首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The ectoparasitic dagger nematodes Xiphinema index and Xiphinema diversicaudatum, often at low numbers in the soil, are vectors of grapevine nepoviruses, which cause huge agronomical problems for the vineyard industry. This study reports a method, based on real‐time PCR, for the specific detection of these species and of the closely related non‐vector species Xiphinema vuittenezi and Xiphinema italiae. Specific primers and TaqMan probes were designed from the ribosomal DNA internal transcribed spacer 1 (ITS1), enabling the specific detection of single individuals of each of the X. index, X. diversicaudatum, X. italiae and X. vuittenezi species whatever the nematode population. The specificity of detection and absence of false positive reaction were confirmed in samples of each species mixed with the three other Xiphinema species or mixed with nematodes representative from other genera (non‐plant‐parasitic Dorylaimida, Longidorus sp., Meloidogyne spp., Globodera spp. and Pratylenchus sp.). The method was shown to be valid for the relative quantification of X. index numbers through its use, from crude nematode extracts of soil samples, in a greenhouse assay of grapevine accessions ranging from highly susceptible to resistant. As an alternative to time‐consuming microscopic identification and counting, this real‐time PCR method will provide a fast, sensitive and reliable diagnostic and relative quantification technique for X. index nematodes extracted from fields or controlled conditions.  相似文献   

2.
Downy mildew, caused by Plasmopara viticola, is one of the most destructive diseases of grapevine and is controlled with intense application of chemical fungicides. Treatment with Trichoderma harzianum T39 (T39) or benzothiadiazole‐7‐carbothioic acid S‐methyl ester (BTH) has been previously shown to activate grapevine resistance to downy mildew and reduce disease symptoms in the Pinot noir cultivar. However, enhancement of plant resistance can be affected by several factors, including plant genotype. In order to further extend the use of resistance inducers against downy mildew, the physiological and molecular properties of T39‐ and BTH‐activated resistance in different cultivars of table and wine grapes were characterized under greenhouse conditions. T39 treatment reduced downy mildew symptoms, but the degree of efficacy differed significantly among grapevine cultivars. However, efficacy of BTH‐activated resistance was consistently high in the different cultivars. Expression profiles of defence‐related genes differed among cultivars in response to resistance inducers and to pathogen inoculation. T39 treatment enhanced the expression of defence‐related genes in the responsive cultivars, before and after P. viticola inoculation. A positive correlation between the efficacy of T39 and the expression level of defence‐related genes was found in Primitivo and Pinot noir plants, while different genes or more complex processes were probably activated in Sugraone and Negroamaro. The data reported here suggest that the use of a responsive cultivar is particularly important to maximize the efficacy of resistance inducers and new natural inducers should be explored for the less responsive cultivars.  相似文献   

3.
The potential of UV‐C radiation of Andean lupin (Lupinus mutabilis) seeds to eradicate seedborne infections of anthracnose caused by Colletotrichum acutatum was investigated. UV‐C doses from 0 to 691.2 kJ m?2 (resulting from 0 to 96 h of exposure time) on disease incidence reduction and germination on artificially and naturally infected seed were evaluated. The degree of incidence reduction and seed germination was dependent on the dose of UV‐C. The UV‐C doses of 86.4 kJ m?2 and higher reduced incidence from 6% to 7% to undetectable levels, but these UV‐C doses also reduced seed germination. UV‐C can deleteriously affect physiological processes and overall growth. To assess its impact, L. mutabilis seeds irradiated with UV‐C doses of 57.6 and 86.4 kJ m?2 were grown. Seedlings grown from noninfected seed and UV‐C treated seed showed an increased concentration of chlorophyll and protein contents, as well as an increase in the activation of defence enzymes peroxidase and catalase, in comparison with plants grown from infected seed. UV‐C doses resulted in seed emergence and seedling dry weight rates that were similar to the noninfected control or better than the fungicide control. Moreover, 57.6 kJ m?2 reduced transmission of the pathogen from seed to the plantlets by 80%, while 86.4 kJ m?2 apparently eradicated the pathogen, under greenhouse conditions. The use of UV‐C, first reported here, is advantageous for controlling anthracnose in lupin.  相似文献   

4.
White mould (Sclerotinia sclerotiorum) is a destructive disease of soybean worldwide. However, little is known of its impact on soybean production in Brazil. A meta‐analytic approach was used to assess the relationship between disease incidence and soybean yield (35 trials) and between incidence and sclerotia production (29 trials) in experiments conducted in 14 locations across four seasons. Region, site elevation and season included as moderators in random‐effects and random‐coefficients models did not significantly explain the variability in the slopes of the incidence–yield relationship. The Pearson's r, obtained from back‐transforming the Fisher's Z estimated by an overall random‐effects model, showed that incidence of white mould was moderately and negatively correlated with yield (= ?0.76, < 0.0001). A random‐coefficients model estimated a slope of ?17.2 kg ha?1%?1, for a mean attainable yield of 3455 kg ha?1, indicating that a 10% increase in white mould incidence would result in a mean yield reduction of 172 kg ha?1. White mould incidence and production of sclerotia were strongly and positively correlated (= 0.85, < 0.0001). For every 10% increase in white mould incidence, 1 kg ha?1 of sclerotia was produced. The relationship between disease incidence and production of sclerotia was stronger in southern regions and at higher elevation. In the absence of management, economic losses associated with white mould epidemics, assuming 43% incidence in 22% of the soybean area, were estimated at approximately US $1.47 billion annually within Brazil.  相似文献   

5.
To increase digestibility for ruminant livestock and for lignocellulosic ethanol conversion efficiency in sorghum (Sorghum bicolor), brown midrib (bmr) lines carrying bmr6 or bmr12 and the double mutant (bmr6 bmr12) in two backgrounds (RTx430 and Wheatland) were developed, resulting in lines with significantly reduced lignin, as compared with the near‐isogenic wildtype. Under greenhouse conditions, these lines had previously demonstrated no increased susceptibility, and some lines were more resistant to the highly virulent stalk rot pathogen, Fusarium thapsinum, compared to the wildtype. Fusarium stalk rot of sorghum is a destructive disease that under high temperatures or drought conditions may lead to lodging. To determine if greenhouse observations could be extended to field environments, bmr and near‐isogenic wildtype lines were inoculated with F. thapsinum at field locations, Mead (irrigated) and Havelock (dryland) in Nebraska, USA. Analysis of mean lesion lengths showed those of most bmr lines were statistically similar to the wildtype. Across both genetic backgrounds, bmr6 and bmr6 bmr12 double mutant plants grown at Mead had significantly smaller mean lesion lengths than the corresponding wildtype ( 0.05). To assess responses of the two genetic backgrounds to controlled (greenhouse) water stress, wildtype RTx430 and Wheatland plants were inoculated with F. thapsinum under well‐watered and water stress conditions. Mean lesion lengths resulting on water deficit plants were significantly larger than those on well‐watered plants (= 0.01). These results indicate that this bioassay can be used to screen sorghum lines in the greenhouse for increased resistance or tolerance to both drought and fusarium stalk rot.  相似文献   

6.
Antibiosis has been shown to be an important mode of action by Trichoderma species used in the protection of grapevine pruning wounds from infection by trunk pathogens. The major active compound from Trichoderma isolates known to protect grapevine pruning wounds from trunk pathogen infection was isolated and identified. The compound, a 6‐pentyl‐α‐pyrone (6PP), was found to be the major secondary metabolite, by quantity, which accumulated in the culture filtrate of Tharzianum isolate T77 and the two Tatroviride isolates UST1 and UST2. Benzimidazole resistant mutants generated from these isolates also produced 6PP as their main secondary metabolite, except for a mutant of T77 that had lost its ability to produce 6PP. The isolates UST1 and UST2 were co‐cultured with the grapevine trunk pathogens Eutypa lata and Neofusicoccum parvum in a minimal defined medium and a grapevine cane‐based medium (GCBM). Co‐culturing UST1 with Nparvum induced 6PP production in the minimal defined medium and the GCBM. The production of 6PP by UST2 was induced in the GCBM, while co‐culturing with the two trunk pathogens either reduced or had no effect on 6PP production. Mycelial growth and ascospore/conidia germination of Elata, Naustrale, Nparvum and Phaeomoniella chlamydospora were inhibited by 6PP in a concentration‐dependent manner. The results show that the presence of Nparvum and grapevine wood elicits the production of 6PP, suggesting that this metabolite is involved in Trichoderma–pathogen interactions on grapevine pruning wounds.  相似文献   

7.
Y. Rondot  A. Reineke 《Plant pathology》2019,68(9):1719-1731
Fungal entomopathogens like Beauveria bassiana (Ascomycota: Hypocreales) are known as antagonists of insects with multiple functional and ecological roles, and have attracted increased attention as biocontrol agents in integrated pest management programmes. For some crop plants, it has been proven that endophytic B. bassiana, besides its entomopathogenic habit, can provide protection against plant pathogens or limit their damaging effects. However, for grapevine, limited knowledge is available on the influence of endophytic B. bassiana on fungal pathogens and about the mechanisms underlying putative protection effects. This study assessed the protective potential of endophytic B. bassiana against grapevine downy mildew Plasmopara viticola in greenhouse experiments. Three and seven days after a B. bassiana treatment, potted grapevine plants were inoculated with P. viticola and the evolving disease severity was assessed. Disease severity was significantly reduced in B. bassiana-treated plants compared to control plants, depending on the age of leaves. Furthermore, a microarray and an RT-qPCR analysis were performed to work out fundamental aspects of genes involved in the interaction between grapevine and B. bassiana. The results indicate an up-regulation of diverse defence-related genes in grapevine as a response to endophytic establishment of B. bassiana. Thus, endophytic establishment of an entomopathogenic fungus such as B. bassiana in grapevine plants would represent an alternative and sustainable plant protection strategy, with the potential for reducing pesticide applications in viticulture.  相似文献   

8.
Lettuce corky root (CR) is caused by bacteria in the genera Rhizorhapis, Sphingobium, Sphingopyxis and Rhizorhabdus of the family Sphingomonadaceae. Members of this family are common rhizosphere bacteria, some pathogenic to lettuce. Sixty‐eight non‐pathogenic isolates of bacteria obtained from lettuce roots were tested for control of CR caused by Rhizorhapis suberifaciens CA1T and FL1, and Sphingobium mellinum WI4T. In two initial screenings, 10 isolates significantly reduced CR induced by one or more pathogenic strains on lettuce seedlings in vermiculite, while seven non‐pathogenic isolates provided significant CR control in natural or sterilized field soil. Rhizorhapis suberifaciens FL11 was effective at controlling all pathogenic strains, but most effective against R. suberifaciens CA1T. The other selected isolates controlled only pathogenic strains belonging to their own genus. In a greenhouse experiment, a soil drench with selected biocontrol agents (R. suberifaciens FL11, Sphingomonas sp. NY3 and S. mellinum CA16) controlled CR better than seed treatments or application of alginate pellets. In microplots infested with R. suberifaciens CA1T, seed treatment with R. suberifaciens FL11 provided complete control and a soil drench with FL11 significantly reduced the disease. Pathogenicity tests with FL11 on 23 plant species in 10 families resulted in slight yellowing on roots of lettuce and close relatives; similar yellowing appeared on some roots of non‐inoculated lettuce plants. This research showed that biocontrol agents can be genus‐specific. Only one isolate, FL11, provided more general control of various pathogenic strains causing CR even in field soil in pots and microplots.  相似文献   

9.
Two important sources of Capsicum annuum (bell pepper) resistance were evaluated for their response to inoculation with two isolates of Tobacco etch virus strain NW (TEV‐NW, genus Potyvirus). The resistant cultivars were CA4 and Dempsey, which contain the pvr1 and pvr12 resistance genes, respectively. TEV‐NW was maintained by mechanical passage in the susceptible pepper cultivar Early Calwonder and Nicotiana tabacum cv. Kentucky 14. In initial experiments, the TEV‐NW isolate maintained in Early Calwonder infected two of seven CA4 plants; however, none of the CA4 plants inoculated with the TEV‐NW isolate maintained in Kentucky 14 were infected. The infected CA4 plants had low virus titres in non‐inoculated leaves and did not develop visible symptoms. When the infected CA4 plants were used as inoculum of additional CA4 plants, all newly inoculated plants became infected, developed systemic symptoms and accumulated virus in non‐inoculated leaves more quickly than the originally infected CA4 plants. This new NW isolate, referred to as NW‐CA4, was shown to overcome the resistances expressed by both CA4 (pvr1) and Dempsey (pvr12). The potyviral VPg is believed to be the determinant for pvr1 and pvr12 resistance genes, both of which are eIF4E‐encoding genes. The VPg amino acid sequence for NW‐CA4 was determined and compared with that of NW isolates and different TEV strains. No amino acid variation was identified that explained the infectivity of NW‐CA4 in CA4 and Dempsey plants.  相似文献   

10.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

11.
Xanthomonas campestris pv. musacearum (Xcm) is the causal agent of banana xanthomonas wilt, a major threat to banana production in eastern and central Africa. The pathogen is present in very high levels within infected plants and can be transmitted by a broad range of mechanisms; therefore early specific detection is vital for effective disease management. In this study, a polyclonal antibody (pAb) was developed and deployed in a lateral flow device (LFD) format to allow rapid in‐field detection of Xcm. Published Xcm PCR assays were also independently assessed: only two assays gave specific amplification of Xcm, whilst others cross‐reacted with non‐target Xanthomonas species. Pure cultures of Xcm were used to immunize a rabbit, the IgG antibodies purified from the serum and the resulting polyclonal antibodies tested using ELISA and LFD. Testing against a wide range of bacterial species showed the pAb detected all strains of Xcm, representing isolates from seven countries and the known genetic diversity of Xcm. The pAb also detected the closely related Xanthomonas axonopodis pv. vasculorum (Xav), primarily a sugarcane pathogen. Detection was successful in both naturally and experimentally infected banana plants, and the LFD limit of detection was 105 cells mL?1. Whilst the pAb is not fully specific for Xcm, Xav has never been found in banana. Therefore the LFD can be used as a first‐line screening tool to detect Xcm in the field. Testing by LFD requires no equipment, can be performed by non‐scientists and is cost‐effective. Therefore this LFD provides a vital tool to aid in the management and control of Xcm.  相似文献   

12.
A 2‐year comprehensive field survey was conducted across major tomato‐growing areas of Iran. Two hundred and thirty‐four tomato fields and six tomato‐producing greenhouses were surveyed for the potential presence of bacterial spot disease. Five hundred and ninety‐six tomato samples with and without symptoms were analysed. While Xanthomonas spp. were found in association with tomato plants both with and without symptoms from five surveyed counties, the bacterial spot disease was observed only in plants from three of them. Only strains isolated from plants with symptoms induced disease symptoms on tomato, while those isolated from symptomless plants caused symptoms only on cabbage and common bean. None of the isolates caused disease symptoms on pepper and eggplant. Phylogenetic analysis showed that X. perforans is the causal agent of tomato bacterial spot in Iran, although X. campestris and X. axonopodis were also associated with symptomless tomato plants. All X. perforans isolates in this study were sensitive to streptomycin, copper sulphate and copper oxychloride at concentrations of 50 mg L?1, 200 mg L?1 and 0.8 g L?1, respectively. Unlike the type strain of X. perforans, isolates in this study did not produce bacteriocin against other Xanthomonas spp., nor were they detected using the usual species‐specific primer pair Bs‐XpF/Bs‐XpR. This suggests an atypical nature of X. perforans strains in Iran, which leads to the hypothesis that X. perforans strains in Iran may have a separate origin to those causing disease epidemics elsewhere. The aggregated dispersal pattern of the diseased tomato fields signifies the seedborne introduction of the pathogen into the country.  相似文献   

13.
Although preference for NH4+, NO3? or a combination of the two often differs among species, we know little about the responses of invasive plants to different inorganic N forms. Furthermore, many studies have suggested that an increase in N availability may facilitate further invasions. However, most of these studies predicted the positive feedback without considering the preference for N forms of invasive plants. Therefore, we cultivated four common invasive species (Mikania micrantha, Ipomoea cairica, Wedelia trilobata and Bidens pilosa) in South China with hydroponic media containing different forms of N (i.e. NO3?, NH4NO3 and NH4+) at equimolar concentrations. Our results showed that the N forms significantly affected the growth, biomass allocation and physiological traits of the plants. All four invasive plants supplied with NO3? alone had better performance and greater allocation to root biomass than did plants that were supplied with NH4+ alone. Moreover, the photosynthetic rate, pigment content and photosystem II activity of plants supplied with NO3? or NH4NO3 were significantly higher than those of plants supplied with NH4+alone. The results suggested that all four invasive plants preferred NO3? rather than NH4+, and changes in NO3? played an important role in furthering the invasions of these plants than did changes in NH4+. Our results implied that decreasing NO3? may be a useful tool for controlling and managing invasive plants preferring NO3?. In addition, this study highlighted the importance of considering plant N form preference to better understand plant invasions.  相似文献   

14.
Trunk disease pathogens of grapevines, viz. Phaeomoniella chlamydospora, Eutypa lata and several species in Botryosphaeriaceae, Phaeoacremonium and Phomopsis are known to infect fresh pruning wounds by means of air-borne inoculum released after rainfall or prolonged periods of high relative humidity. Recent surveys have demonstrated that most or all of these pathogens are present in climatically diverse grape growing regions of South Africa. However, the factors controlling spore dispersal of these pathogens in vineyards were largely unknown. To address this question, spore trapping was done in a Chenin Blanc vineyard in the Stellenbosch area, South Africa, for 14 weeks during the grapevine pruning period from June to mid-September of 2004 and 2005. Hourly recordings of weather data were done by a weather station in the row adjacent to the spore trap. Spores of E. lata and Phomopsis and species in Botryosphaeriaceae were trapped throughout the trapping periods of 2004 and 2005, with higher levels of trapped spores recorded in 2005. The spores of all three pathogens were trapped during or after periods of rainfall and/or high relative humidity. In neither of the 2 years were spores of Pa. chlamydospora or Phaeoacremonium spp. trapped. Results indicated that spore event incidence, as well as the amount of spores released during a spore event of above-mentioned pathogens, were governed by rainfall, relative humidity, temperature and wind speed prior to and during the spore events.  相似文献   

15.
Bacterial wilt is a serious problem affecting many important food crops. Recent studies have indicated that treatment with biotic or abiotic stress factors may increase the resistance of plants to bacterial infection. This study investigated the effects of magnesium oxide nanoparticles (MgO NP) on disease resistance in tomato plants against Ralstonia solanacearum, as well as its antibacterial activity. The roots of tomato seedlings were inoculated with R. solanacearum and then immediately treated with MgO NP; the treated plants showed very little inhibition of bacterial wilt. In contrast, when roots were drenched with a MgO NP suspension prior to inoculation with the pathogen, the incidence of disease was significantly reduced. Rapid generation of reactive oxygen species such as O2 radicals was observed in tomato roots treated with MgO NP. Further O2 was rapidly generated when tomato plant extracts or polyphenols were added to the MgO NP suspension, suggesting that the generation of O2 in tomato roots might be due to a reaction between MgO NP and polyphenols present in the roots. Salicylic acid‐inducible PR1, jasmonic acid‐inducible LoxA, ethylene‐inducible Osm, and systemic resistance‐related GluA were up‐regulated in both the roots and hypocotyls of tomato plants after treatment of the plant roots with MgO NP. Histochemical analyses showed that β‐1,3‐glucanase and tyloses accumulated in the xylem and apoplast of pith tissues of the hypocotyls after MgO NP treatment. These results indicate that MgO NP induces systemic resistance in tomato plants against R. solanacearum.  相似文献   

16.
The present work was carried out in order to verify the possible association between a new grapevine disease, characterized by leaf mottling and deformation, and the genetic variability and concentration of Grapevine Pinot gris virus (GPGV), a recently identified virus tentatively associated with the pathology. After vineyard surveys and the establishment of real‐time qPCR assays, characterization of GPGV isolates and evaluation of GPGV titre were assessed in more than 100 samples of grapevine Glera, collected from plants regardless of whether or not they showed the symptomatology. Results showed that there was an important association between the GPGV variants and manifestation of the symptoms, and that grapevines with symptoms harboured significantly higher GPGV titre than symptomless vines. Moreover, an interesting relationship among the phylogenetic clustering of the isolates originating from plants with symptoms and some epidemiological characteristics of the disease was found. The current study confirmed the role of GPGV in the emergent disease characterized by grapevine leaf mottling and deformation.  相似文献   

17.
Rice black streaked dwarf virus (RBSDV) causing rice black streaked dwarf disease is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a persistent propagative manner. The disease is considered among the most destructive in rice production in east and southeast Asia. For sustainable control of the disease, planting resistant cultivars is the most economical and efficient method. The virus content in different rice cultivars was quantified using a TaqMan RT‐qPCR assay under greenhouse conditions and the disease was visually assessed in these cultivars in both greenhouse and field conditions. Results revealed significant positive moderate correlation (= 0.3787; = 0.0009) between the virus content and visual disease assessment in the greenhouse under forced inoculation. Among 66 rice cultivars, there was no significant difference in RBSDV genome equivalent copies (GEC) in seven cultivars, namely Lian‐dao 9805 (200.2 ± 12), Liangyou 3399 (206.6 ± 28), Ningjing 4 (206.6 ± 28), DaLiang 207 (302.0 ± 61), X 008 (354.0 ± 30), Shengdao 301 (658.4 ± 69) and Liangyou 1129 (679.5 ± 98). These cultivars were also visually assessed as resistant under greenhouse and field conditions. These cultivars could be used in disease management to reduce the likelihood of epidemics.  相似文献   

18.
A drastic pruning strategy was developed to eradicate the fungal disease black rot (Guignardia bidwellii), which is exotic in Australia, from grapevines, while minimizing the economic cost of returning an affected vineyard to its previous quality and production levels. The protocol involved cutting off vines at the top of the trunk, removing debris from the ground beneath and between vines, mulching the vineyard floor, removing low watershoots during vine regrowth and applying a targeted fungicide programme. The protocol was initially evaluated and consequently modified in Australia using an endemic grapevine disease, black spot or anthracnose (Elsinoe ampelina), as an analogous model system. Then, it was validated in a black‐rot‐infested vineyard in New York, USA. Following two seasons of disease‐conducive weather conditions, no black rot was detected on treated vines, whereas leaf and fruit infections developed on the untreated control vines. These results confirmed the efficacy of the protocol for eradicating black rot from vineyards while allowing vines to return quickly to previous yield and quality levels without replanting. The protocol may have applicability to disease eradication protocols for other perennial crops as well. Evidence is also presented on the efficacy and potential pitfalls of burning infected grapevine material to eradicate E. ampelina.  相似文献   

19.
Genotypic and virulence diversity of Neofusicoccum luteum and N. australe isolates recovered from grapevines displaying symptoms of dieback and decline in New Zealand were investigated. The universally primed PCR (UP‐PCR) method was used to investigate the genetic diversity of 40 isolates of N. luteum and 33 isolates of N. australe. Five UP‐PCR primers produced a total of 51 loci from N. luteum and 57 from N. australe with a greater number of polymorphic loci produced in N. australe (86%) compared with N. luteum (69%). Analysis of UP‐PCR data showed both species found in New Zealand vineyards were genetically diverse at both the inter‐ and intra‐vineyard levels with only a single pair of clonal isolates in N. luteum. Cluster analysis of UP‐PCR data produced four genetic groups in N. luteum and 10 in N. australe (< 0.05). For both species, there was no relationship between the genetic groups and the origin of isolates. The mean genetic diversity (H) of N. luteum was less than for N. australe, being 0.1791 and 0.2417, respectively. Pathogenicity assays of both species using isolates from either the same or different genetic groups inoculated onto either green shoots or grapevine trunks, showed virulence diversity within the population; however, no correlation was identified between genetic groups and virulence.  相似文献   

20.
Although magnesium (Mg) is considered an essential element for wheat growth, its importance for disease control has often been overlooked, and the physiological features of diseased plants mediated by Mg remain elusive. In this study, the effect of three Mg concentrations (0·25, 2·5 and 4 mm ) on wheat resistance to leaf blast (Pyricularia oryzae), leaf gas exchange, invertase activity, cellular damage and foliar concentration of photosynthetic pigments and nutrients was investigated. Foliar Mg increased from 1·9 to 3·9 g kg?1, whereas calcium (Ca) decreased from 7·8 to 4·9 g kg?1 as the applied Mg increased from 0·25 to 4 mm . Blast severity increased from 11·3 to 39·6% as the applied Mg increased from 0·25 to 4 mm . Photosynthesis, stomatal conductance, transpiration and photosynthetic pigment concentrations decreased in inoculated plants compared to non‐inoculated plants regardless of the Mg concentration; however, the reductions were more pronounced for plants grown with 4 mm Mg than those grown with 0·25 mm Mg. On the other hand, a higher internal CO2 concentration, invertase activity and malondialdehyde concentration was recorded in inoculated plants grown with 4 mm Mg compared to those grown with 0·25 mm Mg. In conclusion, reduced Ca uptake may partially explain the increased susceptibility of wheat to leaf blast with the highest Mg concentration. Mg‐induced susceptibility to leaf blast appeared responsible for the photosynthetic impairments. These were most probably due to biochemical constraints because plants grown with the highest Mg concentration suffered extensive cellular damage and degradation of photosynthetic pigments as a result of high disease severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号