首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
为明确引起国家种质广州甘薯资源圃中病毒病的病毒种类及优势种,为甘薯种质安全保存提供支持,2017年从甘薯资源圃中未脱毒更新的盆栽苗和大田苗中采集155份具有不同病毒病症状的甘薯资源样品,利用PCR和RT-PCR检测技术对这些样品进行了17种病毒的分子检测。155份样品均有病毒检出,包括甘薯羽状斑驳病毒Sweet potato feathery mottle virus(SPFMV)、甘薯褪绿矮化病毒Sweet potato chlorotic stunt virus(SPCSV)、黄瓜花叶病毒Cucumber mosaic virus(CMV)、甘薯褪绿斑病毒Sweet potato chlorotic fleck virus(SPCFV)、甘薯类花椰菜花叶病毒Sweet potato caulimo-like virus(SPCV)、甘薯潜隐病毒Sweet potato latent virus(SPLV)、甘薯脉花叶病毒Sweet potato vein mosaic virus (SPVMV)、甘薯病毒2 Sweet potato virus 2(SPV2)和甘薯曲叶病毒Swee...  相似文献   

2.
中国甘薯病毒种类的血清学和分子检测   总被引:7,自引:1,他引:6  
 2009~2010年,从我国18个省(市)采集了176份表现病毒病症状的甘薯样品。利用血清学、PCR和核苷酸序列测定的方法,对上述样品中的病毒种类进行了鉴定。血清学检测结果表明,供试样品中甘薯羽状斑驳病毒(SPFMV)的阳性率最高,达56.3%,其次为甘薯G病毒(SPVG)和甘薯类花椰菜花叶病毒(SPCaLV),阳性率分别为34.1%和33.5%。PCR和核苷酸序列测定结果表明,我国甘薯上至少存在SPFMV、SPVG、甘薯潜隐病毒(SPLV)、甘薯褪绿斑病毒(SPCFV)、甘薯褪绿矮化病毒(SPCSV)、黄瓜花叶病毒(CMV)、甘薯脉花叶病毒(SPVMV)和甘薯卷叶病毒(SPLCV)8种病毒。此外,供试样品中没有检测出甘薯轻斑驳病毒(SPMMV),是否存在甘薯轻斑点病毒(SPMSV)、SPCaLV和C 6病毒尚不能确定。  相似文献   

3.
在吉林省7个主要甘薯种植区共采集85份甘薯叶片样品,利用小RNA深度测序技术对混合样品进行检测,经RT-PCR和测序验证,鉴定出样品中存在10种病毒,包括6种RNA病毒和4种DNA病毒。分别是马铃薯Y病毒科马铃薯Y病毒属的甘薯羽状斑驳病毒Sweet potato feathery mottle virus (SPFMV)、甘薯潜隐病毒Sweet potato latent virus (SPLV)、甘薯G病毒Sweet potato virus G (SPVG)、甘薯C病毒Sweet potato virus C (SPVC)、甘薯2号病毒Sweet potato virus 2 (SPV2);长线形病毒科毛形病毒属的甘薯褪绿矮化病毒Sweet potato chlorotic stunt virus (SPCSV);双生病毒科菜豆金色花叶病毒属的甘薯曲叶病毒Sweet potato leaf curl virus(SPLCV);玉米线条病毒属的甘薯无症状1号病毒Sweet potato symptomless virus 1 (SPSMV1);花椰菜花叶病毒科杆状DNA病毒属的甘薯杆状DNA病毒B Sweet potato badnavirus B (SPBV-B)和甘薯隐症病毒Sweet potato pakakuy virus (SPPV)。  相似文献   

4.
甘薯脱毒技术及增产效果研究   总被引:7,自引:0,他引:7       下载免费PDF全文
作者于1988~1995年研究了甘薯病毒及甘薯脱毒技术,明确了侵染山东甘薯的主要病毒种类是甘薯羽状斑驳病毒和甘薯潜隐病毒,在国内首次分离侵染甘薯的烟草花叶病毒,探明了其生物学特性。筛选出适合山东甘薯茎尖培养基的最佳激素配比,浓度,pH值。探索了脱毒薯的增产机理和增产效果,提出了组织培养,茎尖苗检测,脱毒薯速率与推广应用的配套技术规程,培养出徐薯18等12个品种的脱毒苗,平均增产42.9%出干率提高  相似文献   

5.
甘薯曲叶病是广东甘薯的一种新病害,病株表现为叶片皱缩,向上卷曲,叶脉肿大等症状.PCR检测结果显示,所有病样中均存在菜豆金色花叶病毒属病毒.通过滚环扩增方法获得了3个病毒分离物的全基因组.扩增产物克隆及序列分析结果表明,这3个病毒分离物基因组均仅含有DNA-A,具有菜豆金色花叶病毒属单组分病毒基因组典型特征;其大小分别为2 829 nt (JX286653、JX286654)和2 828 nt(JX286655).三者核苷酸序列同源率为96.0%~98.4%;与已报道的甘薯曲叶病毒19个分离物的同源率均大于89.0%.因此,引起广东甘薯曲叶病的病原被鉴定为甘薯曲叶病毒.本研究是首次在广东发现甘薯曲叶病毒.  相似文献   

6.
甘薯病毒病害(Sweet potato virus disease,SPVD)是由毛形病毒属(Crinivirus)的甘薯褪绿矮化病毒(Sweet potato chlorotic stunt virus,SPCSV)和马铃薯Y病毒属(Potyvirus)的甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFMV)协生共侵染甘薯引起的病毒病害[1].  相似文献   

7.
2012年秋季, 在山东泰安番茄主要种植区中采集到叶片褪绿, 叶脉颜色变深的疑似番茄褪绿病毒病和番茄侵染性褪绿病毒病的番茄样品。利用番茄褪绿病毒(Tomato chlorosis virus, ToCV)的特异引物 ToCV1/ToCV2和番茄侵染性褪绿病毒(Tomato infectious chlorosis virus, TICV)的特异引物TICV1/TICV2分别对样品进行扩增, 最后仅得到利用引物 ToCV1/ToCV2 扩增的101 bp 的核苷酸序列, 对该核苷酸序列克隆并测序。序列比对表明, 山东泰安地区分离物与已登录的番茄褪绿病毒(ToCV)分离物相似性都在99%以上。随后, 对山东泰安种植区ToCV番茄分离物进行外壳蛋白(CP)及热激蛋白(HSP70)序列的扩增、克隆和测序(GenBank登录号KC812620/KC812625), 经NCBI BLAST比对发现, 目的序列与番茄褪绿病毒日本番茄分离物ToCV Japan/Tochigi (GenBank登录号AB513442/AB513443)相似性最高为99%, 同属于毛型病毒属的番茄褪绿病毒, 这是首次明确山东地区番茄受到番茄褪绿病毒的侵染。  相似文献   

8.
正病毒病是引起甘薯品质降低和减产的重要原因之一,现已报道30多种能侵染甘薯的病毒~([1,2])。山东省是甘薯种植大省,病毒种类近10种~([3,4])。甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFM V)、甘薯潜隐病毒(Sweet potato latent virus,SPLV)是为害甘薯的主要病毒,在全国甘薯种植区广泛分布~([5,6])。甘薯病毒2(Sweet potato virus 2,SPV2)为Potyvirus的一个暂定种,多与同属的其他病毒混合侵染~([7])。多重PCR技术由Chamberian等~([8])1988年首次提出,可实现多基因的同时扩增,具有节省时间、提高效率的优点,已初  相似文献   

9.
制备免疫吸附电镜检测甘薯羽状斑驳病毒样品   总被引:1,自引:0,他引:1  
孟清  解峰 《植物病理学报》1995,25(3):270-270
 甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFMV)可经蚜虫、摩擦、嫁接方式传播,是Y病毒组的一个成员。受此病毒感染的甘薯叶片上形成羽状褪绿斑,脉间褪绿斑点以及紫色环斑,有的品种出现紫色条纹。在甘薯块根上,有的呈严重纵向褐色龟裂,有的呈横向螺纹状木质化,有的块根内部形成木栓化,是危害甘薯最严重的病毒病害,可使甘薯严重退化及减产。无论是甘薯的抗病毒育种、病毒病害的防治,还是脱毒、无病毒甘薯种薯生产都离不开病毒的检测。灵敏的免疫吸附电镜(ISEM)检测方法被应用于各种病毒的检测中。  相似文献   

10.
11.
An improved multiplex RT-PCR assay combined with magnetic nanobeads (MNB-RT-PCR) was developed for simultaneous detection of four sweet potato viruses, Sweet potato virus G (SPVG), Sweet potato feathery mottle virus (SPFMV), Sweet potato virus C (SPVC) and Sweet potato chlorotic fleck virus (SPCFV). Four primer pairs specific for each virus were designed and the corresponding PCR products were 169, 357, 516 and 900 bp in length for SPVG, SPFMV, SPVC and SPCFV, respectively. The specificity of the method was tested using different combinations of virus templates, and the identities of the amplification products were confirmed by sequencing. The limits of detection for all four viruses by single and multiplex MNB-RT-PCR assays were comparable. The assay was further evaluated using laboratory and field samples compared with a conventional CTAB-RT-PCR assay, and the comparative results showed that the MNB-RT-PCR assay was more rapid and sensitive. These results suggest that the multiplex MNB-RT-PCR assay is an effective and preferable method for virus detection in sweet potato.  相似文献   

12.
3种甘薯病毒多重RT-PCR检测方法的建立   总被引:1,自引:0,他引:1  
  相似文献   

13.
Sweet potato has been grown in Hungary for the last three decades, and its popularity is increasing among farmers and consumers. Its production is hampered by pests and diseases due to poor agricultural practices, such as the use of virus-infected propagation materials. We tested the presence of 15 viruses by PCR and quantitative PCR in 110 sweet potato plants collected from seven regions in Hungary. Seven viruses in single or multiple infections associated with a wide range of foliar symptoms were detected: sweet potato chlorotic stunt virus (SPCSV), sweet potato virus G (SPVG), sweet potato virus C (SPVC), sweet potato feathery mottle virus (SPFMV), sweet potato virus 2 (SPV2), sweet potato leaf curl virus (SPLCV), and sweet potato pakakuy virus (SPPV). This is the first report on the occurrence of the begomovirus SPLCV in sweet potatoes in Hungary. The infectivity and identity of these viruses were confirmed through bioassays (grafting to Ipomoea setosa) and sequencing of the PCR-amplified sections of their genomes, respectively. Due to the necessity for virus-free sweet potato propagation material in Hungary, virus elimination was carried out successfully in five out of six genotypes important for Hungarian farmers using heat treatment and meristem tip culture. All five viruses detected in the plants before heat treatment were removed except SPPV, which persists after heat treatment. Production and strict regulation of virus-free sweet potato propagation materials are recommended to avoid exacerbating the virus situation and protect Hungarian farmers from further losses.  相似文献   

14.
15.
Sweet potato leaf curl virus (SPLCV) infects sweet potato and is a member of the family Geminiviridae (genus Begomovirus). SPLCV transmission occurs from plant to plant mostly via vegetative propagation as well as by the insect vector Bemisia tabaci. When sweet potato seeds were planted and cultivated in a whitefly‐free greenhouse, some sweet potato plants started to show SPLCV‐specific symptoms. SPLCV was detected by PCR from all leaves and floral tissues that showed leaf curl disease symptoms. More than 70% of the seeds harvested from SPLCV‐infected sweet potato plants tested positive for SPLCV. SPLCV was also identified from dissected endosperm and embryos. The transmission level of SPLCV from seeds to seedlings was up to 15%. Southern blot hybridization showed SPLCV‐specific single‐ and double‐stranded DNAs in seedlings germinated from SPLCV‐infected seeds. Taken altogether, the results show that SPLCV in plants of the tested sweet potato cultivars can be transmitted via seeds and SPLCV DNA can replicate in developing seedlings. This is the first seed transmission report of SPLCV in sweet potato plants and also, to the authors' knowledge, the first report of seed transmission for any geminivirus.  相似文献   

16.
Sweet potato virus disease (SPVD) is the name used to describe a range of severe symptoms in different cultivars of sweet potato, comprising overall plant stunting combined with leaf narrowing and distortion, and chlorosis, mosaic or vein-clearing. Affected plants of various cultivars were collected from several regions of Uganda. All samples contained the aphid-borne sweet potato feathery mottle potyvirus (SPFMV) and almost all contained the whitefly-borne sweet potato chlorotic stunt closterovirus (SPCSV). SPCSV was detected by a mix of monoclonal antibodies (MAb) previously shown to react only to a Kenyan isolate of SPCSV, but not by a mixture of MAb that detected SPCSV isolates from Nigeria and other countries. Sweet potato chlorotic fleck virus (SPCFV) and sweet potato mild mottle ipomovirus (SPMMV) were seldom detected in SPVD-affected plants, while sweet potato latent virus (SPLV) was never detected. Isolates of SPFMV and SPCSV obtained by insect transmissions together induced typical symptoms of SPVD when graft-inoculated to virus-free sweet potato. SPCSV alone caused stunting and either purpling or yellowing of middle and lower leaves when graft-inoculated to virus-free plants of two cultivars. Similarly diseased naturally inoculated field plants were shown consistently to contain SPCSV. Both this disease and SPVD spread rapidly in a sweet potato crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号