首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
半干旱黄土丘陵区土壤水分生长季动态分析   总被引:3,自引:0,他引:3  
土壤水分是半干旱地区植被生长的重要水分来源,尤其是深层土壤水分对黄土高原人工植被恢复起着至关重要的作用,阐明深层土壤水分的季节动态对揭示人类活动影响下的植被与水分的相互作用关系、维持黄土高原植被恢复的可持续性有重要的科学意义。文中基于半干旱黄土丘陵区8种典型植被0-1.8m土壤水分动态监测和0-5m深度土壤水分季节比较,研究发现:1)植被类型对土壤水分及其剖面分布具有显著影响,且不同植被土壤水分季节变化均随深度增加而减弱;2)生长季中不同植被土壤水分都呈现出先减少再增加的变化,不同植被在不同生长阶段中降雨对土壤水分的补充有所不同;3)人工植被深层土壤水分没有显著的季节变化,表明人工植被深层土壤水分已难以受到当季降水补充,维持植被生长的功能可能在逐渐减弱,黄土高原现阶段植被恢复需要平衡维持植被生长与土壤水分可持续利用。  相似文献   

2.
基于熵技术的半干旱地区土壤水分差异性分析   总被引:1,自引:0,他引:1  
在安家坡流域6 a实测土壤水分数据的基础上,运用熵技术分析法,对农地、苜蓿、沙棘、荒坡4种不同土地利用下的土壤水分时空变异规律进行了分析。结果显示:土壤水分信息熵效用价值均体现自上而下不断减少的规律,浅层土壤水分信息熵效用价值最大;不同植被覆盖形式下土壤水分信息熵效用价值体现为:荒坡>沙棘>农地>苜蓿,并在60 cm和80 cm深处出现2个土壤水分信息熵增减的突变点;除沙棘灌丛外,7-8月土壤水分环境内部信息熵剧增,信息熵效用价值最低,土壤热容量急剧减少,从而影响到植物的正常生长。  相似文献   

3.
黄土高原农、林、草地水量平衡异同比较分析   总被引:8,自引:2,他引:8  
水量平衡是说明生态系统功能和特征的重要指标之一。在黄土高原,降水通常是土壤水分的唯一来源,农、林、草地等不同土地利用类型在对土壤水分的利用时段、深度、利用率、水分的收支比以及土壤干燥化特征等方面存在着较大差异。水量平衡计算时,土壤深度农地通常需取到2m,多年生草地取到5m,林地则需到5m以下。  相似文献   

4.
土壤水分下渗机制及其在半干旱区产流模拟中的应用   总被引:2,自引:0,他引:2  
尽管目前提出了许多流域水文模型,但多数模型更适用于湿润地区,将这些模型移植到半干旱半湿润地区,往往模拟结果并不理想。为了研究半干旱半湿润地区流域的产流机制,本文通过描述土壤水分的垂直运动过程,建立了湿润峰和饱和带上界面的移动方程,给出了土壤水的动态下渗过程,并据此将径流分为地表径流和壤中流,建立了流域产流模型。还以滦河水系的柳河流域作为研究对象,尝试性地进行了降雨径流的模拟。结果表明:模型的确定性系数达到77.2%以上,用于该流域的产流计算是可行的。  相似文献   

5.
半干旱半湿润的延安黄土高原地区是我国水土流失严重和植被建设的重点地区之一,90年代以来以造林为主的植被建设效果并不理想。以果园地为研究重点的延安不同地区和不同立地条件下存在土壤水分状况的空间差异和普遍的土壤干化现象,土壤水分的总体亏缺是延安地区土壤干层出现的客观依据。延安地区土壤水分状况表明,延安南部和中部地区可以进行合理的人工造林,而北部地区应以灌草植被恢复为主,而地形破碎的梁峁地在造林过程中必需运用水平阶等集水造林技术。  相似文献   

6.
以设在山西省阳高县的大型径流观测场为依托,以2005-2009年的野外实测数据为依据,研究了晋北黄土丘陵区人工植被与鱼鳞坑配合的蓄水保土及土壤水分效应,并与荒坡、苜蓿地进行了对比。结果表明:在观测的5年内,柠条、沙棘、油松的蓄水保土能力随种植年限延长无明显增加趋势,但鱼鳞坑的蓄水能力和保土能力分别高达84.7%~96.0%和95.2%~99.7%;荒坡和苜蓿(Medicago sativa)第一年和第二年的蓄水保土能力较差,第三年和第四年随植被盖度增加能力急剧增强,第四年蓄水能力分别达82.8%和91.2%,保土能力达97.0%和98.0%;土壤水份分析结果表明:不同小区4~9月土壤水分变异系数为7.0%~19.1%,油松区变异系数最大,其次为沙棘、苜蓿和柠条区,荒坡区和裸坡区变异较小,不同小区土壤水分亏缺率为23.98%~52.66%,亏缺顺序为柠条区>苜蓿区>油松区>沙棘区>荒坡区>裸坡区;林草植被有效地减少了水土流失,亦增加了土壤水分的变异及亏缺程度,应注意林草植被的合理选择和配置。  相似文献   

7.
将多源观测数据同化到生态模型中,可以更好地估计土壤水分,然而如何准确估计土壤水分遥感观测值的误差空间分布一直是数据同化中的难点。文中研究通过SPSI(Shortwave Infrared Perpendicular WaterStress Index)反演的土壤湿度作为观测值,分析SPSI反演土壤水分的原理,提出了基于地表植被覆盖程度,分级反演土壤水分的方法,给予观测值不同的误差方差估计。文中选择中国的宁夏作为研究区,将分级反演的观测值与生态过程模型模拟的土壤水分进行数据同化。结果表明:这种方法能够有效地避免SPSI指数本身对植被覆盖度低或植被生物量小的地区的土壤水分估计误差较大而导致的同化结果的偏差,提高区域土壤水分同化结果的精度。  相似文献   

8.
风沙区灌溉与非灌溉紫花苜蓿地土壤水分时空变化分析   总被引:2,自引:1,他引:1  
水分是干旱、半干旱地区植被建设中最重要的生态因子,而在西部干旱地区农业灌溉中,存在水资源有效利用率低、浪费严重的问题。对比分析了风沙区有、无灌溉情况下的土壤水分,结果表明:灌溉地和非灌溉地剖面内土壤水分变异系数随着土层深度的增加均呈现出降低的趋势。灌溉只对0-60 cm土壤水分有影响。4-10月灌溉和非灌溉紫花苜蓿地0-20 cm层土壤含水量呈多"W"型,20-60 cm层土壤含水量大致呈"V"型,60-100 cm层土壤含水量为平稳型,0-1m土层储水量的变化呈"V"型。土壤水分季节动态变化可划分为3个时期:土壤水分消耗期(5-6月);土壤水分积累期(7-9月);土壤水分稳定期(10月至次年4月)。灌溉制度还有待进一步研究。  相似文献   

9.
为了实现对藏北地区土壤水分和干旱情况的动态监测,基于藏北植被光谱、实测20 cm土壤水分以及FY-3A/VIRR数据,利用相关性筛选出对土壤水分敏感的植被光谱波段构建植被指数,并以此建立土壤水分估算模型,再结合FY-3A/VIRR L1B数据将建立的模型应用于藏北地区的土壤水分估算,通过比较决定系数和RMSE,确定精度较高的藏北地区土壤水分遥感估算模型。研究表明:NDVI(620,850)、EVI(450,620,850)、NDWI(850,1 330)和RVI(850,1 330)与实测20 cm土壤水分的决定系数分别为0.232、0.256、0.537和0.554,都能较好地表征土壤水分,分别利用每个指数建立的二次模型所获得的土壤水分估算结果与实测数据的RMSE均较小;以FY-3A/VIRR数据为基础,模型M(NDVI)和M(EVI)能够有效的估算藏北土壤水分,模拟值与实测值的相关系数r分别为0.50和0.51,RMSE分别为0.13和0.11,模型都可实现对藏北地区土壤水分的估算。研究可为掌握藏北地区土壤水分状况和制定农牧业发展决策提供依据。  相似文献   

10.
为了实现对藏北地区土壤水分和干旱情况的动态监测,基于藏北植被光谱、实测20 cm土壤水分以及FY-3A/VIRR数据,利用相关性筛选出对土壤水分敏感的植被光谱波段构建植被指数,并以此建立土壤水分估算模型,再结合FY-3A/VIRR L1B数据将建立的模型应用于藏北地区的土壤水分估算,通过比较决定系数和RMSE,确定精度较高的藏北地区土壤水分遥感估算模型。研究表明:NDVI(620,850)、EVI(450,620,850)、NDWI(850,1 330)和RVI(850,1 330)与实测20 cm土壤水分的决定系数分别为0.232、0.256、0.537和0.554,都能较好地表征土壤水分,分别利用每个指数建立的二次模型所获得的土壤水分估算结果与实测数据的RMSE均较小;以FY-3A/VIRR数据为基础,模型M_(NDVI)和M_(EVI)能够有效的估算藏北土壤水分,模拟值与实测值的相关系数r分别为0.50和0.51,RMSE分别为0.13和0.11,模型都可实现对藏北地区土壤水分的估算。研究可为掌握藏北地区土壤水分状况和制定农牧业发展决策提供依据。  相似文献   

11.
Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on temperature, moisture and sample size. In this study, a laboratory incubation experiment was carefully designed and conducted under controlled conditions to examine the effects of soil temperature and moisture on soil N mineralization using soil samples obtained from the Stipa krylovii grassland in Inner Mongolia, China. Five temperature(i.e. 9°C, 14°C, 22°C, 30°C and 40°C) and five moisture levels(i.e. 20%, 40%, 60%, 80% and 100% WHC, where WHC is the soil water holding capacity) were included in a full-factorial design. During the 71-day incubation period, microbial biomass carbon(MBC), ammonium nitrogen(NH4 +-N) and nitrate nitrogen(NO3--N) were measured approximately every 18 days; soil basal respiration for qCO2 index was measured once every 2 days(once a week near the end of the incubation period). The results showed that the mineral N production and net N mineralization rates were positively correlated with temperature; the strongest correlation was observed for temperatures between 30°C and 40°C. The relationships between moisture levels and both the mineral N production and net N mineralization rates were quadratic. The interaction between soil temperature and moisture was significant on N mineralization, i.e. increasing temperatures(moisture) enhanced the sensitivity of N mineralization to moisture(temperature). Our results also showed a positive correlation between the net nitrification rate and temperature, while the correlation between the NH4 +-N content and temperature was insignificant. The net nitrification rate was negatively correlated with high NH4 +-N contents at 80%–100% WHC, suggesting an active denitrification in moist conditions. Moreover, qCO2 index was positively correlated with temperature, especially at 80% WHC. With a low net nitrification rate and high soil basal respiration rate, it was likely that the denitrification concealed the microbial gross mineralization activity; therefore, active soil N mineralization occurred in 60%–80% WHC conditions.  相似文献   

12.
BI Xu  LI Bo  NAN Bo  FAN Yao  FU Qi  ZHANG Xinshi 《干旱区科学》2018,10(4):612-627
Soil organic carbon(SOC) and soil total nitrogen(STN) in arid regions are important components of global C and the N cycles, and their response to climate change will have important implications for both ecosystem processes and global climate feedbacks. Grassland ecosystems of Funyun County in the southern foot of the Altay Mountains are characterized by complex topography, suggesting large variability in the spatial distribution of SOC and STN. However, there has been little investigation of SOC and STN on grasslands in arid regions with a mountain-basin structure. Therefore, we investigated the characteristics of SOC and STN in different grassland types in a mountain-basin system at the southern foot of the Altai Mountains, north of the Junggar Basin in China, and explored their potential influencing factors and relationships with meteorological factors and soil properties. We found that the concentrations and storages of SOC and STN varied significantly with grassland type, and showed a decreasing trend along a decreasing elevation gradient in alpine meadow, mountain meadow, temperate typical steppe, temperate steppe desert, and temperate steppe desert. In addition, the SOC and STN concentrations decreased with depth, except in the temperate desert steppe. According to Pearson's correlation values and redundancy analysis, the mean annual precipitation, soil moisture content and soil available N concentration were significantly positively correlated with the SOC and STN concentrations. In contrast, the mean annual temperature, p H, and soil bulk density were significantly and negatively correlated with the SOC and STN concentrations. The mean annual precipitation and mean annual temperature were the primary factors related to the SOC and STN concentrations. The distributions of the SOC and STN concentrations were highly regulated by the elevation-induced differences in meteorological factors. Mean annual precipitation and mean annual temperature together explained 97.85% and 98.38% of the overall variations in the SOC and STN concentrations, respectively, at soil depth of 0–40 cm, with precipitation making the greatest contribution. Our results provide a basis for estimating and predicting SOC and STN concentrations in grasslands in arid regions with a mountain-basin structure.  相似文献   

13.
As a pioneer leguminous shrub species for vegetation re-establishment,Caragana microphylla is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region,North China.C.microphylla plantations modify organic carbon(SOC),nitrogen(N) and phosphorus dynamics,bulk density and water-holding capacity,and biological activities in soils,but little is known with regard to soil exchange properties.Variation in soil exchangeable base cations was examined under C.microphylla plantations with an age sequence of 0,5,10,and 22 years in the Horqin Sandy Land,and at the depth of 0-10,10-20,and 20-30 cm,respectively.C.microphylla has been planted on the non-vegetated sand dunes with similar physical-chemical soil properties.The results showed that exchangeable calcium(Ca),magnesium(Mg),and potassium(K),and cation exchange capacity(CEC) were significantly increased,and Ca saturation tended to decrease,while Mg and K saturations were increased with the plantation years.No difference was observed for exchangeable sodium(Na) neither with plantation years nor at soil depths.Of all the base cations and soil layers,exchangeable K at the depth of 0-10 cm accumulated most quickly,and it increased by 1.76,3.16,and 4.25 times,respectively after C.microphylla was planted for 5,10,and 22 years.Exchangeable Ca,Mg,and K,and CEC were significantly(P<0.001) and positively correlated with SOC,total N,pH,and electrical conductivity(EC).Soil pH and SOC are regarded as the main factors influencing the variation in exchangeable cations,and the preferential absorption of cations by plants and different leaching rates of base cations that modify cation saturations under C.microphylla plantation.It is concluded that as a nitrogen-fixation species,C.microphylla plantation is beneficial to increasing exchangeable base cations and CEC in soils,and therefore can improve soil fertility and create favorable microenvironments for plants and creatures in the semi-arid sandy land ecosystems.  相似文献   

14.
Interaction between soil pedogenesis, subsurface water dynamics, climate, vegetation and human ingenuity in a desert environment has been found to result in a unique ecohydrological system with an essentially three dimensional sedimentation structure in the bed of a recharge dam in Oman. A 3-D array of silt blocks sandwiched by dry sand-filled horizontal and vertical fractures was studied in pot experiments as a model of a natural prototype. Pots are filled with a homogenous sand-silt mixture(control) or artificially structured(smart design, SD) soil substrates. Rhodes grass and ivy(Ipomea, Convolvulaceae) were grown in the pots during the hottest season in Oman. Soil moisture content(SMC) was measured at different depths over a period of 20 days without irrigation. SD preserved the SMC of the root zone for both ivy and grass(SMC of around 25%–30% compared to 10% for control, 3 days after the last irrigation). Even after 20 days, SMC was around 18% in the SD and 7% in the control. This, similar to the case of a natural prototype, is attributed to the higher upward capillary movement of water in control pots and intensive evaporation. The capillary barrier of sand sheaths causes discontinuity in moisture migration from the micro-pores in the silt blocks to sand pores. The blocks serve as capillarity-locked water buffers, which are depleted at a slow rate by transpiration rather than evaporation from the soil surface. This creates a unique ecosystem with a dramatic difference in vegetation between SD-pots and control pots. Consequently, the Noy-Meir edaphic factor, conceptualizing the ecological impact of 1-D vertical heterogeneity of desert soils, should be generalized to incorporate 3-D soil heterogeneity patterns. This agro-engineering control of the soil substrate and soil moisture distribution and dynamics(SMDaD) can be widely used by desert farmers as a cheap technique, with significant savings of irrigation water.  相似文献   

15.
栗钙土农田土壤养分空间变异特性及采样方法研究   总被引:10,自引:0,他引:10  
以西宁市二十里铺村的农田为研究区域,采用5 m×5 m网格法,选取84个观测点取样,进行室内分析,测定土壤有机质、水解氮、速效磷、速效钾的含量,分析土壤养分的空间变异规律。研究表明,土壤有机质、水解氮、速效钾的空间变异性不太明显,速效磷的空间变异性明显;有机质、水解氮和速效钾的空间变异主要是由结构性因素引起的,速效磷的空间变异是由随机因素引起的。有机质的变异函数理论模型为指数模型,水解氮、速效磷、速效钾变异函数理论模型为球形模型。栗钙土农田采样的密度范围在1~11 m之间,将能够满足精确农业生产对这4种土壤养分的分析要求。  相似文献   

16.
A 9-month lab experiment was carried out with three different amendments (vine pruning wastes, PW; composted vine pruning wastes, cPW; and sewage sludge, SS) added at three different rates (90, 180, and 240 t ha?1, dry weight) in order to test whether the type or the quantity of the amendments applied to a semiarid, degraded soil determined the Corg accumulation in its particle-size fractions (coarse sand, 200–2,000 µm; fine sand, 63–200 µm; silt, 2–63 µm; and clay, 0.1–2 µm). All amendments, independently of their C/N ratios, resulted in similar Corg content and accumulation in coarse sand and silt-sized fractions after 9 months. In the clay-sized fraction, enrichment in Corg produced the incorporation of particles from this particle-size fraction into the silt-sized fraction. Likewise, increasing the application rates of the amendments led to larger Corg contents into the particle-size fractions of all amended soils except for the clay-sized fraction. The application of SS resulted in lower basal respiration-to-Corg ratios in the clay-sized fraction than the application of PW and cPW, suggesting a higher protection of the Corg in the SS treatment. These results indicate that organic amendments from woody plants with C/N ratios higher than 30, such as PW, favor Corg accumulation in the fine sand-sized fractions. Furthermore, our findings suggest that the application rate of such amendments, rather than the C/N ratios and amendment origin (from sludge or woody plants), is the key factor for promoting Corg accumulation in the silt-sized fractions of semiarid degraded soils.  相似文献   

17.
Soil acidification is a major global issue of sustainable development for ecosystems. The increasing soil acidity induced by excessive nitrogen(N) fertilization in farmlands has profoundly impacted the soil carbon dynamics. However, the way in which changes in soil p H regulating the soil carbon dynamics in a deep soil profile is still not well elucidated. In this study, through a 12-year field N fertilization experiment with three N fertilizer treatments(0, 120, and 240 kg N/(hm~2·a)) in a dryland agroecosystem of China, we explored the soil p H changes over a soil profile up to a depth of 200 cm and determined the responses of soil organic carbon(SOC) and soil inorganic carbon(SIC) to the changed soil p H. Using a generalized additive model, we identified the soil depth intervals with the most powerful statistical relationships between changes in soil p H and soil carbon dynamics. Hierarchical responses of SOC and SIC dynamics to soil acidification were found. The results indicate that the changes in soil p H explained the SOC dynamics well by using a non-linear relationship at the soil depth of 0–80 cm(P=0.006), whereas the changes in soil p H were significantly linearly correlated with SIC dynamics at the 100–180 cm soil depth(P=0.015). After a long-term N fertilization in the experimental field, the soil p H value decreased in all three N fertilizer treatments. Furthermore, the declines in soil p H in the deep soil layer(100–200 cm) were significantly greater(P=0.035) than those in the upper soil layer(0–80 cm). These results indicate that soil acidification in the upper soil layer can transfer excess protons to the deep soil layer, and subsequently, the structural heterogeneous responses of SOC and SIC to soil acidification were identified because of different buffer capacities for the SOC and SIC. To better estimate the effects of soil acidification on soil carbon dynamics, we suggest that future investigations for soil acidification should be extended to a deeper soil depth, e.g., 200 cm.  相似文献   

18.
Regions of rainfall gradients at desert margins are areas where eco-geomorphic changes and degradation in response to global warming and grazing are most intensive. Assessment and understanding of the consequences of global warming and human disturbance of these vulnerable ecosystems requires detailed information regarding the spatial variation of soil and vegetation properties and their dependence on rainfall. Such detailed information is still of limited availability. This study aimed to rectify this shortcoming by analyzing data on the chemical and spectral properties of soil samples collected along the Judean Desert climatic gradient. Six clusters of typical chemical soil properties were identified. Dependencies of clusters’ chemical properties (total iron, organic and inorganic carbon) on annual rainfall amounts were found to be significant. Two spectral Landsat TM band ratios introduced to assess soil conditions showed significant correlations with these chemical properties. These ratios were found to be higher correlated than individual chemical properties with average rainfall suggesting that spectral data may represent a broader range of chemical, physical, and biological site properties. Examining the three-way relationships between soil chemical properties, their spectral reflectance characteristics and rainfall, facilitates a better understanding of the generalized trends along the climatic gradient and more specifically of modes of transition from semi-arid to arid zones.  相似文献   

19.
Soil salinity and sodicity are land degradation processes that strongly alter soil quality and consequently plant productivity. The reclamation of soils affected by salinity and/or sodicity is an important goal to maintain the sustainability of production. The objectives of this review were (1) to investigate the effectiveness of different organic amendments to reclaim saline/sodic soils and improve environmental quality and productivity of agro-ecosystems and (2) to provide useful information on the most appropriate waste management for minimizing any potential risks. To achieve these aims, recently published literature, related to field and laboratory studies, considering the effects of a wide range of organic amendments on main soil properties, was collected. Results of these studies underline that input of exogenous organic matter (manure, plant residues, by-product of farming or municipal activities, etc.) can be a feasible way to reclaim soils with serious problems of salinity and sodicity. Optimal rates (not greater than 50 t ha?1) of different organic amendments can improve physical (soil structure, permeability, water holding capacity, etc.) and chemical (pH, cation exchangeable capacity, etc.) soil properties, favoring plant growth and microbial activity, without any risks for the environment (subsoil and groundwater contamination). Of course, it is very important to characterize carefully the organic wastes before their use in agriculture and optimize their management, for avoiding further land degradation.  相似文献   

20.
The genus Phytophthora contains species that are major pathogens worldwide, affecting a multitude of plant species across agriculture, horticulture, forestry, and natural ecosystems. Here, we concentrate on those species that are dispersed through soil and water, attacking the roots of the plants, causing them to rot and die. The intention of this study was to compare the soil baiting protocol developed by the Centre for Phytophthora Science and Management (CPSM) with two other baiting methods used in Australia. The aim was to demonstrate the effectiveness of each protocol for soil baiting Phytophthora species in different substrates. Three experiments were conducted: the first to test the sensitivity of each method to detect Phytophthora cinnamomi, the second to test the effect of substrate type (sand or loam), and the third to test the detection of species (P. cinnamomi, P. multivora, or P. pseudocryptogea). The specificity of different plant species baits was compared within and between the methods. Substrate type influenced isolation in all methods; however, the CPSM method was superior regardless of substrate, albeit slower than one of the other methods for one substrate. Comparing bait species between the three methods, Quercus ilex was the most attractive bait for P. cinnamomi, particularly in the CPSM method. The choice of protocol affected the isolation associated with each bait type. Overall, the multiple bait system used by CPSM was shown to provide the most sensitive and reliable detection of Phytophthora species from soil samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号