首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Organophosphothionate insecticide fenitrothion is known as potential toxic pollutant contaminating aquatic ecosystems. The effects of fenitrothion were studied to determine the 96 h LC50 value on Nile tilapia (Oreochromis niloticus) and investigate histopathological responses of fish exposed to sublethal fenitrothion concentrations. Data obtained from the fenitrothion acute toxicity tests were evaluated using the Probit Analysis Statistical Method. The 96 h LC50 value and 95% confidence limit for Nile tilapia (58.70 ± 6.97 g) was estimated as 0.84 (0.68-1.15) mg/L. Behavioral changes were observed closely during the acute toxicity test. The bioassay experiments were repeated three times and static test method was used. Some fish exposed to 96 h 0.1, 0.5 mg/L fenitrothion concentrations showed histopathological alterations in the gills, liver, kidney, brain and testes. Severely deformations were observed at 0.5 mg/L fenitrothion on the gills lamella such as hyperemia, epithelial hyperplasia, fusion and telangiectasis, in the liver tissue such as cloudy swelling, hydropic degenerations and lipid infiltration. In addition hyperemia and hemorrhage observed in kidney tissue and hyperemia was determined in brain tissue.  相似文献   

2.
Proteinase inhibitors (AsPIs) with high activity against serine proteinases were purified from seeds of the tree legume, Acacia senegal by ammonium sulfate precipitation followed by DEAE-Sephadex A-25 column and evaluated against Helicoverpa armigera larvae by in vitro and in vivo methods. The molecular weight of AsPIs was found to be approximately 19.58 ± 1.00 and 21.23 ± 1.00 kDa for PI and 18.16 ± 1.00 kDa for PII on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The AsPIs (5 μg/ml) inhibited approximately 70% of midgut trypsin and 61% of elastase-like chymotrypsin. In vitro studies showed that AsPIs have remarkable inhibitory activity towards total gut proteolytic enzymes followed by trypsin and chymotrypsin. The IC50 of AsPIs for midgut trypsin was 0.1 μg/ml and for chymotrypsin was 2.0 μg/ml. The inhibition of gut proteinase enzymes was of the non-competitive type. In larval feeding studies, AsPIs were found to retard growth and development of H. armigera and also affects the fecundity of the pest. The results advocate the use of AsPIs in transgenic technology to develop plant resistance to H. armigera.  相似文献   

3.
Nile Tilapia (Oreochromis niloticus) juveniles were exposed to different concentrations of Folidol 600® in static toxicity tests. The 24, 48, 72 and 96 h LC50 values of Folidol 600® to O. niloticus were 17.82, 8.91, 4.00 and 2.70 mg L−1, respectively. The values of hematological parameters increased, and inhibition of cholinesterases activity (AChE, BChE and PChE) in plasma of fish exposed to the higher concentrations of pesticide reached 94%. Furthermore, the exposure of Tilapia to Folidol 600® caused an increase of 4%, 20% and 38.4% in oxygen consumption at 0.1, 0.5 and 1.0 mg L−1, respectively. However, exposure to 2.5, 5.0 and 10 mg L−1 caused a decrease of 33.6%, 35.2% and 42.4% in oxygen consumption relative to the control. The ammonium excretion of fish exposed to 0.0, 0.1, 0.5, 1.0, 2.5, 5.0 and 10.0 mg Folidol 600®/L was 0.12, 0.18, 0.30, 0.33, 0.37, 0.36 and 0.33 μg/g/min, i.e., 50%, 150%, 175%, 208%, 200% and 175% increase, respectively, relative to the control.  相似文献   

4.
Diuron is one of the most commonly found N-phenylurea herbicides in marine/estuarine waters that promotes toxic effects by inhibiting photosynthesis and affecting the production of reactive oxygen species (ROS) in autotrophs. Since photo- and thermoacclimation are also ROS-mediated processes, this work evaluates a hypothetical additive effect of high light (HL) and chilling (12 °C) on 50 nM diuron toxicity to the highly-photosynthetically active apices of the red alga Kappaphycus alvarezii. Additive inhibition of photosynthesis was mainly evidenced by significant decreases of quantum yield of photosystem II and electron transfer rates upon co-stressors exposure to diuron-treated algae. Under extreme 12 °C/HL/diuron conditions, unexpected lower correlations between H2O2 concentrations in seawater and radical-sensitive protein thiols were concomitantly measured with the highest indexes of photoinhibition (parameter β). Altogether, these data support the hypothesis that co-stressors chilling/HL additively inhibit photosynthesis in diuron-exposed K. alvarezii but with less involvement of H2O2 in injury effects than with only chilling or HL.  相似文献   

5.
The acute 96 h LC50 of (2,4-dichlorophenoxy)acetic acid (2,4-D), a widely used agricultural herbicide, was determined on crayfish (Astacus leptodactylus Esch. 1823). Crayfish of 23.5 ± 1.49 g mean weight and 9.6 ± 0.21 cm mean length were selected for the bioassay experiments. The experiments were repeated three times, in 10 L tap water. The data obtained were statistically evaluated by the use of the E.P.A computer program based on Finney’s probit analysis method and the 96 h LC50 value for crayfish was calculated to be 32.6 mg/L in a static bioassay test system. 95% lower and upper confidence limits for the LC50 were 15.10-327.16. In conclusion, 2,4-D is highly toxic to crayfish, a non-target organism in the ecosystem. Water temperature was 23 ± 1 °C. Behavioral changes of crayfish were recorded for all herbicide concentrations.  相似文献   

6.
Four extracts of Arisaema erubescens tubers by acetic acetal (AAE), benzinum (BZE), n-butanol (NBE) and chloroform (CFE) were obtained to evaluate their molluscicidal activities against the snail Oncomlania hupensis. The responses of choline esterase (ChE), alkaline phosphatase (ALP), esterase (EST), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to the extracts (NBE) were also investigated. In the four extracts (AAE, BZE, NBE and CFE), NBE showed the highest toxicity on the snails after 48 h exposure. NBE also showed the time- and concentration-dependent effect, for example, the LC90 values of the NBE were decreased from 365.5 mg/L (24 h) to 36.4 mg/L (96 h). At the end of exposure to NBE (LC50 concentration), the activities of ChE and ALP in snail tissues (cephalopodium and liver) decreased significantly. Isozyme electrophoresis profiles indicated that responses of isozymes (EST, SOD and GSH-Px) to NBE were more intense in liver than in cephalopodium. After 72 h exposure to NBE, the EST activity in snail liver decreased and some enzyme bands (EST1 and EST4) disappeared. But the activities of SOD 1 and GSH 2 in liver increased after 48 h exposure. The results indicated that NBE was the highest toxic component in the four extracts. The decline of the detoxification ability and the oxidative damage in snail tissues might be the main reason for the molluscicidal activities.  相似文献   

7.
In search for new local plant molluscicides for the control of the vectors of schistosomiasis, we compared the molluscicidal action of the extract of Ginkgo biloba sarcotesta by benzinum (EGSB) to that of arecoline (ARE) and niclosamide (NIC) against Oncomelania hupensis snails. NIC showed the highest toxicity on snails with 24 h LC50 vales of 0.12 mg/L and LC90 of 0.98 mg/L, while the LC50 and LC90 of EGSB were much lower than that of ARE. Sublethal in vivo 24 h exposure to 40% and 80% LC50 of NIC, EGSB and ARE altered the activities of different enzymes in different body tissues of snails. EGSB could significantly inhibit Choline esterase (ChE), Alanine aminotransferase (ALT), Alkaline phosphatase (ALP) and Malic dehydrogenase (MDH) activities both in the cephalopodium and liver. ARE could significantly cause a reduction in ChE, ALP activities in the cephalopodium and ChE, ALT, ALP, Succinodehydrogenase (SDH), MDH activities in the liver. NIC significantly altered activities of ChE, ALT, ALP, SDH, and MDH in the cephalopodium and ChE, ALT, ALP, SDH activities in the liver. All molluscicides could not affect Lactate dehydrogenase (LDH) activity in the cephalopodium and the liver. Maximum inhibition of ALT and MDH activities was found in the cephalopodium and liver of snails treated with 80% of 24 h LC50 of EGSB. However, NIC and ARE caused maximum reduction in ALP and SDH activities, respectively. The results indicated that molluscicidal action of EGSB was different to that of ARE and NIC in some extent.  相似文献   

8.
Freshwater fish, Channa punctatus, commonly known as the snakehead fish, was exposed to two sublethal concentrations (0.96 and 1.86 mg/L) (selected on the basis of 1/20 and 1/10 of 96 h LC50 value) of monocrotophos for two exposure periods (15 and 60 days). Effects of monocrotophos on Na+, K+-ATPase in liver, kidney, muscle, intestine, brain, heart and gills were determined. Results indicate that Na+, K+-ATPase activity in tissues decreased as concentration of monocrotophos and exposure period increased. Monocrotophos induced significant inhibitory effects on the Na+, K+-ATPase activity of C. punctatus, ranging from gills (70%) > Kidney (63%) > brain (57%) > intestine (52%) > liver (50%) > muscle (47%) > heart (44%) inhibition at a sublethal concentration of 0.96 mg/L. Significant inhibition was detected in Na+, K+-ATPase activity, ranging from gills (90%) > heart (78%) > kidney (78%) > muscle (74%) > intestine (71%) > brain (67%) > liver (63%) at sublethal concentration of 1.86 mg/L. After subacute exposure (15 days) only gills and brain showed significant inhibition after higher concentration (1.86 mg/L). However, it is evident that exposure duration is more important than dose in the inhibition of the activity of enzyme. At lower concentration initial stimulation of the activity of Na+, K+-ATPase activity was also noticed. It is suggested that the inhibition of the ATPase by monocrotophos blocked the active transport system of the gill epithelial as well as chloride cells, glomerular and epithelial cells of the tubules and thus altered the osmoregulatory mechanism of the fish. In fact, the impairment of the activity of enzymes which carry out key physiological roles could cause alterations of the physiology of the whole organism.  相似文献   

9.
Phenoloxidase (PO) is a key enzyme in the developmental process of insects that is responsible for catalyzing the hydroxylation of monophenols and the oxidation of o-diphenols. In the present investigation, the PO of Plutella Xylostella (L.)(Lepidoptera Plutellidae) was partially purified with 40% saturated (NH4)2SO4 and Sephadex G-100 gel filtration, and the effects of 4-dodecylresorcinol on the monophenolase and o-diphenolase activity of PO were studied. The results showed that 4-dodecylresorcinol could inhibit monophenolase and o-diphenolase activity. In addition, following 4-dodecylresorcinol treatments, the lag time of PO for oxidation of l-tyrosine was obviously lengthened and the steady-state activity was decreased. The inhibitor was found to be competitively reversible with a Ki of 0.201 mM and an estimated IC50 (inhibition concentration showing 50% of the maximum inhibition) of 0.160 mM for monophenolase and 0.369 mM for diphenolase. The ability of 4-dodecylresorcinol to inhibit PO activity may be associated with its ability to directly affect copper at the active site  相似文献   

10.
The present study was conducted to determine the 96 h-LC50 of benomyl to the Nile tilapia, Oreochromis niloticus and to investigate the biochemical or hematological indices of blood and the alterations in the antioxidant enzymes of this fish in response to sublethal concentrations of benomyl. Fish weighing 71.61 ± 12.05 g were used in this study; they were subjected to fasting for 4 weeks before treatment. An aqueous solution of benomyl (0, 0.5, 1, 2, 4, 8, and 16 mg L−1) was administered for 96 h to determine the LC50. The 96 h-LC50 value of benomyl was 4.39 (3.23-5.60) mg L−1 in the present study. For 5 weeks, the aqueous solution of benomyl (0, 100, 200, and 400 μg L−1) was administered to investigate its effect on the hematological parameters and antioxidant enzymes. The predominant hematological findings in fish exposed to benomyl were as follows: no significant change in the Hb (g dL−1) level, MCV (μm3), MCH (pg) and MCHC (%) as compared to the control. Benomyl exposure led to greater increases in the GPT, GOT (Karmen-unit), LDH (Wroblewski unit), total cholesterol, Fe, and Ca (mg dL−1) values, whereas the levels of ALP (KA unit), total protein, triglyceride, albumin, and Mg (mg dL−1) did not increase. Benomyl increased the in vivo HSI (%), GST (nmol min−1 mg protein−1), and SOD (U mg protein−1) values in the fish livers in the test group, unlike those in the control group for 5 weeks. At concentrations higher than 100 μg L−1, benomyl affected the GST and SOD levels of Nile tilapia in a dose- and time-dependent manner. The present findings suggest that the in vivo hepatotoxicity associated with benomyl may, in part, result from the hematological index, and antioxidants may provide limited protection against benomyl toxicity.  相似文献   

11.
Of the huge annual worldwide production (500,000 MT in 1997) of alkylphenol polyethoxylates (APEs) that are widely used as nonionic surfactants and anti-oxidants in variety of products, 60% ends up in water bodies. They undergo biodegradation to form octyl-, butyl-, and nonyl-phenols. This experiment evaluated effects of 4-tert-butyl phenol (4-TBP) in Cyprinus carpio, a projected candidate species in sewage fed fisheries. The 96th h LC50 of 4-TBP was found to be 6.9 mg/L. Fishes were treated with 1/10th (0.69 mg/L), 1/5th (1.38 mg/L), and 1/3rd (2.3 mg/L) dose of LC50. Whereas there was significant (P < 0.01) decrease in alkaline phosphatase [EC 3.1.3.1] and aspartate aminotransferase [EC 2.6.1.1] activity; alanine aminotranferase [EC 2.6.1.2] and acid phosphatase [3.1.3.2] (except decrease at 1/10th dose of LC50) activity, vitellogenin production in muscle and hepatic- and reno-somatic indices were increased compared to control. With all the dose levels tested, testicular-somatic index (testis size) was reduced (P < 0.01) and histo-architectural changes in testicular and liver tissue were found even in group given 1/3rd dose of LC50.  相似文献   

12.
In Asia, Monopterus albus (Asian swamp eel) is commonly found in rice fields, muddy ponds and swamp areas. Because of its habitat, it is exposed to toxic pesticides used in rice fields, especially endosulfan, which is one of the most widely used insecticides. This study aims to determine the acute toxicity of endosulfan and its effect on the behaviour and some hematological parameters of the fish. The 96 h-LC50 (with 95% confidence limits) obtained in this study for M. albus was 0.42 (0.35-0.50) μg L−1. After 96 h exposure to endosulfan, the fish exhibited a series of abnormal behavioural responses; these included imbalanced position, restlessness of movement, erratic swimming, tremor, flashing and lethargy. When the swamp eels were exhausted, they were laterally recumbent on the bottom and had no opercula movement. Endosulfan toxicity also caused a significant lower (p < 0.05) value of erythrocyte count, leukocyte count, hemoglobin and hematocrit as compared to the control experiment. Nevertheless, the erythrocyte cell showed an increasing trend in size. The swollen erythrocyte cells may be impaired in their oxygen-carrying capacity. Severe blood loss through the gill capillary and hematemesis of the fish may be the main reasons for the hematological changes in the test organisms. Despite its relatively bigger size (30-40 cm in length) as compared to most of the other test organisms (<5 cm in length) for endosulfan toxicity, it is interesting to find that this fish is one of the most sensitive freshwater fishes to endosulfan.  相似文献   

13.
Diethyl phthalate (DEP) enter into aquatic environment from industries manufacturing cosmetics, plastic and many commercial products and can pose potential fish and human health hazard. This experiment evaluated effects of DEP in adult male (89 g) common carp (Cyprinus carpio) by exposing them to fractions of LC50 (1/500-1/2.5) doses with every change of water for 28 days. Vitellogenin induction metabolic enzymes, somatic indices and bioaccumulation were studied on 7th, 14th, 21st and 28th day. The 96th hour LC50 of DEP in fingerlings was found to be 48 mg/L. Compared to control, except increase (P < 0.01) in alkaline phosphatase activity (EC 3.1.3.1) and liver size, there was decrease (P < 0.01) in activity of acid phosphatase (EC 3.1.3.2), aspartate aminotransferase (EC 2.6.1.1), alanine aminotransferase (EC 2.6.1.2) and testiculosomatic index following exposure to 1, 5 and 20 ppm DEP. Significant (P < 0.01) dose dependant vitellogenin induction was observed with exposure of fish to 0.1, 1 and 5 ppm DEP. The bioaccumulation of DEP in testis, liver, brain, gills and more importantly in muscle tissues of fish increased significantly (P < 0.01) with increase of dose from 1 to 5 ppm. Significant interaction (P < 0.01) of dose and duration of exposure indicated that exposure period of a week to two was sufficient to bring about changes in quantifiable parameters studied. Fish exposed to 20 ppm DEP became lethargic and discolored during onset of the 4th week. This is the first report describing metabolic changes and vitellogenin induction following exposure of C. carpio to DEP dose that is as low as 1/500th fraction of LC50.  相似文献   

14.
Glutathione S-transferases (GSTs) are known to catalyze conjugations by facilitating the nucleophilic attack of the sulfhydryl group of endogenous reduced glutathione on electrophilic centers of a vast range of xenobiotic compounds, including insecticides and acaricides. Elevated levels of GSTs in the two-spotted spider mite, Tetranychus urticae Koch, have recently been associated with resistance to acaricides such as abamectin [Pestic. Biochem. Physiol. 72 (2002) 111]. GSTs from acaricide susceptible and resistant strains of T. urticae were purified by glutathione-agarose affinity chromatography and characterized by their Michaelis-Menten kinetics towards artificial substrates, i.e., 1-chloro-2,4-dinitrobenzene and monochlorobimane. The inhibitory potential of azocyclotin, dicumarol, and plumbagin was low (IC50 values > 100 μM), whereas ethacrynic acid was much more effective, exhibiting an IC50 value of 4.5 μM. GST activity is highest in 2-4-day-old female adults and dropped considerably with progressing age. Furthermore, molecular characteristics were determined for the first time of a GST from T. urticae, such as molecular weight (SDS-PAGE) and N-terminal amino acid sequencing (Edman degradation). Glutathione-agarose affinity purified GST from T. urticae strain WI has a molecular weight of 22.1 kDa. N-terminal amino acid sequencing revealed a homogeneity of ≈50% to insect GSTs closely related to insect class I GSTs (similar to mammalian Delta class GSTs).  相似文献   

15.
Brucea javanica (L.) Merr. is a medicine plant distributed widely throughout Asia where its bitter fruits have been used traditionally in medicine for treating various ailments and controlling some pests. In recent years, concerns over the potential impact of synthetic pesticides on human health and environment have now become more pressing to develop environmentally friendly pesticides. In this paper, brusatol, a quassinoid, was isolated from the fruit of B. javanica, and identified using X-ray crystallographic analysis. Results showed that brusatol has potent contact toxicity (LD50, 2.91 μg/larva, 72 h) and anfieedant activity (AFC50, 17.4 mg/L, 48 h) against the third-instar larvae of Spodoptera exigua. Brusatol demonstrated cytotoxic effects to the tested insect cell lines, IOZCAS-Spex-II and Sf21, in a time- and dose-dependent manner. After brusatol treatment, apoptotic cell death with the DNA fragmentation, activation of caspase-3 and release of cytochrome c was preliminarily observed in both IOZCAS-Spex-II and Sf21. These results indicated the existence of apoptotic death with the mitochondrial-dependent pathway induced by brusatol in Sf21 and IOZCAS-Spex-II cell lines. Our studies will provide important knowledge to understand mechanisms of action of brusatol and to develop brusatol and its derivatives as insecticides.  相似文献   

16.
Sensitivity to tricyclazole of 129 single-conidial isolates of rice blast fungus, Magnaporthe grisea, was determined. EC50 values ranged from 0.06 to 1.12 mg/L with an average value of 0.46 ± 0.09 mg/L according to the detached leaf segment tests. No significant difference of sensitivity was observed between isolates from Guangdong and Jiangsu where decreased efficacy was reported, and from two other provinces where tricyclazole provided excellent disease control. In seedling tests, tricyclazole could control the most tolerant isolate GY-6 successfully with a efficacy of 81.5% at the concentration of 40 mg/L. Sensitivities of GY-6 and DY-2, the most sensitive isolate, to tricyclazole were both unstable in sub-cultured single-conidial offspring isolates, with respective mean EC50 values of 5.40 ± 0.97 and 4.50 ± 0.88 mg/L calculated from seedling tests. There was no amino acid difference between them in the coding sequences of 1,3,6,8-tetrahydroxynaphthalene reductase and 1,3,8-trihydroxynaphthalene reductase. These results suggested that the decreased control reported in Guangdong and Jiangsu could not be attributed to the occurrence of resistance. When continuously “inoculated-reisolated-reinoculated” under the selection of tricyclazole in vivo, sensitivity of DY-2 decreased 10-fold after 20 generations, although the sensitivity of GY-6 did not shift significantly.  相似文献   

17.
Exposure of mitochondria isolated from bovine heart to the insecticidal coumarin surangin B results in inhibition of complex II (IC50 = 0.2 μM), III (IC50 = 14.8 μM), and IV (IC50 = 3.1 μM), but in contrast, the NADH:ubiquinone reductase (complex I) was completely insensitive to this compound at 100 μM. Kinetic analysis of surangin B’s interaction with complex II was then investigated using sub-mitochondrial particles. With succinate as the substrate, surangin B, like carboxin, acted with non-competitive kinetics and clearly contrasted in its action with malonate, a competitive inhibitor of complex II. Likewise, surangin B acted as a non-competitive inhibitor of decylubiquinone-dependent interception of electrons at complex II. Difference spectra of reduced complex III equilibrated with surangin B were found to closely parallel those of antimycin A, but were different in nature to those of the Qo site inhibitors myxothiazol and famoxadone. Investigation of surangin B-dependent functional perturbation of complex III used the synthetic electron acceptor 2-nitrosofluorene, which intercepts electrons specifically from the Qi site. These experiments demonstrated that like antimycin A, surangin B acts as a selective blocker of electron diversion to 2-nitrosofluorene through Qi within complex III. We conclude that surangin B blocks electron transport at several points in bovine heart mitochondria, however, complex I is spared. The potent inhibitory action of surangin B on complex II involves binding to a site which is distinct from both the succinate binding site and the domain responsible for interacting with ubiquinone. Surangin B apparently blocks complex III by interacting with the Qi (antimycin A-binding) pocket.  相似文献   

18.
In this study, four technical grade insecticides, fipronil, pyriproxyfen, imidacloprid and thiamethoxam were applied at the recommended and the higher doses to investigate their effects on plant growth-promoting activities of phosphate-solubilizing Klebsiella sp. strain PS19, isolated from mustard rhizosphere. All tested insecticides displayed a concentration-dependent inhibition in plant growth promoting traits, like, inorganic phosphate solubilization, biosynthesis of phytohormones and siderophores, of rhizobacterial strain PS19. For example, the phosphate-solubilizing activity of Klebsiella sp. PS 19 was reduced maximally by 95%, at 3900 μg l−1 pyriproxyfen over control. At the recommended rate, the magnitude of toxicity of insecticides to plant growth promoting traits was less severe compared to the higher doses. The sequence of insecticide-toxicity expressed as percent decrease, determined at highest dose rate of each insecticide, over control was: pyriproxyfen (95) = imidacloprid (95) > thiamethoxam (94) > fipronil (85), for phosphate-solubilizing activity while for salicylic acid (SA) it was: thiamethoxam > pyriproxyfen = imidacloprid > fipronil. The impact of the highest dose rate of insecticides on 2,3-dihydroxybenzoic acid (DHBA) was almost equal to those observed for SA. Thiamethoxam decreased the indole acetic acid (IAA) synthesis maximally by 86% whereas fipronil had least toxicity and reduced it by 67% relative to the control. Among the experimental insecticides, pyriproxyfen at 3900 μg l−1 in general, had the greatest toxic effects for plant growth promoting activities of the test strain. The study inferred that insecticides affect the plant beneficial activities of rhizobacteria adversely. These findings are likely to add a new insight into the pest management practices.  相似文献   

19.
Properties of acetolactate synthase (EC 4.1.3.18; ALS) from sulfonylurea-resistant (SUR) Scirpus juncoides Roxb. var. ohwianus T. Koyama were studied biochemically and physiologically in comparison with those from sulfonylurea-susceptible weed (SUS). GR50 values for growth inhibition and I50 values for ALS inhibition by imazosulfuron were determined for both SUR and SUS. Imazosulfuron controlled the SUS above 80% at the dosage more than 10 g a.i./ha but did not control the SUR at the even great dosage of 1000 g a.i./ha. The rates required for 50% growth inhibition of the SUR relative to the SUS (R/S ratio) were 271-fold. The I50 value for inhibition of ALS from the SUS was 15 nM, compared to I50 of >3000 nM for inhibition of ALS from the SUR. These results suggest that a resistance may due to an altered ALS that is insensitive to imazosulfuron. The Km (pyruvate) value of ALS from the SUR was similar to the Km for ALS from the SUS, suggesting that a mutation resulting in resistance does not change the affinity of the enzyme for pyruvate. The specific activity of the SUR ALS was similar to that of the SUS ALS, which indicates that resistance is not an over-expression of the enzyme. ALS activity from both biotypes was inhibited by isoleucine, valine, and leucine in this order. However, the SUR ALS was less sensitive to inhibition by valine than the SUS ALS.  相似文献   

20.
A natural compound plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) was isolated from the leaves of Plumbago auriculata and found to inhibit the enzyme, 8-amino-7-oxononanoate synthase (AONS, also known as 7-keto-8-aminopelargonate synthase, KAPAS) an IC50 of 2.1 μM in vitro. Biotin supplement significantly rescued the plant injury caused by the plumbagin treatment, and this result confirmed the target site, AONS. Foliar application of 1000 ∼ 2000 μg/mL plumbagin in a greenhouse condition showed lethal activity against eight species of weeds, containing three grass species of Sorghum bicolor, Echinochloa crus-galli, Digitaria sanguinalis and five broad leaf species of Solanum nigrum, Aeschynomene indica, Abutilon avicennae, Xanthium strumarium, Calystegia japonica. Field trial of foliar application with plumbagin 2000 μg/mL have successfully controlled 10 ∼ 15 leaf-stages and 2 ∼ 3 m vine lengths of Sicyos angulatus at the natural habitats around riparian zone in the Nam-Han River in Korea. Visual symptom of desiccation might be induced by the physiological cellular leakage which was significantly dose dependent on the plumbagin treatment regardless of light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号