首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Production, survival and infectivity of oospores of Phytophthora infestans   总被引:1,自引:0,他引:1  
The formation of oospores of Phytophthora infestans was studied in tomato and potato crops and volunteer plants under field conditions, and in laboratory tests with leaf discs of potato cultivars differing in their level of race-nonspecific resistance. Oospores were readily detected in blight-affected tomato leaflets and fruits, and in leaflets of field crops and volunteer potato plants. Oospores extracted from blighted potato leaflets yielded 13 oospore-derived progeny. Oospores were also produced following inoculation of leaf discs of eight potato cultivars expressing different levels of race-nonspecific resistance with a mixture of sporangia of A1 and A2 isolates. The highest numbers of oospores were produced in cvs Bintje (susceptible) and Pimpernel (resistant), and the lowest in Nicola (intermediate resistance). The relationship between lesions per leaflet and oospore incidence, affected by varying A1 : A2 ratios, was explored using a simple mathematical model, and validated by comparing actual oospore production in leaflets with multiple lesions of the race-nonspecific-resistant potato clone Lan 22-21 with the predictions generated by the model. Survival of oospores was investigated after their incorporation in either a sandy or a light clay soil in buried clay pots exposed to the local weather conditions. Over 6 years these soils were regularly assessed for their infection potential using floating leaflets in a spore-baiting bioassay. Sandy and clay soils contaminated with oospores remained infectious for 48 and 34 months, respectively, when flooded. Infections of floating potato leaflets occurred within 84–92 h and ceased after 11 days. Soil samples remained infective if dried and re-flooded on two, but not more, occasions.  相似文献   

2.
Levin A  Baider A  Rubin E  Gisi U  Cohen Y 《Phytopathology》2001,91(6):579-585
ABSTRACT The ability of Phytophthora infestans, the causal agent of potato and tomato late blight, to produce oospores in potato tuber tissue was studied in the field and under laboratory conditions. In 1998 and 2000 field experiments, the canopy of potato cvs. Alpha and Mondial, respectively, were coinoculated with A1 + A2 sporangia of the fungus, and the infected tubers collected at harvest were examined for the presence of oospores. In 1998, only 2 of 90 infected tubers had oospores, whereas none of the 90 tubers examined in 2000 had any oospores. In the latter experiment, infected tubers kept in storage up to 12 weeks after harvest had no oospores. Artificial co-inoculations of whole tubers with A1 + A2 sporangia resulted only rarely in the formation of oospores inside the tubers. Co-inoculations of potato tuber discs taken from dormant tubers 0 to 16 weeks after harvest failed to support any oospore production, whereas discs taken from sprouting tubers of >/=18 weeks after harvest allowed oospores to form. Tuber discs showed enhanced oospore formation when treated before inoculation with either sugars, amino acids, casein hydrolysate, beta-sitosterol, or chloroethylphosphonic acid. In contrast, reducing airflow into the petri dishes where potato tuber discs were incubated reduced the number of oospores produced. The number of oospores produced in tuber tissue was lower compared with that in leaf tissue regardless of the origin of isolates used. The data show that the ability of Phytophthora infestans to produce oospores in potato tuber tissue is very limited and increases with tuber aging.  相似文献   

3.
ABSTRACT Fungal, host, and environmental factors affecting sexual reproduction of Phytophthora infestans in planta were studied. Intact and detached leaves were coinoculated with sporangia of various combinations of A(1) and A(2) mating-type isolates; leaves were incubated under various conditions, and oospore production was estimated microscopically within whole, clarified leaflets. Some A(1) + A(2) isolate combinations were more reproductive than others, whereas some potato genotypes better supported oospore formation than others. Tomato usually supported more oospore formation than potato. To induce oospore formation, A(1) and A(2) sporangia were usually mixed at a 1:1 ratio. Ratios of 1:19 to 19:1, however, also allowed abundant production of oospores. Optimal temperatures for sexual sporulation ranged from 8 to 15 degrees C, but oospores also were produced at 23 degrees C. Oogonia developed 5 to 6 days after sporangial coinoculation, and oospores developed after 8 to 10 days. Light had little effect on oospore formation in both tomato and potato leaves provided that initial lesions were established under photoperiodic conditions. Although A1 and A(2) sporangia usually were mixed before inoculation on leaves to obtain oospores, we found that discrete A(1) and A(2) lesions produced on opposite sides of the midvein of tomato leaves also induced oospore formation in the midvein and adjacent tissues. Oospores also formed when the two halves of the leaves were cut and separated at 3 days after sporangial coinoculation, which corresponded with the appearance of late blight lesions. The continuous supply of moisture to infected leaves was essential to oospore production. No oospores or oogonia formed in severely diseased plants kept at 50 to 80% relative humidity. Such plants did allow some oospore formation when kept continuously wet for 2 weeks in plastic boxes or tents. Detached leaves floated on water supported the highest sexual sporulation. Under optimal conditions of wetness and temperature, as many as 100 oospores per mm(2) of tissue were observed.  相似文献   

4.
Phytophthora infestans is able to produce oospores in leaves of potato and tomato plants after inoculation with a mixture of Al and A2 mating-type isolates. Various conditions for oospore formation were analysed. Under controlled conditions, oospores were produced in potato leaves at temperatures ranging from 5 to 25° C. In leaves of potato cultivar Bintje incubated at 15°C, oogonia and antheridia were observed 6 days after inoculation and thick-walled oospores appeared 3-4 days later. In field experiments oospores were found in leaves and stems of potato cultivars Bintje, Irene and Pimpernel and in leaves, stems and fruits of tomato cultivar Moneymaker within 2 weeks after inoculation. A bioassay was developed to test the survival of oospores in soil under various conditions. To determine whether late-blight infections derived from infectious soil were caused by oospwres, DNA fingerprinting was performed. DNA fingerprint probe RG-57 was suitable for distinguishing asexual progeny from recombinant progeny arising from soil-borne oospores. We demonstrated survival of viable, infectious oospores of P. infestans in soil during the winter of 1992–93. Oospores were not infectious from soil exposed to temperatures of 40°C or higher but in the range 35°C to as low as – 80°C for 48 h, oospores survived.  相似文献   

5.
A specific and sensitive PCR assay for the detection of Phytophthora infestans , the cause of late blight of potato, in soil and plant tissues was developed. A P. infestans -specific primer pair (INF FW2 and INF REV) was designed by comparing the aligned sequences of rDNA internal transcribed spacer regions of most of the known Phytophthora species. PCR amplification of P. infestans DNA with primers INF FW2 and INF REV generated a 613 bp product, and species specificity was demonstrated against DNA from nine other Phytophthora species and seven potato-blemish pathogens. In a single-round PCR assay, 0·5 pg pure P. infestans DNA was detectable. Sensitivity was increased to 5 fg DNA in a nested PCR assay using Peronsporales-specific-primers in the first round. As few as two sporangia or four zoospores of P. infestans could be detected using the nested assay. Procedures are described for detection of P. infestans in leaves, stem and seed potato tubers before expression of symptoms. A soil assay in which 10 oospores per 0·5 g soil were detectable was developed and validated using samples of field soil. The PCR assay was used to examine the long-term survival of sexual (oospores) and asexual (sporangia and mycelium) inoculum of P. infestans in leaf material buried in a replicated experiment under natural field conditions. Oospores were consistently detected using the PCR assay up to 24 months (total length of the study) after burial in soil, whereas the sporangial inoculum was detected for only 12 months after burial. Sporangial inoculum was shown to be nonviable using a baiting assay, whereas leaf material containing oospores remained viable up to 24 months after burial.  相似文献   

6.
Groves CT  Ristaino JB 《Phytopathology》2000,90(11):1201-1208
ABSTRACT A wide range of commercially formulated fungicides cause in vitro effects on mating behavior in specific isolates of Phytophthora infestans, the causal agent of late blight of potato and tomato. Four isolates of P. infestans representing each of the four common US genotypes, US-1, US-6, US-7, and US-8 and varying in their sensitivity to metalaxyl, were exposed to a variety of fungicides used to control late blight in petri dish assays at concentrations ranging from 1 to 100 mug a.i./ml. Exposure of each of these normally heterothallic single mating type isolates of P. infestans to 9 of the 11 commercial fungicide formulations tested resulted in the formation of oospores after 2 to 4 weeks. The highest numbers of oospores were formed on media amended with Ridomil 2E (metalaxyl) and Ridomil Gold EC (mefenoxam) at 0.1 to 10 mug a.i./ml, averaging as many as 471 and 450 oospores per petri dish, respectively. Several other fungicides including Maneb, Manzate (Mancozeb), Curzate (cymoxanil + mancozeb), and Acrobat MZ (dimethomorph + mancozeb) also induced oospore formation, producing from 0 to 200 oospores per plate at fungicide concentrations from 0.1 to 10 mug a.i./ml. The metalaxyl resistant isolates formed oospores in response to the fungicides more often than the metalaxyl sensitive isolates. No oospores were formed on media amended with Bravo (chlorothalonil) or Tattoo C (chlorothalonil + propamocarb HCl) and these compounds completely suppressed growth of the isolates at 0.1 and 1 mug a.i./ml. Three metalaxyl resistant A2 isolates mated with both A1 and A2 isolates after exposure to the fungicides Ridomil 2E and Ridomil Gold EC. Alterations in mating type expression were also observed in a metalaxyl sensitive A1 isolate after exposure to Benlate (benomyl). Copious amounts of chemicals are applied annually to potato and tomato production areas to control late blight. Our results indicate that a wide range of chemically diverse fungicides can induce normally heterothallic metalaxyl resistant isolates of P. infestans to form oospores in vitro after short exposures to the fungicides.  相似文献   

7.
Monoconidial cultures derived from seven P. viciae f.sp. pisi isolates, obtained from different countries, were able lo produce oospores, Apparently, these isolates were homothallic. Oospore production of one isolate was studied at 5, 10, 15 and 20°C in systematically colonized shoots, and in local lesions on leaflets, stem parts and pods of the pisum sativum cv. Kelvedon Wonder. The number of oospores produced per gram systemically colonized tissue increased with temperature. In lesions of leaflets and of stem parts, including tendrils, petioles and main stem, most oospores were produced at 20°C. At 10°C, a few oospores were found in stem parts but none in leaflet lesions. At 5° C, no oospores were formed at all. In pods, moe oospores were produced at 15 and 20°C than at 10°C, but the numbers of oospores was smaller than in the other plant parts. Oospores formed at lower temperatures were larger than those formed at higher temperatures. At 20°C, similar oospore densities were found in leaflet lesions of three cultivars widely differing in resistance to downy mildew.  相似文献   

8.
A sensitive real‐time polymerase chain reaction (PCR) assay was developed for the quantification of Phytophthora infestans, the cause of foliar and tuber late blight in potato. A primer pair (PinfTQF/PinfTQR) and a fluorogenic probe (PinfTQPR) were designed to perform a quantitative assay for the detection of P. infestans in leaves, tubers and soils. The assay was shown to be specific to P. infestans and the very closely taxonomically related non‐potato pathogen species P. mirabilis, P. phaseoli and P. ipomoea, but did not detect the potato pathogens P. erythroseptica and P. nicotianae. The assay was able to reliably detect P. infestans DNA at 100 fg per reaction and was effective in quantifying P. infestans in infected leaf tissue from 24 h after inoculation and also in infected symptomless tubers and diseased tubers. Attempts to detect oospores of P. infestans in naturally and artificially infested soil samples are described and compared with baiting tests and previous literature. It was not possible to detect oospores in soil samples due to problems with DNA extraction from the oospores themselves. However, the assay was shown to detect even very low levels of asexual inoculum (sporangia and mycelium) in soil. This work assembles all the necessary features of a quantitative P. infestans assay, which have previously been somewhat disparate: the sensitivity, specificity and quantitation are fully validated, the assay is shown to work in common applications in leaf and tuber tissue and the problems with P. infestans oospore detection are explored and tested experimentally.  相似文献   

9.
Lesions of Phytophthora infestans were found on woody nightshade ( Solanum dulcamara ), black nightshade ( S. nigrum ) and S. sisymbriifolium during a nationwide late blight survey in the Netherlands in 1999 and 2000. Pathogenicity and spore production of P. infestans isolates collected from potato ( S. tuberosum ), S. nigrum , S. dulcamara and S. sisymbriifolium were determined on several host plant species, and oospore formation in naturally infected and inoculated foliage of hosts was quantified. The present population of P. infestans in the Netherlands is pathogenic on S. nigrum , S. dulcamara and S. sisymbriifolium . Oospores were produced in leaves of S. nigrum , S. dulcamara and S. sisymbriifolium following infection with A1 and A2 isolates. Therefore these plant species should be regarded as alternative hosts for the late blight pathogen. In the case of S. nigrum and S. dulcamara infection was a relatively rare event, suggesting that diseased plants do not significantly contribute to the overall late blight disease pressure present in potato-production areas. Oospore production in ageing S. nigrum and S. dulcamara plants in autumn, however, may generate a considerable source of (auto) infections in following years. Considerable numbers of sporangia and oospores were produced on S. sisymbriifolium following infection with P. infestans . Additional field infection data are needed to evaluate the epidemiological consequences of a commercial introduction of S. sisymbriifolium as a potato cyst nematode trap crop.  相似文献   

10.
ABSTRACT Phytophthora infestans is generally regarded as heterothallic-requiring physical proximity of two individuals of different mating type (A1 and A2) for oosporogenesis. Recent reports of limited selfing in young cultures of this oomycete stimulated us to investigate factors contributing to the phenomenon. The ability to produce oospores rapidly (within 2 weeks) in pure, single individual cultures (self-fertility) was tested in 116 individual isolates. The 116 isolates were from geographically diverse locations (16 countries) and were genetically diverse. Mating type and growth medium were the most prominent factors in determining if an isolate would be self-fertile. The majority of A2 isolates (45 of 47 tested) produced oospores when grown on a 50:50 mixture of V8 and rye B medium. In contrast, the majority of A1 isolates (65 of 69 tested) did not produce oospores on this medium. None of the 116 isolates produced oospores when grown on rye B medium (with no V8 juice). Further tests on representative A1 and A2 isolates revealed that oatmeal agar, tomato juice agar, and V8-juice agar all induced the A2 mating type isolate to produce oospores but did not induce the A1 mating type isolate to produce oospores. Calcium carbonate and pH did not alter the self-fertile oospore production in either A1 or A2 mating type isolates. For in vivo tests, the application of fungicide to potato or tomato leaf tissue either before or after inoculation did not stimulate any individual isolate (one A2 and one A1 isolate) to produce oospores in infected tissue. However, in all of the controls for all experiments (in vivo and in vitro), many oospores were produced rapidly if both strains grew in physical proximity.  相似文献   

11.
Oospores of Phytophthora infestans were produced in potato leaf discs floating on metalaxyl solution (100 μg mL−1 a.i.) and inoculated with all combinations of two metalaxyl-sensitive and two -resistant parental isolates. Numbers of oospores produced varied between different matings, depending on parents, in the absence of the fungicide and when metalaxyl was added 0, 7, 14 and 21 days after inoculation. Oospores were not produced when metalaxyl was added at the time of inoculation (0 days) when either one or both parents were sensitive to metalaxyl. In two of three such matings further oospore formation was arrested when metalaxyl was added either 7 or 14 days after inoculation. Oospores extracted from leaf discs 14, 21 and 28 days after inoculation were assessed for germination on water agar after 21 days. Germination of oospores from water control treatments varied between 6 and 30% depending on the cross. Germination was significantly reduced in oospores of metalaxyl-sensitive parents extracted 28 days after inoculation of leaf discs treated with metalaxyl 0, 7 and 14 days after inoculation compared with the 21-day treatment. Minimal differences in germination were observed for oospores from the mating of resistant parents irrespective of metalaxyl treatment, although germination was generally low, not exceeding 8.5%.  相似文献   

12.
The effect of wind on the dispersal of oospores of Peronosclerospora sorghi , cause of sorghum downy mildew (SDM) is described. The oospores are produced within the leaves of aging, systemically infected sorghum plants. These leaves typically undergo shredding, releasing oospores into the air. Oospores are produced in large numbers (6.1 × 103 cm−2 of systemically infected leaf) and an estimate of the settling velocity of single oospores (0.0437 m s−1) of P. sorghi indicated their suitability for wind dispersal. In wind tunnel studies wind speeds as low as 2 m s−1 dispersed up to 665 oospores per m3 air from a group of leaves previously exposed to wind and displaying symptoms of leaf shredding. The number of oospores dispersed increased exponentially with increasing wind speed. At 6 m s−1, up to 12 890 oospores per m3 air were dispersed. Gusts increased oospore dispersal. A constant wind speed of 3 m s−1 dispersed a mean of 416 oospores per m3. When gusts were applied the mean was 15 592 oospores per m3. In field experiments in Zimbabwe, oospores were sampled downwind from infected plants in the field and at a height of 3.8 m above ground level immediately downwind of an infected crop. These data indicate that wind could play a major role in the dispersal of oospores from infected plants in areas where SDM infects sorghum, perhaps dispersing oospores over long distances.  相似文献   

13.
To determine the potential of sexual reproduction among host-adapted populations of Phytophthora infestans sensu lato in Ecuador, 13 A1 isolates belonging to clonal lineages US-1, EC-1 and EC-3, and 11 A2 isolates belonging to the clonal lineage EC-2, were paired on agar plates to induce crossing. In the first experiment, six A1 isolates (three US-1, two EC-1 and one EC-3) were each crossed with three A2 isolates (total = 18 crosses). Matings involving isolates of the EC-1 lineage produced more oospores of healthy appearance than did matings with isolates of US-1 or EC-3. In the second experiment, the oospores of 35 crosses (21 EC-1 × EC-2; 10 US-1 × EC-2; four EC-3 × EC-2) were dispersed on water agar to assess oospore germination. Overall, germination percentages were low. Only one cross produced enough progeny for evaluation. Twenty-three single-oospore offspring were isolated and evaluated for mating type; electrophoretic patterns of glucose-6-phosphate isomerase ( Gpi ) and peptidase ( Pep ) alloenzyme loci; mitochondrial DNA haplotype; and genomic DNA fingerprint. Multilocus genotype data indicated that all 23 isolates resulted from meiotic recombination. Four progeny with homothallic phenotype appeared to be unstable heterokaryons. Markers at several loci segregated according to simple Mendelian expectations for a diploid organism, but the ratios of three RFLP loci and the Pep locus were not consistent with Mendelian expectations. All progeny were nonpathogenic on hosts of the parental genotypes. Reduced mating success and reduced pathogenic fitness of progeny appear to be postmating mechanisms of reproductive isolation in populations of P. infestans sensu lato in Ecuador.  相似文献   

14.
One hundred and eight isolates of Phytophthora infestans were collected from infected potato and tomato crops in the middle-north of Morocco during 1997–2000. Pairings of these isolates with tester isolates of mating type A1 and A2 revealed that 60% of the isolates were mating type A2 (65/108) and 40% were mating type A1. After 10 days incubation at 20 °C and a 16-h photoperiod, approximately 25% and 18% of the oospores produced in-vitro germinated in potato soil extract and potato root extract, respectively. Oospores were observed in potato leaf tissues in pairings that were fertile in-vitro. Maximum production of oospores was obtained in potato leaves of cultivars that were moderately susceptible (Desirée, Nicola) after 10 days of incubation at 15 °C and a 16-h photoperiod. These results confirm the presence of P. infestans strains that are sexually compatible under Moroccan climatic conditions. Production of oospores constitutes a threat for these crops because of the occurrence of recombinants with new virulences which may be difficult to control and as a consequence survival of oospores in absence of the host plant in the soil.  相似文献   

15.
Seventeen metalaxyl-sensitive and 21 metalaxyl-resistant isolates ofPhytophthora infestans collected from blighted potato fields during the years 1983–1988 were tested for mating type on rye seed agar medium. All isolates except one (MS3, collected in 1986 at Sufa, in the western Negev) were found to belong to the A2 mating type. A2 isolates produced oospores within 2 weeks when cultured together with isolate 163 (A1 from the U.S.A.) or with the A1 isolate MS3 from Israel. When cultured singly, A2 isolates produced some oospores within 4–8 weeks. Blighted potato tubers harvested from potato crops artificially inoculated with a mixture of A1+A2 sporangia were found to contain some oospores. No oospores were detected in blighted tubers harvested from A2 + A2 inoculated crops. It was concluded that the A2 mating type ofP. infestans has occurred in Israel since 1983 or even earlier. The rare occurrence of the A1 mating type was unexpected and indicated that sexual reproduction of the fungus in the country might be limited.  相似文献   

16.
Matings between five A1 and five A2 wild-type isolates of Phytophthora infestans from potato and tomato crops in the United Kingdom produced oospores in vitro in all cases examined. Oospores from the majority of crosses germinated, albeit at a low level (max 13-4%), after extraction from agar cultures by high-speed blending and treatment with novoZym 234. Viability of oospores from 20 crosses was tested by three methods. Two methods involved stains, either tetrazolium bromide (MTT) or phloxine B, and the third measured plasmolysis in 2 M NaCl. Both staining methods indicated a high percentage viability but gave false-positive results with heat-killed oospores. The plasmolysis method gave a lower percentage viability but no false positives. Oospores produced in vitro and stored either in sterile H2O or in soil at temperatures between 0 and 20 C survived for between 5 and 7 months, the length of the experiments. Oospores buried in non-sterile field soil survived for up to 8 months (January-August). Inoculation of potato with zoospores of AI and A2 isolates produced oospores in stems but not in leaf tissue. In some, but not all cases, rapidly growing potato shoots (15-mm long) were successfully infected with oospores produced in vitro.  相似文献   

17.
A Phytophthora species isolated from blighted potato foliage was identified as P. drechsleri , mating type A2. The isolate was found to be weakly pathogenic on a range of hosts. Pairings in vitro of P. drechsleri with British isolates of P. infestans mating type A1 when separated by a polycarbonate membrane resulted in selfed oospores of both species. The possibility that A1 P. infestans is induced to self in the field and the genetic consequences of such selfing are discussed.  相似文献   

18.
Volatile organic compounds (VOCs) collected from potato tubers inoculated with Phytophthora infestans (late blight), Fusarium coeruleum (dry rot) or sterilized distilled water (as a control) were analysed using gas chromatography–mass spectrometry (GC–MS) and gas chromatography–flame ionization detection (GC–FID). A total of 52 volatiles were identified by GC–MS in the headspaces above P. infestans- and F. coeruleum- inoculated tubers after incubation for 42 days in the dark at 10°C. Of these VOCs, the six most abundant were common to both pathogens. These were benzothiazole (highest abundance), 2-ethyl-1-hexanol (second highest abundance), and at approximately equal third abundance, hexanal, 2-methylpropanoic acid-2,2-dimethyl-1-(2-hydroxy-1-methylethyl)-propyl ester, 2-methylpropanoic acid-3-hydroxy-2,4,4-trimethyl-pentyl ester and phenol. In addition, styrene also occurred at approximately equal third abundance in the headspace of F. coeruleum- inoculated tubers, but at lower abundance in the headspace of P. infestans- inoculated tubers. Some VOCs were specific to each pathogen. Butanal, 3-methylbutanal, undecane and verbenone were found at low levels only in the headspace of tubers inoculated with P. infestans , while 2-pentylfuran and copaene were found only in the headspace of tubers inoculated with F. coeruleum . Additionally GC–FID analysis identified ethanol and 2-propanol in the liquid exudate from both P. infestans - and F. coeruleum -inoculated tubers after incubation for 35 days, and in the headspace after incubation for 42 days. These data provide key information for developing a sensor-based early warning system for the detection of postharvest diseases in stored potato tubers.  相似文献   

19.
掘氏疫霉卵孢子萌发研究   总被引:3,自引:2,他引:3  
 掘氏疫霉(Phytophthora drechsleri)种内菌株直接交配产生的卵孢子分别用0.1% KMnO4处理20分钟和0.3% H2O2处理2分钟在S+L培养基上(26℃)培养7天萌发率>70%。H2O2是本研究首次报道的一种刺激掘氏疫霉卵孢子萌发的处理剂,其效果略优于KMnO4。用KMnO4和H2O2处理均可有效地抑制卵孢子悬浮液中菌丝片段及菌丝膨大体的萌发生长。在一定时期内卵孢子萌发率随卵孢子保存时间的增加而增加,保存30天和45天的卵孢子分别用KMnO4和H2O2处理萌发率最高。卵孢子保存期间有无光照对萌发率无显著影响,但卵孢子荫发时给予光照对萌发有明显的促进作用,保存30天的卵孢子在光照下萌发率为60-70%,在黑暗中仅0-16%。卵孢子萌发过程中的光照条件以黑光灯8小时,日光灯16小时交替连续照射7天效果最好,其次为黑光灯单独连续光照,以日光灯单独照射效果较差。所测定的6种培养基中以S+L培养基对卵孢子萌发的效果最好,其次为V8+L和WA+L。蜗牛酶、纤维素酶、土壤浸出液和黄瓜果提取液对掘氏疫霉卵孢子萌发无明显刺激作用。  相似文献   

20.
The population of Phytophthora infestans in Brazil consists of two clonal lineages, US-1 associated with tomatoes and BR-1 associated with potatoes. To assess whether host specificity in these lineages resulted from differences in aggressiveness to potato and tomato, six aggressiveness-related epidemiological components – infection frequency (IF), incubation period (IP), latent period (LP), lesion area (LA), lesion expansion rate (LER) and sporulation at several lesion ages (SSLA) – were measured on detached leaflets of late blight-susceptible potato and tomato plants. Infection frequency of US-1 was similar on potato and tomato leaflets, but IF of BR-1 was somewhat reduced on tomato. Incubation period was longer on both hosts with US-1, although this apparent lineage affect was not significant. Overall there was no host effect on IP. On potato, BR-1 had a shorter LP (110·3 h) and a larger LA (6·5 cm2) than US-1 (LP = 162·0 h; LA = 2·8 cm2). The highest LER resulted when isolates of BR-1 (0·121 cm2 h−1) and US-1 (0·053 cm2 h−1) were inoculated on potato and tomato leaflets, respectively. The highest values of the area under the sporulation capacity curve (AUSC) were obtained for isolates of US-1 inoculated on tomato leaflets (6146) and for isolates of BR-1 on potato leaflets (3775). In general, higher values of LA, LER, SSLA and AUSC, and shorter values of LP were measured when isolates of a clonal lineage were inoculated on their original host than with the opposite combinations. There is evidence that there are quantitative differences in aggressiveness components between isolates of US-1 and BR-1 clonal lineages that probably contribute to host specificity of P. infestans populations in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号