首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
ABSTRACT Tomato yellow leaf curl (TYLC) is one of the most devastating pathogens affecting tomato (Lycopersicon esculentum) worldwide. The disease is caused by a complex of begomovirus species, two of which, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV), are responsible for epidemics in Southern Spain. TYLCV also has been reported to cause severe damage to common bean (Phaseolus vulgaris) crops. Pepper (Capsicum annuum) plants collected from commercial crops were found to be infected by isolates of two TYLCV strains: TYLCV-Mld[ES01/99], an isolate of the mild strain similar to other TYLCVs isolated from tomato crops in Spain, and TYLCV-[Alm], an isolate of the more virulent TYLCV type strain, not previously reported in the Iberian Peninsula. In this work, pepper, Nicotiana benthamiana, common bean, and tomato were tested for susceptibility to TYLCV-Mld[ES01/99]and TYLCV-[Alm] by Agrobacterium tumefaciens infiltration, biolistic bombardment, or Bemisia tabaci inoculation. Results indicate that both strains are able to infect plants of these species, including pepper. This is the first time that infection of pepper plants with TYLCV clones has been shown. Implications of pepper infection for the epidemiology of TYLCV are discussed.  相似文献   

2.
Begomoviruses were detected in Nicaraguan fields of tomato ( Lycopersicon esculentum ) and adjacently growing plants of pepper ( Capsicum annuum ), chilli pepper ( C . baccatum ), cushaw ( Cucurbita argyrosperma ) and Mexican fireplant ( Euphorbia heterophylla ) using polymerase chain reaction (PCR) and universal begomovirus primers. All tomato and Mexican fireplant plants showing symptoms were infected with begomoviruses, while only 30–46% of the pepper, chilli pepper and cushaw plants showing symptoms tested virus-positive. No begomoviruses were found in potato. The virus species were provisionally identified by sequencing 533 bp of the viral coat protein gene ( AV1 ). Tomato severe leaf curl virus (ToSLCV), Tomato leaf curl Sinaloa virus (ToLCSinV) and Pepper golden mosaic virus (PepGMV) were found to infect both tomato and pepper. A new provisional species designated Tomato leaf curl Las Playitas virus (ToLCLPV) was detected in a tomato plant. Squash yellow mottle virus (SYMoV) and PepGMV were found in cucurbits, the latter for the first time in this host. Euphorbia mosaic virus (EuMV) was detected in Mexican fireplant. Sequencing of a larger number of PCR-amplified clones from selected plants revealed intraspecific viral sequence variability, and also multiple begomovirus infections which could represent up to three species in a single tomato or cushaw plant. Phylogenetic grouping of virus sequences did not correlate with the host of origin.  相似文献   

3.
Fungal isolates from chilli ( Capsicum spp.) fruits in Thailand that showed typical anthracnose symptoms were identified as Colletotrichum acutatum , C . capsici and C . gloeosporioides . Phylogenetic analyses from DNA sequence data of ITS rDNA and β-tubulin ( tub 2) gene regions revealed three major clusters representing these three species. Among the morphological characters examined, colony growth rate and conidium shape in culture were directly correlated with the phylogenetic groupings. Comparison with isolates of C . gloeosporioides from mango and C . acutatum from strawberry showed that host was not important for phylogenetic grouping. Pathogenicity tests validated that all three species isolated from chilli were causal agents for chilli anthracnose when inoculated onto fruits of the susceptible Thai elite cultivar Capsicum annuum cv. Bangchang. Cross-infection potential was shown by C . acutatum isolates originating from strawberry, which produced anthracnose on Bangchang. Interestingly, only C . acutatum isolates from chilli were able to infect and produce anthracnose on PBC 932, a resistant genotype of Capsicum chinense . This result has important implications for Thai chilli breeding programmes in which PBC 932 is being hybridized with Bangchang to incorporate anthracnose resistance into chilli cultivars.  相似文献   

4.
A new disease of peppers (Capsicum annuum) is described. The most characteristic symptom is vein yellowing of the youngest leaves. Some streaking occurs on the first-formed fruits. The symptoms were reproduced in pepper plants cv. Bellboy by graft and Olpidium transmission. Most pepper cultivars tested were susceptible but some appeared to he resistant. The disease had no effect on fruit weight.  相似文献   

5.
Kim KH  Yoon JB  Park HG  Park EW  Kim YH 《Phytopathology》2004,94(12):1295-1304
ABSTRACT Postharvest (detached) and in planta (attached) fruits of pepper plants, Capsicum annuum cv. Jejujaerae (susceptible) and Capsicum baccatum cv. PBC80 (resistant), inoculated with the anthracnose pathogen Colletotrichum gloeosporioides were examined using light, confocal laser scanning, and electron microscopy to compare the cytological differences between the compatible and incompatible interactions. In nonwound inoculation of postharvest pepper fruit, resistant pepper tissues showed a significant increase in the thickness of the cuticle layer compared with that of the susceptible and noninoculated fruit. Cytological features of programmed cell death (PCD) were observed in the resistant pepper fruit with postharvest inoculation, and these were characterized by positive responses to terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. The oligonucleosomal fragments of DNA were confirmed electrophoretically as DNA laddering. The PCD-positive responses occurred around the inoculation sites early in in planta wound inoculation in the resistant pepper. Nuclear modifications and structural changes of hypersensitivity were also observed in the resistant fruit, including separation of the plasma membrane from the cell wall, dilation of the endoplasmic reticulum, accumulation of electron-dense inclusions in vacuoles, and cytoplasmic vacuolization accompanying fragmentation of the cytoplasm. These structural changes may also implicate PCD-like host responses. In addition, in planta wound inoculation resulted in cell enlargement and cell division during the later stages of infection to form a periderm-like boundary layer around the inoculation site.  相似文献   

6.
ABSTRACT Seven crop and eight weed species from 12 agricultural locations in Trinidad and Tobago were assayed for the presence of whitefly-transmitted geminiviruses (WTGs) by using dot blot hybridization and polymerase chain reaction (PCR) amplification of the N-terminal coat protein sequence with degenerate primers. The amplified fragments were cloned and analyzed by restriction enzyme digestion to determine fragment length polymorphism among the cloned fragments. Representative clones were then sequenced and subjected to phylogenetic analysis to determine the sequence similarity to known WTGs. WTGs were found in every location sampled and in 10 of the 15 species investigated: Lycopersicon esculentum(tomato), Capsicum annuum (pepper), Capsicum frutescens (sweet pepper), Abelmoschus esculentus (okra), Phaseolus vulgaris (beans), Alternanthera tenella, Desmodium frutescens, Euphorbia heterophylla, Malva alceifolia, and Sida acuta. The geminiviruses infecting these plants were closely related to potato yellow mosaic virus from Venezuela (PYMV-VE) and tomato leaf curl virus from Panama (ToLCV-PA). However, in pepper, sweet pepper, okra, Alternanthera tenella, Euphorbia heterophylla, Des-modium frutescens, and in one sample of tomato, a PYMV-VE-related virus was found in mixed infections with a virus related to pepper huasteco virus. Full-length infectious DNA-A and DNA-B of a tomato-infecting geminivirus from Trinidad and Tobago were cloned and sequenced. DNA-A appears to be a recombinant derived from PYMV-VE or ToLCV-PA, and Sida golden mosaic from Honduras. The implications of these findings in the control of WTGs are discussed.  相似文献   

7.
Phytophthora capsici is a soilborne pathogen that causes significant losses to pepper production in Peru. Our objective was to investigate the mechanisms by which P. capsici is able to survive and spread. During 2005 to 2007, 227 isolates of P. capsici were collected from four species of pepper (Capsicum annum, C. baccatum, C. chinense, and C. pubescens) and tomato (Solanum lycopersicum) at 33 field sites in 13 provinces across coastal Peru. All 227 isolates were of the A2 mating type and amplified fragment length polymorphism (AFLP) analysis indicates that 221 of the isolates had the same genotype. Analyses of six polymorphic single nucleotide polymorphism (SNP) loci showed fixed heterozygosity suggesting a single clonal lineage is widely dispersed. Members of the same clonal lineage were recovered during 2005 to 2007 from geographically separate locations from each of the host types sampled. Our results indicate that clonal reproduction drives the population structure of P. capsici in Peru. The impact of continuous cropping and irrigation from common river sources on the population structure in Barranca Valley are discussed.  相似文献   

8.
Sweet pepper (Capsicum annuum) is a popular crop worldwide and an asymptomatic host of the begomovirus (Geminiviridae) Tomato yellow leaf curl virus (TYLCV). A previous study showed that TYLCV could be transmitted by the seeds of tomato plants, but this phenomenon has not been confirmed in other plants. In 2015, four different cultivars of sweet pepper (‘Super Yellow,’ ‘Super Red,’ ‘Sunnyez’ and ‘Cupra’) known to be susceptible to TYLCV were agro-inoculated with a TYLCV infectious clone. Three months after inoculation, the leaves of the ‘Super Yellow’ cultivar showed 80% (8/10) susceptibility and the other three sweet pepper cultivars showed 30 to 50% susceptibilities. All of the ‘Super Yellow’ seed bunches (five seeds per bunch) from plants whose leaves were confirmed to be TYLCV-infected were also TYLCV-infected (8/8). The seeds of other cultivars showed 20 to 40% susceptibilities. Virus transmission rates were also verified with 10 bunches of seedlings for each cultivar (five seedlings per pool). Eight bunches of ‘Super Yellow’ seedlings (8/10) were confirmed to be TYLCV-infected and one to three bunches of each of the other cultivar seedlings were also infected. Viral replication in TYLCV-infected seeds and seedlings was confirmed via strand-specific amplification using virion-sense- and complementary-sense-specific primer sets. This is the first report of TYLCV seed transmission in sweet pepper plants and among non-tomato plants. Because sweet pepper is an asymptomatic host of TYLCV, seeds infected with TYLCV could act as a silent invader of tomatoes and other crops.  相似文献   

9.
In this study, Tomato yellow leaf curl Sardinia virus (TYLCSV) and the strains Israel and Mild of Tomato yellow leaf curl virus (TYLCV-IL, TYLCV-Mld) were detected for the first time in four cucurbit crops in Jordan by nested polymerase chain reaction (nPCR). These viruses cause the tomato yellow leaf curl disease (TYLCD) in tomato. Cucumber, squash, melon and watermelon plants inoculated with TYLCV-IL[JO:Cuc], TYLCV-Mld, TYLCSV-IT[IT:Sar:88] and the Jordanian isolate of TYLCV (TYLCV-JV) did not show disease symptoms. However, virus-specific fragments were detected in uppermost leaves of symptomless plants by nPCR. A whitefly transmission test showed that Bemisia tabaci could transmit TYLCV-Mld from cucumber into tomato and jimsonweed plants. However, all infected tomato plants remained symptomless. In addition, results of semi-quantitative PCR (sqPCR) analysis showed that the relative amount of TYLCV-Mld DNA acquired by B. tabaci from cucumber plants was less than that acquired from tomato plants.  相似文献   

10.
Tomato yellow leaf curl virus (TYLCV) is a monopartite begomovirus from the Old World. The mild strain of this virus (TYLCV-Mld) was described for South America in Venezuela in 2007. Due to the potential risks of establishment of this virus in the field, six common weeds were evaluated for susceptibility to an isolate of TYLCV-Mld by using adults of Bemisia tabaci (Hemiptera: Aleyrodidae) to mediate viral transmission. In this work, detection based on PCR amplification with TYLCV specific primers showed Amaranthus dubius (Amaranthaceae) as the only infected weed. In A. dubius, viral symptoms were observed from 11.0?±?1.3?days post-inoculation and the transmission rate of TYLCV-Mld to this plant species was 83.3%. The successful back-transmission of TYLCV-Mld from A. dubius to tomato plants was demonstrated.  相似文献   

11.
The effects of plant age, fungus isolate, zoospore concentration and inoculation method on the resistance of pepper ( Capsicum annuum) to blight ( Phytophthora capsici) were studied under controlled conditions. Each of the factors studied produced differing responses in the pepper lines tested hut line CNPH 286 proved to be a reliable source of resistance and is now being used in a breeding programme. An inoculation method for screening pepper lines for blight resistance is proposed, using a standardized zoospore suspension applied to the base of plants 45 days from sowing.  相似文献   

12.
Infection by two isolates of impatiens necrotic spot tospovirus (INSV) under temperature regimes of 25/18°C (day/night) or 33°C (continuous) was studied in Capsicum annuum (systemically susceptible to tomato spotted wilt tospovirus, TSWV), C. chinense PI 152225 and PI 159236 (reacting hypersensitively to TSWV) and Nicotiana benthamiana (systemically susceptible to both tospoviruses). At 25/18°C infection was systemic in all hosts tested. At 33°C infection in N. benthamiana was systemic whereas in C. annuum and C. chinense it was restricted to the inoculated leaves. The result differed from that reported for TSWV, where high temperature made plants more susceptible, or caused no difference. Exchanging temperature regimes 6h to 4 days after inoculation did not affect the final results one month later, with plants being only locally infected at 33°C continuous regime, or systemically infected at 25/18°C alternate regime. The two INSV isolates were biologically and serologically stable for 5 passages in N. benthamiana held continuously at 33°C.  相似文献   

13.
ABSTRACT We have developed a scale of differential hosts that enables the determination and comparison of level of resistance to Tomato yellow leaf curl virus (TYLCV) expressed by resistant tomato lines or by individual plants in a segregating population. The scale is composed of seven different homozygous tomato genotypes that exhibit different levels of TYLCV resistance, ranging from fully susceptible to highly resistant. The differential hosts composing the scale were inoculated with TYLCV under greenhouse conditions. Four weeks after inoculation the plants were evaluated for disease symptom severity, and virus DNA titer was determined. The different genotypes were arranged in the scale according to symptom severity score. The different genotypes were then tested under different environmental conditions, inoculated at different ages, and tested in a field experiment assaying TYLCV-induced yield reduction. While the symptom severity score of each individual resistant genotype changed under different environmental conditions, the relative position on the scale did not alter, except for one genotype. Thus, to evaluate disease resistance of a given tomato genotype, the genotype in question should be inoculated alongside the differential hosts composing the scale, and within 4 weeks one can determine the relative level of resistance of the tested genotype.  相似文献   

14.
Two wild genotypes from the same species Lycopersicon pimpinellifolium, WVA106 (susceptible) and INRA-Hirsute (so-called ‘resistant’), were compared with respect to their reaction to Tomato yellow leaf curl virus isolate Réunion (TYLCV-Mld[RE]), using both whitefly-mediated inoculation and graft inoculation. Disease incidence and symptom severity were scored. Presence and quantification of viral DNA were assessed by dot blot hybridisation. Upon insect inoculation, accession INRA-Hirsute showed a moderate resistance against TYLCV that was overcome by a high inoculation pressure obtained by increasing the cumulative number of inoculative whiteflies. Temporal analyses of the disease progress in relation to this criterion exhibited that the protection was quantitative, mainly reducing the TYLCV-Mld[RE] incidence by at maximum 50% at low inoculation pressure. When graft inoculated, the final TYLCV-Mld[RE] disease incidence was 100% in both susceptible and resistant genotypes with severe symptoms, suggesting a reduction of virus transmission by a vector resistance as a possible mechanism. Implications of using such type of resistance in breeding programmes are discussed.  相似文献   

15.
ABSTRACT The effect of Tomato spotted wilt virus (TSWV) infection on plant attractiveness for the western flower thrips (Frankliniella occidentalis) was studied. Significantly more thrips were recovered on infected than were recovered on noninfected pepper (Capsicum annuum) plants in different preference tests. In addition, more offspring were produced on the virus-infected pepper plants, and this effect also was found for TSWV-infected Datura stramonium. Thrips behavior was minimally influenced by TSWV-infection of host plants with only a slight preference for feeding on infected plants. Offspring development was positively affected since larvae hatched earlier from eggs and subsequently pupated faster on TSWV-infected plants. These results show a mutualistic relationship between F. occidentalis and TSWV.  相似文献   

16.
Samenvatting Het verschijnsel van geelnervigheid bij paprika (Capsicum annuum) kon door verenting en met de schimmelOlpidium brassicae worden overgebracht. Hierdoor bleek de ziekte identiek te zijn met een eerder in Engeland gemelde ziekte. Door inoculatie met zoösporen of rustsporen vanO. brassicae werden ook symptomen verkregen inC. baccatum, C. chacoense enC. frutescens. S. villosum bleek een waardplant te zijn voor het geelnervigheidsagens, waarbij zwakke nerfchlorosen werden waargenomen.Seconded to the Glasshouse Crops Research Station, P.O. Box 8, 2670 AA Naaldwijk, the Netherlands.  相似文献   

17.
Journal of Plant Diseases and Protection - Chilli pepper or hot pepper (Capsicum annuum L.,) is an important spice and vegetable crop of family Solanaceae. Chilli is susceptible to various...  相似文献   

18.
A virus disease of Capsicum annuum was noticed on some sweet pepper cultivars grown in Lusaka Province (ZM) during the cropping season 1995/1996. Using differential indicator plants and serological tests, the virus was identified as pepper mild mottle tobamovirus (PMMV). Farms surveyed south and east of Lusaka showed plant infections ranging between 20 and 30% and 20 and 40%, respectively. This is the first report on the occurrence of PMMV on capsicum cultivars in Zambia.  相似文献   

19.
Candidatus Liberibacter solanacearum” (Lso), transmitted by the potato psyllid (Bactericera cockerelli), is the causal agent of potato zebra chip, but can also infect other solanaceous plants, including peppers. Studies were conducted to investigate whether Lso could be transmitted to the next generation of plants through seeds from infected pepper plants. In 2014, jalapeno pepper plants were infested with psyllids carrying a mixture of Lso A and B (AB) at the AgriLife Research Station at Bushland. The study was again conducted in 2019 and pepper plants were infested with psyllids carrying Lso B or Lso AB. In each of the studies, noninfested plants served as controls. At harvest, fruits were collected and tested for the presence of Lso using quantitative PCR. Seeds from infected fruits were then tested for Lso. Overall, the percentage of seeds that tested positive for Lso ranged from 33% to 70%. However, Lso detection in embryos ranged only from 0% to 8%. Seed samples from Lso-positive fruits were planted in the greenhouse to determine the impact of Lso on emergence and the incidence of Lso in emerged plants. Although plant emergence differed between some of the seeds obtained from Lso-positive and -negative fruits, the overall impact of Lso on plant emergence was not consistent. However, of the 182 plants that emerged from seeds collected from infected fruits, none was positive for Lso, suggesting that seeds are unlikely to serve as sources for new Lso infections and their impact on disease epidemiology is negligible.  相似文献   

20.
L型凝集素类受体激酶(LecRKs)广泛参与植物的先天免疫过程。目前未见在辣椒Capsicum annuum中全基因组鉴定LecRKs的报道。本研究对辣椒中的CaLecRK进行了全基因组鉴定, 并在接种辣椒疫霉Phytophthora capsici条件下通过基因表达分析探究其对辣椒疫霉的响应情况, 旨在挖掘参与辣椒抗疫病防御反应的CaLecRK基因。研究结果表明, 辣椒基因组中共鉴定出24个CaLecRK, 以其构建系统发育树发现, 可将24个CaLecRK分为7个分支。基因表达分析结果显示, 有4个CaLecRK基因(CaLecRK2.2、CaLecRK3.2、CaLecRK8.1和CaLecRK10.1)受辣椒疫霉诱导, 和接菌后0 h相比, 接菌处理后12 h 或36 h基因表达差异显著, 推测其在辣椒抗疫病防御反应中发挥了重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号