首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为研究旱地矮化苹果树当季肥料氮在土壤中的累积与淋溶效应,采用土钻采样法与15N同位素示踪技术,测定了6 a生晚熟矮化‘延长红’苹果园土壤剖面(0~300 cm)的氮素累积分布特征与当季氮肥残留。结果表明:土壤含水率与硝态氮含量变化表现出较强的一致性,不施肥CK、减氮施肥N400与常规施肥N800处理硝态氮在80~140 cm土层存在明显富集现象,其含量峰值分别为174.9、194.8 mg·kg-1与211.1 mg·kg-1。CK、N400与N800处理0~300 cm土壤剖面中,全氮累积量分别为10 927.3、13 734.8 kg·hm-2与15 645.4 kg·hm-2,硝态氮累积量分别为1 873.5、2 353.9 kg·hm-2与2 892.7 kg·hm-2,铵态氮累积量分别为12.2、42.6 kg·hm-2与44.4 kg·hm-2。N400和N800处理下果园土壤中各土层(0~300 cm)氮素来自当季氮肥的比例分别为0.10%~1.50%和0.18%~2.03%。当季氮肥在0~300 cm深度各土层均有残留且主要集中在0~140 cm土层;80~100 cm土层的全氮来自当季氮肥的比例(减氮施肥N400和常规施肥N800分别为1.50%与2.03%)显著高于其他土层。N400处理下TN-15N、NO-3-15N、NH+4-15N的残留率分别为21.6%、19.2%、0.2%,N800处理分别为48.8%、39.3%、0.3%,土壤中氮的残留率随着施氮量的增加显著增加,且以硝态氮为主。100~300 cm土层中减氮施肥N400与常规施肥N800处理NO-3-15N残留率分别为8.5%与25.0%,当季氮肥淋溶出根区(0~80 cm)现象明显。最佳施肥量及施肥量对产量的影响在N400的基础上仍有待进一步研究确定。  相似文献   

2.
通过田间试验,设置150 kg·hm-2(T1)、230 kg·hm-2(T2)、465 kg·hm-2(T3),857 kg·hm-2(T4)、1 250 kg·hm-2(T5)、1 640 kg·hm-2(T6)以及原位土512 kg·hm-2(CK1)和无残膜(CK2)等8个残膜梯度,测定不同残膜量下棉田土壤氮素养分、八大离子含量、微生物群落多样性等指标。结果表明:随着残膜量的增加, 土壤TN、NO-3-N含量逐渐降低,而NH+4-N含量则呈现先升高后降低趋势;在残膜量大于512 kg·hm-2时,土壤NO-3-N、NH+4-N含量显著降低;在高残膜量1 640 kg·hm-2(T6)时,土壤TN、NO-3-N、NH+4-N含量较CK2分别降低38.77%、49.21%、34.38%;土壤Na+、Mg2+、Ca2+、Cl-、SO2-14、HCO-3、CO2-3、K+含量随着残膜量的增多逐渐积聚在0~20 cm土层;当残膜量大于512 kg·hm-2时,土壤微生物均匀度及多样性低于T1、T2、T3和CK2处理。可见残膜影响土壤微生物活性,导致盐分浅表积累,使土壤养分退化;因此,高强度残膜不利于农业的健康发展。  相似文献   

3.
为明确生物炭连续还田对苏打盐碱土稻田的改良效果,于2014—2019年通过盆栽试验研究了生物炭连续还田对苏打盐碱土稻田养分含量、电导率、pH值、酶活性和腐殖质组分的影响。结果表明:生物炭还田量为7.5~16.5 t·hm-2时,土壤全氮、全磷、有效磷和速效钾含量分别提高19.09%~30.00%、34.58%~45.37%、19.04%~39.16%、38.65%~63.12%(P<0.05);生物炭还田量12.0~16.5 t·hm-2,土壤碱解氮含量提高5.34%~6.87%(P<0.05);土壤电导率随生物炭还田量增大呈先增后降的趋势,峰值在7.5 t·hm-2;土壤pH值与生物炭还田量显著正相关,并且生物炭12.0~16.5 t·hm-2 pH值显著高于不添加生物炭处理;生物炭年还田量7.5~12.0 t·hm-2时,有机质含量、腐殖质全碳量、胡敏素碳量分别较不添加生物炭处理提高48.74%~70.51%、47.40%~69.94%、68.94%~96.48%;HA/FA和PQ随生物炭还田量增大呈先增后降的趋势,峰值在12 t·hm-2;生物炭还田量7.5 kg·hm-2时,脲酶活性较不添加生物炭处理提高89.03%(P<0.05),碱性磷酸酶降低41.27%(P<0.05);生物炭还田量12.0 kg·hm-2时,脲酶活性提高53.33%(P<0.05),蔗糖酶活性提高41.84%(P<0.05)。因此,生物炭连续还田能够有效改良苏打盐碱土稻田,7.5~12.0 t·hm-2为适宜生物炭还田量。  相似文献   

4.
为优化旱地小麦高效施氮管理,实现高效生产目标,通过2 a(2019—2020年度和2020—2021年度)田间试验,设不施肥(CK)、不施氮(T1)、300 kg·hm-2尿素N(T2,常规施氮处理)、300 kg·hm-2缓释尿素N(T3)、195 kg·hm-2缓释尿素N(T4)和90 kg·hm-2缓释尿素N(T5)6个处理,分析不同缓释尿素减施量对农田土壤硝态氮分布及累积、氮素吸收与转运、冬小麦产量和氮素利用效率的影响。结果表明,缓释尿素减施处理(T4和T5)显著降低收获期0~200 cm土层的土壤NO-3-N累积量,同时提高0~40 cm土层NO-3-N占比。施用缓释尿素显著提高冬小麦氮素转运量和花后氮素吸收量,T3处理较当地常规施氮处理分别提高12.9%和13.6%。氮素转运对籽粒的贡献率随缓释尿素减施比例的增加呈先增后降的变化趋势,T4处理最大,较其他施氮处理提高0.2%~50.0%。施用缓释尿素可不同程度地改善冬小麦产量构成因素和提高产量;T4处理两年产量分别为8 434、9 060 kg·hm-2,2019—2020年度较T2和T3处理分别提高19.7%和13.9%,2020—2021年度分别提高17.3%和10.4%,其经济效益2019—2020年度较T2和T3处理分别提高33.3%和34.0%,2020—2021年度分别提高26.8%和23.2%。缓释尿素减施显著降低氮素表观损失,提高了氮素利用效率和氮肥偏生产力。通过拟合分析发现,缓释尿素施用量为208.7 kg·hm-2时,两年产量分别为8 054、8 806 kg·hm-2,净效益分别为6 890、8 475 CNY·hm-2NHI分别为78.2%和78.9%,可实现西北旱区冬小麦高产高效。  相似文献   

5.
采用灌溉水盐度和施氮量两因素试验,其中灌溉水盐度设置2个水平:0.35 dS·m-1(淡水,FW)和8.04 dS·m-1(咸水,SW),施氮量设2个水平:0(不施氮,N0)和360 kg·hm-2(施氮,N360),以咸水滴灌的棉田土壤为材料,测定了土壤理化性质和生物学指标,结果显示:(1)咸水滴灌显著增加土壤EC1∶5和NH+4-N含量,分别增加了457.74%和73.02%,但显著降低土壤NO-3-N含量,降低了35.88%;施氮显著增加土壤EC1∶5、NO-3-N和NH+4-N含量,分别增加了32.09%、668.33%和39.88%。(2)咸水滴灌显著降低了土壤潜在硝化势,较淡水处理降低了28.97%;施氮显著增加了土壤潜在硝化势,较不施氮处理增加了317.27%。(3)咸水滴灌显著降低氨氧化细菌(AOB)和全程氨氧化细菌A分支(amoA-clade-A)和B分支(amoA-clade-B)的基因拷贝数,分别降低了81.27%、73.49%和62.51%,但显著增加氨氧化古菌(AOA)的基因拷贝数,增加了487.94%;氮肥施用均显著增加了氨氧化微生物的基因拷贝数,分别增加了511.20%(AOA)、958.13%(AOB)、72.66%(amoA-clade-A)和31.18%(amoA-clade-B)。(4)氨氧化微生物优势菌属为假单胞菌属、嗜甲基菌属、亚硝化螺菌属、慢生根瘤菌属、链霉菌属、硝化螺菌属、寡养单胞菌属、食甲基菌属、螯台球菌属、囊胞杆菌属、亚硝基单胞菌属、红假单胞菌属、芽孢杆菌属和拉姆利式杆菌。(5)咸水滴灌降低了AOA的多样性和丰富度及amoA-clade-A的多样性,但增加了AOB和amoA-clade-B的多样性和丰富度及amoA-clade-A的丰富度;氮肥施用显著降低了AOA和AOB的丰富度及amoA-clade-A的丰富度和多样性,但增加了amoA-clade-B的丰富度和多样性。综上,盐分是影响氨氧化微生物群落结构的主要驱动因子,氨氧化古菌是土壤氨氧化作用的优势物种,而氨氧化细菌和全程氨氧化细菌A分支是咸水滴灌棉田氨氧化作用的主导微生物种群。  相似文献   

6.
以河套灌区不同利用类型土地为研究对象,旨在探究耕地、荒地、沙地土壤水分变异及土壤积盐特征与盐分离子对土壤积盐量的影响。结果表明:耕地、荒地、沙地土壤水分分布不均,含水率变异系数随土层深度加深而减小,沙地表层变异性较大,变异系数为104.5%;耕地积盐主要集中在春季和秋季收获期,春汇后土壤脱盐约2.1 t·hm-2,灌水间歇期毛管作用下土壤积盐约0.76 t·hm-2;荒地70%盐分聚积在表层,春汇后最多可积聚39.85 t·hm-2;耕地积盐量与荒地积盐量呈显著负相关关系,与沙地积盐量呈显著正相关关系,相关系数分别为-0.249、0.712;HCO-3、Na+在耕、荒地间随水移动性较强,耕、沙地间SO2-4、Mg2+随水移动性较强。主成分分析表明影响耕地积盐量主要是SO2-4和Cl-,影响荒地和沙地积盐量主要是Na+和Cl-。采用逐步回归分析方法建立耕、荒、沙地1.2 m深土壤积盐回归预测模型。  相似文献   

7.
以‘XR4347’冬小麦品种为供试作物,在温室内开展盆栽试验。设置低氮(N0.5,74 mg ·kg-1),中氮(N1.5,223 mg·kg-1)和高氮(N3,446 mg·kg-1)3个氮素水平,各氮素水平下设置3种水分处理,分别为W85:干旱锻炼(40%土壤持水量(SWHC))后复水至85% SWHC;W60:干旱锻炼后复水至60% SWHC;W40:干旱锻炼后复旱至40% SWHC,研究氮素水平及干旱锻炼后复水程度对小麦生理特性及水分利用效率的影响。结果表明:干旱锻炼后复水能够改善植株水分状况,但中氮和低氮处理时,复水程度过高降低小麦根水势(RWP)。叶片气孔导度(gs)受水力信号和脱落酸(ABA)信号的调控,叶片内在水分利用效率(WUEint)与gs呈显著负相关关系,因此降低复水程度或增施氮肥通过调控gs提高WUEint。干旱锻炼后复水程度高增加小麦叶面积(LA)、地上部干物质量(SDB)和植株耗水量(PWU),促进氮素吸收,但降低根系生长。与复水程度相比,氮素水平对植株水分利用效率(WUEp)的影响更显著,高氮处理在保证SDB积累的同时使PWU降低9.1%,WUEp提高10.1%。植株叶片的碳同位素组成(δ13C)随着氮素水平的提高而增加,WUEp与叶片δ13C呈显著正相关关系,表明叶片δ13C可以用来表征干旱锻炼条件下WUEp的高低,增施氮肥通过增强叶片的光合能力或优化调控叶片的气孔开度提高WUEp。在所有处理中,N3W85和N3W60处理在保证SDB积累的同时提高WUEp,但N3W60处理的PWU显著降低10.4%且根冠比较高,相比之下更有利于小麦植株的生长且节约灌溉用水,为本试验的最优处理。因此,在干旱缺水地区,增加施氮量或干旱锻炼后适当复水,不仅可以显著降低PWU、节约灌溉用水、维持作物生长和养分吸收,还可以提高叶片和植株的WUE。  相似文献   

8.
为了分析灌溉施肥活动引起的包气带土壤pH值变异特征及其对地球化学条件的响应,通过历时3 a的野外原位灌溉施肥试验,应用不同季节灌前、灌后6 m土层中不同深度的测定资料,系统分析了土壤pH对灌溉、施肥的响应过程,结果表明:各深度pH值呈弱变异性(CV=1.01%~2.28%),与灌溉前相比,灌后土壤pH值的均值和变异系数均呈现明显的变化;灌前包气带各层pH具有强烈的空间自相关性,灌后受水分、基质等相互作用影响,pH的空间自相关性有所减弱,C0/(C0+C)和变程a分别由7.23 m和3.54 m(灌前0 d)减少到3.26 m和2.76 m(灌后第10天)。土壤基质是决定土壤酸碱性的主要因素,在灌溉施肥活动对pH的响应过程中,地球化学条件(土壤含水量、土壤温度、土壤有机质(SOM)、氧化还原电位(RP)等)、土壤基质组成和氮底物浓度(NH+4-N)等的交互作用影响pH的动态。土壤含水量和温度单独对pH影响不显著,两者交互作用对pH有显著影响。引起土壤pH变化的主要变异源为Cl-、土壤有机质(SOM)、NO-3-N、NH+4-N等营养物质和不同空间深度土壤基质的差异,表明灌溉施肥改变了包气带pH地球化学动力场、营养物质和土壤基质的交互作用,引起各深度的生物地球化学反应,控制pH值的空间变异特性。当包气带介质土壤水分变化时,首先营养物氨态氮以分子态或水合态形式被介质吸附,H+得到释放,使得灌后第4天pH值下降。随着氨氧化过程中H+的释放,pH在灌前和灌后第10天和第30天有显著差异。氨的氧化引起硝酸盐含量不断增加,使得硝酸盐对pH值的影响在灌后不断增强,相关系数由0.24(0 d,P<0.05)增加到0.41(30 d,P<0.01),而氨态氮对pH值的影响逐步降低,相关系数由0.43(0 d,P<0.01)降低为0.19(30 d,P>0.05)。  相似文献   

9.
黄河三角洲滨海棉田土壤盐分特征研究   总被引:1,自引:0,他引:1  
采用相关分析和主成分分析方法对黄河三角洲棉田试验区土壤盐分特征进行研究,结果表明,试验区土壤为中度盐渍化,且盐分呈现一定的表聚现象;土壤各层盐基离子中,阳离子以Na+为主,阴离子以Cl-为主,这两种离子对棉花生长的毒害作用尤为突出;土壤盐分含量与Na+、SO42-、Cl-、Mg2+、Ca2+、NO32-、HCO32-离子含量均呈极显著正相关;Na+、Cl- 及SO42-是影响试验区棉田盐渍化的主要特征因子。本研究结果可为黄河三角洲地区盐渍化土地科学管理和农业可持续发展提供理论基础和实践依据。  相似文献   

10.
通过连续6年定位试验,探究较长时间施用生物炭对土壤保水作用的影响,以期为塿土区水土保持和土壤改良提供理论参考。田间试验于2011年开始,设4个生物炭施用梯度:对照,不施生物炭(B0);5 t·hm-2(B5);10 t·hm-2(B10);20 t·hm-2(B20)。在2017年测定了土壤含水量、土壤基础理化性质和水分累积蒸发量等。结果表明:生物炭能够显著减小土壤容重、增加土壤孔隙度、饱和含水量和田间持水量,且随着生物炭施入量的增加,各指标变化幅度也增大,B20与B0处理相比,土壤容重减少了8.28%,毛管孔隙度增加了20.17%,饱和含水量与田间持水量分别增加了22.17%和14.86%;生物炭显著增加了土壤团聚体稳定性,B20与B0处理相比,土壤水稳性团聚体含量增加了19.00%,团聚体破坏率和不稳定团粒指数分别降低了11.34%和9.61%;生物炭还可有效抑制土壤水分的蒸发,B10和B20处理的土壤累积蒸发量分别比B0处理减少了7.45%和10.18%。结合逐步回归分析与通径分析发现,生物炭对土壤结构的改良是其促进土壤持水能力的主要原因。土壤孔隙度和有机碳含量是影响土壤饱和含水量的主要因子,影响土壤毛管持水量的主要因子为有机碳含量和土壤毛管孔隙度,而毛管孔隙度与水稳性团聚体含量则解释了绝大部分土壤田间持水量的变化。研究表明生物炭施用可以显著改良土壤结构,提升塿土持水性能,增加干旱半干旱地区土壤的蓄水保墒能力。  相似文献   

11.
三江源区土地利用方式对土壤氮素特征的影响   总被引:1,自引:0,他引:1  
以三江源区曲麻莱县高寒草甸草原、退化高寒草甸草原、退化高寒草原和人工草地4种土地利用方式为研究对象,研究了不同土地利用方式的土壤全氮、有效氮、铵态氮、硝态氮、无机氮总量及比例,结果表明:4种利用方式土壤的氮素含量均处于较低水平,在0~10 cm土层,土壤全氮与有效氮含量表现出相似的规律性,人工草地最高,退化高寒草甸草原最低。与高寒草甸草原相比,退化高寒草甸草原0~10 cm土层全氮和有效氮含量分别降低了52.4%和76.2%,而10~40 cm土层的全氮和有效氮含量却明显增加。对土壤铵态氮和硝态氮含量的研究结果进一步表明,研究区域土壤中无机氮以硝态氮为主,退化导致0~10 cm土层的铵态氮和硝态氮含量降低,退化和人工种植均导致0~10 cm土层硝态氮含量明显降低,而10~20 cm和20~40 cm土层的硝态氮含量明显升高,且这两个土层之间差异不显著,40~60 cm土层又明显降低。因此,退化和人工种植均导致土壤硝态氮沿土壤剖面淋溶下移,并且淋溶主要发生在0~40 cm深度的土壤中。土壤无机氮总量与硝态氮表现出相似的规律性,对土壤无机氮总量和比例的研究也表明退化加剧了土壤氮素的矿化过程。  相似文献   

12.
不同氮肥用量下乙草胺对土壤氮转化过程的影响   总被引:2,自引:0,他引:2  
在实验室培养条件下,研究了不同氮肥用量水平下土壤中分别添加除草剂乙草胺对尿素态氮的水解、硝化及反硝化等氮素转化过程的影响。试验设7个处理,分别为施氮量0、75、150和300mg/kg以及氮75、150、300mg/kg+乙草胺(有效成分10mg/kg)处理。结果表明:当施氮量为75mg/kg时,乙草胺对尿素态氮的水解和硝化作用无明显影响;施氮量为150和300mg/kg时,乙草胺可抑制尿素态氮的水解过程(PP<0.01)。研究表明,施用乙草胺对土壤中氮素的转化过程具有一定影响,然而在不同的施氮量条件下,其影响效果差异较大,高氮时影响更明显。  相似文献   

13.
黑土区典型县域农田土壤氮素动态分析   总被引:2,自引:0,他引:2  
选择典型黑土区双城市旱作玉米农田为研究区域,以耕层(0~20 cm)500个采样数据为基础,分析了土壤全氮和碱解氮的空间变化和现状;利用20世纪80年代和2005年2个时段1∶50000的土壤全氮和碱解氮空间分布图分析了22年来氮素的变化情况.结果表明,从空间分布来看,土壤全氮和碱解氮分别属于高度空间相关,结构性因子的影响占主导地位.22年来土壤全氮和碱解氮都呈上升趋势,2005年土壤全氮平均值为1.86 g/kg,比80年代的1.5 g/kg增加了0.36 g/kg,增幅为24%;土壤碱解氮平均值为137.8 mg/kg,比80年代增加了16.8 mg/kg,增幅为13.9%.  相似文献   

14.
在宁夏灌区和旱区共计选定肥力水平不同的30块农田,分别采集了0~120 cm深土壤剖面样品和小麦植株样品,测定了土壤铵、硝态氮含量和小麦地上部含氮量,分析了土壤矿质氮的空间变异性及其与小麦吸氮量的关系。结果表明,在0~120 cm深土壤剖面中,NH4-N、NO3-N和矿质氮含量及其累积量,灌区土壤显著高于旱区土壤,测点之间存在极显著差异,变异系数相当高。但在土层间不论灌区还是旱区变化不明显,在剖面上下分布比较均匀。矿质氮含量在土层间存在着正相关。在0~120 cm深土壤剖面中,矿质氮累积量在灌淤土、黑垆土、黄绵土和灰钙土间差异较大,平均分别为370.0、155.1、117.5和61.0 kg/hm2。其累积量与小麦籽粒产量、生物学产量、地上部总吸氮量之间呈极显著正相关,表明土壤较深层次的矿质氮对作物吸氮量也具有重要贡献。  相似文献   

15.
WU Yan 《干旱区科学》2019,11(6):904-915
Excessive fertilization combined with unreasonable irrigation in farmland of the Hetao Irrigation Area (HIR), China, has resulted in a large amount of nitrogen (N) losses and agricultural non-point source pollution. Application of soil amendments has become one of the important strategies for reducing N losses of farmland. However, there is still no systematic study on the effects of various soil amendments on N losses in the HIR. In this study, three types of soil amendments (biochar, bentonite and polyacrylamide) were applied in a maize-wheat rotation system in the HIR during 2015-2017. Yields of maize and wheat, soil NH3 volatilization, N2O emission and NO3- leaching were determined and soil N balance was estimated. The results showed that applications of biochar, bentonite and polyacrylamide significantly increased yields of maize by 9.2%, 14.3% and 13.3%, respectively, and wheat by 9.2%, 16.6% and 12.3%, respectively, compared with the control (fertilization alone). Applications of biochar, bentonite and polyacrylamide significantly reduced soil N leaching by 23.1%, 35.5% and 27.1%, soil NH3-N volatilization by 34.8%, 52.7% and 37.8%, and soil N surplus by 23.9%, 37.4% and 30.6%, respectively. Applications of bentonite and polyacrylamide significantly reduced N2O-N emissions from soil by 37.3% and 35.8%, respectively, compared with the control. Compared with application of biochar, applications of bentonite and polyacrylamide increased yields of maize and wheat by 5.1% and 3.5%, respectively. Our results suggest that soil amendments (bentonite and polyacrylamide) can play important roles in reducing N losses and increasing yield for the maize-wheat rotation system in the HIR, China.  相似文献   

16.
土壤中氮营养斑研究进展   总被引:6,自引:0,他引:6  
由于自然和人为因素,营养斑(nutrient patch)在土壤中是普遍存在的。从70年代以来,国外就通过各种模拟方式对土壤中营养斑进行了大量的研究,尤其以对氮营养斑研究居多。研究表明:氮营养斑对新生根系的繁殖影响较为明显,但不同植物反应不一样,影响机理还不很清楚。营养斑也是生物活性较强、种群数量较多区域,在养分循环体系中起着特殊作用。营养斑对土壤的理化性质和生物性质可能有很大的影响,但这方面的研究很欠缺。本文主要对土壤中氮营养班的研究进展做一综述。  相似文献   

17.
盐碱地不同施氮量对土壤微生物区系与食葵产量的影响   总被引:3,自引:0,他引:3  
在内蒙古河套灌区盐碱食葵田进行大田试验,以不施氮肥为对照(CK),设置了75 kg·hm~(-2)(N1)、150kg·hm~(-2)(N2)、225 kg·hm~(-2)(N3)、300 kg·hm~(-2)(N4)、375 kg·hm~(-2)(N5)五个氮肥施用水平,研究了不同氮肥施用量对土壤微生物区系和食葵产量的影响。结果表明:(1)盐碱地施用氮肥可提高土壤微生物数量和细菌优势菌菌群多样性,各处理0~20 cm土层根区土壤微生物数量大小顺序为N4N3N5N2N1CK,各施肥处理较CK差异极显著(P0.01);(2)盐碱地施用氮肥可促进食葵生长发育,提高产量,随氮肥施用量由低到高,食葵长势和干物质积累呈逐渐增加趋势,产量与施氮量呈抛物线型关系,各处理产量分别较CK提高0.06%、36.27%、61.95%、105.36%和85.03%;(3)适量施氮可抑制土壤积盐,食葵收获后,各处理积盐量大小顺序为N2CKN5N3N1N4;(4)土壤微生物的数量和优势菌菌群数与氮肥施用量、食葵根干重呈正相关关系,与土壤含盐量和积盐量呈负相关关系。综合试验结果,内蒙古河套灌区中度盐碱地食葵生产中氮肥适宜施用量为300 kg·hm~(-2)。  相似文献   

18.
生物质炭与不同形态氮肥配施对黄绵土氮素矿化的影响   总被引:1,自引:0,他引:1  
通过室内培养试验将生物质炭施用于西北黄土高原旱地土壤,旨在探讨不同形态化学氮肥施用下施用生物质炭对土壤氮素矿化速率及无机氮库的影响。结果表明:(1)施用化学氮肥会提高土壤无机氮累积量,但会在无机氮释放高峰过后显著降低氮素矿化速率;其中,施用酰胺态氮肥和铵态氮肥对土壤氮素的矿化抑制作用强于施用硝态氮肥。(2)在无机氮释放高峰过后,生物质炭的施用会显著降低施用酰胺态氮肥处理下的氨化速率、硝化速率及净氮矿化速率,降低幅度分别为64.9%,44.6%和47.7%,且其降低程度在较低土壤含水量水平大于较高土壤含水量,而对施用硝态氮肥和铵态氮肥无显著影响。(3)生物质炭的施用一定程度上降低了施用酰胺态氮肥和铵态氮肥处理下的无机氮累积量,且在较低土壤含水量下无机氮累积低于较高土壤含水量处理。综合考虑,旱地施用酰胺态氮肥或铵态氮肥配合施用生物质炭可以有效降低土壤无机氮累积量,从而降低氮素损失的风险。  相似文献   

19.
水肥供应对马铃薯根层养分及产量的影响   总被引:1,自引:0,他引:1  
以陕北地区普遍种植的马铃薯品种荷兰15号为供试材料,设置灌水水平和施肥量两因素,研究水肥供应对马铃薯根层养分及产量的影响。以100%ET0(W1)和当地推荐施肥量(F1,N-P2O5-K2O为240-120-300 kg·hm-2)为基础,3个灌水量处理分别为W1,W2(80%ET0)和W3(60%ET0),3个施肥水平分别为F1,F2(75%F1)和F3(50%F1),以60%ET0灌水水平和不施肥处理为对照组(CK),共10个处理。结果表明:不同水肥供应对马铃薯各生长阶段耗水量及水分利用效率有显著的影响,随着灌水量增加,土壤水分逐渐向下层迁移;在马铃薯整个生育期,W3F2处理水分利用效率最高,为44.69 kg·hm-2·mm-1,其次为W2F2(44.41 kg·hm-2·mm-1),比CK分别高39.64%和38.75%;W3F1处理在10~60 cm土层硝态氮含量平均值最高,比CK高166.1%,W2F2在10~60 cm土层铵态氮含量平均值最高,比CK高61%,W3F3在10~60 cm土层电导率平均值最高,比CK增高48.44%。W2F2处理的土壤养分含量较高,主要集中在10~30 cm土层;W2F2处理的产量最高,为12 539.33 kg·hm-2,比CK处理的产量高55.65%,且变异系数小。因此,该地区推荐的灌水量为80%ET0,施肥量N-P2O5-K2O为180-90-225 kg·hm-2。  相似文献   

20.
吡虫啉和毒死蜱对尿素氮在土壤中转化的影响   总被引:1,自引:1,他引:0  
为了考察杀虫剂施用对尿素态氮在土壤中转化过程的影响,采用室内培养法,通过测定土壤铵态氮和硝态氮质量分数以及反硝化损失的动态变化,研究了在施用尿素的土壤(有效氮含量为200 mg/kg)中分别添加不同剂量的吡虫啉和毒死蜱2种杀虫剂时,杀虫剂对尿素的水解、土壤氮的硝化及反硝化过程的影响。结果表明:吡虫啉和毒死蜱各剂量处理在第3天时对尿素水解具有显著的促进作用(PPPPP<0.01),减少反硝化损失量39.69%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号