CK,认为宁夏灌区苜蓿草田地下滴灌最优冬灌灌水量为T2处理(900 m~3·hm~(-2)),有利于提高冬灌灌溉水利用效率和改善苜蓿越冬、返青状况。  相似文献   

12.
为明确灌溉方式对土壤水分和灌水量的影响,采用土壤水分概率模型分析了传统灌溉和连续灌溉的土壤水分概率分布特征与土壤平均水分变化规律,研究了灌溉方式对灌水量的影响效应。结果表明:不同灌溉方式的土壤水分概率分布特征差异明显,连续灌溉的土壤水分概率密度极大值出现在s=s*处,传统灌溉的土壤水分概率密度极大值出现在s=sfc处;与传统灌溉方式相比,连续灌溉使土壤平均水分含量保持在相对较低的水平,当降雨发生时,其土壤能够容纳更多的入渗水量。连续灌溉明显减少了土壤水分深层渗漏和地表径流损失水量,显著提高了降雨利用率并降低了灌溉水量,从而提高了农业水资源利用率。  相似文献   

13.
滴灌条件下土壤水分再分布过程研究   总被引:7,自引:0,他引:7  
对均质风干砂壤土在滴灌条件下水分再分布过程进行研究发现:距离供水滴头较近的点,水分再分布过程开始后该点土壤含水量突然下降1~2个百分点,随后该点土壤含水量随时间延长而减少,前期较快,后期变缓;原湿润锋边缘处各点的土壤含水量在再分布过程前期表现为继续增加,后期则随时间的延长而缓慢减少。土壤水分的再分布运动使得湿润体内的土壤含水量均有不同程度的下降,土壤水分由高含水区向低含水区运移。在试验条件下水平湿润锋增长幅度6%,垂直方向增长幅度为9%,垂直方向大于水平方向;灌溉结束24 h后土壤水分运动达到暂时的平衡,此后土壤含水量变化很小,土壤湿润锋几乎不再扩展。  相似文献   

14.
试验于2014—2015年在北京市大兴区进行,以冬小麦为研究对象,以秸秆覆盖和灌水量为处理,对各小区棵间蒸发量(E)、土壤各层含水率(θ)、土壤表层温度(Tc)、叶面积指数及产量等指标进行实测与分析。结果表明:滴灌条件下湿润带E普遍高于干燥带,全观测期平均高出16.45 mm,较强降雨后干燥带E的波动更剧烈;秸秆覆盖可以有效减少各生育期E,低、中、高灌水量处理下秸秆覆盖比未覆盖处理分别减少20.45%、24.77%、19.14%,但在较强降雨后秸秆覆盖处理E波动更剧烈,不同灌水量对E影响不显著;低灌水量时,秸秆覆盖对灌溉水有明显的截留作用,中、高灌水量时则起到明显的保墒作用;整个观测期,E/ET先变小再变大,灌水量差异对E/ET影响显著,低、中、高灌水量下均值分别为29.71%、25.64%、21.38%;秸秆覆盖和未覆盖相比三种灌水处理E/ET分别减少8.93%、3.01%、0.44%。水分利用效率秸秆覆盖处理要普遍高于未覆盖处理,并与灌溉定额之间呈负相关。整体来看,中灌水量秸秆覆盖处理的产量和水分利用效率均较优,适合当地冬小麦滴灌种植。  相似文献   

15.
为明确不同冬灌制度的应用效果,以南疆膜下滴灌棉田为研究对象,选取每年冬灌处理(CK)、不冬灌处理(H1)及隔年冬灌处理(H2)3种冬灌制度,结合高通量测序技术对冬灌后土壤的理化性质、生物学性质以及微生物群落组成进行测定与分析。结果表明:(1)各处理间0~20 cm土层土壤总盐含量无显著差异,与CK相比,H1和H2处理显著降低了脲酶(0.96%~1.35%)和转化酶活性(1.17%)以及微生物量氮含量(4.21%~7.03%),但H2处理显著提高了土壤有机质(14.30%)、全氮(14.29%)、全磷(4.55%)和全钾(7.40%)含量;H1处理显著降低了土壤有机质(6.03%)、全磷(12.5%)和水分(23.08%)含量,提高了微生物量碳氮比(7.37%)。(2)不同处理下细菌群落的丰度和多样性以及真菌群落的丰度无显著差异,但与CK相比,H1和H2处理显著提高了真菌的辛普森指数(4.12%~ 4.55%)。此外,H1较CK处理提高了细菌放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)和真菌担子菌门(Basidiomycota)的相对丰度,H2较CK处理提高了细菌变形菌门(Proteobacteria)、芽单胞菌门(Gemmatimonadetes)和真菌被孢霉门(Mortierellomycota)的相对丰度。(3)相关性分析结果表明细菌的群落结构主要受微生物量碳含量的影响,真菌的群落结构和多样性分别受转化酶和脲酶活性的影响。在无法保证每年冬灌用水的情况下,隔年冬灌更有利于保障膜下滴灌棉田的土壤耕地质量。  相似文献   

16.
以长期采用有机污染型水灌溉的陕西交口灌区的农田土壤作为研究对象,并以气候条件、土壤条件以及耕作制度基本一致,长期采用未污染的地下水灌溉的农田土壤作为对照,分别测定土壤剖面上总有机碳含量、有机碳组成等指标,结合第二次全国土壤普查资料,分析长期采用有机污染水灌溉对土壤有机碳累积速率及有机碳密度的影响,探讨关中土壤"环境碳容量"水平及提升土壤有机碳潜力的途径。结果表明:长期采用有机污染水灌溉,土壤有机碳主要在耕层(0~20 cm)极显著地增加,且增加部分主要是活性有机碳组分,其累积速率是对照灌区的近3倍,非活性有机碳处于相对平衡状态。土壤有机碳的剖面分布发生了明显的分化现象,活性有机碳的变化比总有机碳的变化更为显著。有机污染水灌溉的土壤有机碳密度显著高于对照土壤,尤其在0~40 cm范围内其差异达极显著水平。结果证实渭河水中富含的有机污染物提升了灌溉农田土壤有机碳贮量,关中地区农田土壤环境碳容量仍未达到饱和水平,通过外源有机碳的输入,仍然有增加土壤有机碳含量的可能。  相似文献   

17.
为探究干播湿出对棉花覆土板结程度、土壤水盐分布以及出苗情况的影响,设置不同出苗水量与灌水频率2个因素,共计6个处理和1个对照处理,分别为WP1(675 m3·hm-2)、WP2(900 m3·hm-2)、WP3(1 125 m3·hm-2)、WP4\[(675+225) m3·hm-2\]、WP5\[(675+450) m3·hm-2\]、WP6\[(675+300+225) m3·hm-2\]与冬灌处理,对各处理的表层覆土板结度、灌前与灌后含水率及含盐量、出苗率、株高、茎粗等指标进行分析。结果表明:表层土壤板结度受灌溉水总量与灌水频次影响,WP4处理表层土壤板结程度最低(99.87 kPa),少量高频灌溉可以降低表层土壤板结度;各处理膜间电导率最大,高于窄行土壤9%以上;WP4处理出苗率最高(84.74%);窄行电导率、窄行含水率和表层覆土板结度与出苗率均具有显著负相关关系,土壤含水率与窄行电导率与株高、茎粗均呈现显著负相关关系。通过评判各处理出苗率与生长指标,WP4处理为最优处理。  相似文献   

18.
为了提高宁夏扬黄灌区水资源利用效率,促进玉米滴灌技术推广应用,在位于西北黄土高原的宁夏盐池县扬黄灌区开展了玉米滴灌制度研究。试验设计了单因素施肥水平2 131~3 847 m3·hm-2共9个梯度灌水总额,灌水次数10~11次,单次灌水定额150~450 m3·hm-2。通过对玉米生育期灌水量、土壤含水量、产量等指标的监测,分析了玉米生育期土壤含水量变化规律、各生育阶段耗水量强度、不同灌水定额下土壤水蓄存情况、年灌水量与产量的关系。结果显示:灌水前后0~40 cm土壤含水量有显著差异,40~100 cm差异不显著;单次灌水定额为225~375 m3·hm-2时灌溉水在土壤中得到有效蓄存,而单次灌水定额为450 m3·hm-2时,灌溉水有深层渗漏和侧渗现象。灌水量与玉米籽粒、青贮产量均呈正相关,R2分别为0.75和0.82,,在总灌水量为3 402、3 628 m3·hm-2和3 847 m3·hm-2时,产量分别为14 062、11 717、12 889 kg·hm-2,籽粒和青贮产量均随灌水量增加而减少,灌溉水生产效率分别为2.46、2.01、2.14 kg·m-3;灌浆期、抽雄期、拔节期是玉米生长的关键需水期,灌水定额为300~375 m3·hm-2;盐池县扬黄灌区适宜滴灌次数10~11次,灌水总额3 405~3 660 m3·hm-2。  相似文献   

19.
垄作沟灌技术具有显著的节水增产作用,但在春小麦种植中应用尚缺乏参数设计方面的理论支撑。本研究采用粉砂质粘壤土与粘土两种典型土壤实测水分运动参数和HYDRUS软件,模拟了梯形灌水沟不同垄宽情况下的土壤水分运动和停水后水分再分布,研究了不同灌水量时湿润锋推进过程和水分再分布后的湿润体变化,分析了设计灌水定额下适宜作物生长湿润体范围,提出了粉砂质粘壤土和粘土宜采用的合理垄宽为20~50 cm和20~35 cm,这一结果为干旱区春小麦垄作沟灌技术推广提供了技术支撑。  相似文献   

20.
地表滴灌条件下滴头流量对土壤水分入渗过程的影响   总被引:3,自引:0,他引:3  
在新疆林业科学院枣树示范基地进行原状土的滴灌入渗试验,研究砂壤土在不同滴头流量条件下地表滴灌湿润体特征值的变化规律。结果表明:地表滴灌条件下,当滴头流量增加时,湿润体的形状大小会随着滴头流量的增大而增大,水平、垂直方向上湿润锋的运移距离随着滴头流量的增加而不断增大;湿润锋的运移速率、入渗距离比值与水分入渗时间符合幂函数关系;湿润锋水平方向的运移速率比垂直方向上的要大,但是持续的运移时间没有垂直方向上的长;土壤含水率的变化随着滴头流量的增加而增加,距离滴头距离越近含水率变化幅度也越大,当q≥8 L·h-1时,滴头正下方约40 cm左右的土层含水率达到最大值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号