首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
拉萨近半个世纪气温的年际和年代际变化   总被引:2,自引:0,他引:2  
利用拉萨1952-2005年月平均气温、最高气温、最低气温,及年极端最高气温、极端最低气温,分析了近半个世纪拉萨气温的年际和年代际变化。结果发现:近半个世纪以来,拉萨四季平均气温、平均最低气温均表现为显著的升温趋势,以冬季升温幅度最大。平均最高气温除春季升温不明显外,其它各季均表现为显著的增暖趋势。年平均气温以0.27℃/10a的幅度在升高,年最低气温的升温幅度明显大于最高气温。年平均气温日较差则表现为极显著的减小趋势,这主要是由于最低气温的明显升高引起的。年极端最高气温、极端最低气温也都表现为显著的升高趋势,以极端最低气温升高幅度最大,特别是近25年,升幅达1.26℃/10a。20世纪60年代至今,拉萨平均气温、平均最高气温和最低气温均呈明显的逐年代升高趋势。年平均气温异常偏暖出现在1999年和2005年,异常偏冷发生在20世纪60年代。年平均气温存在准5a、准15a年际振荡和准24a的年代际振荡周期特征。  相似文献   

2.
未来气候变暖对褐飞虱越冬界限的影响分析   总被引:1,自引:0,他引:1  
全球气候变暖将对农业病虫害的越冬界限产生影响,从而影响病虫害的发生动态。本文以GIS(地理信息系统)技术研究了未来高经济发展条件下能源种类平衡发展排放情景(A1B)下褐飞虱越冬界限及相应越冬区相对于baseline时段(1961-1990)的可能变化。结果表明:(1)越冬北界在2020s(2010-2039)北移约50 km,安全越冬北界北移约110 km;2050s(2040-2069)越冬北界北移约120 km,安全越冬北界北移约250 km。由于经纬度及海拔的影响,越冬界限北移存在一定区域差异。(2)越冬区明显扩大。相对于baseline时段,2020s褐飞虱间歇越冬区扩大约11.93万km2 (约23.24%),安全越冬区增加约2.08万km2 或0.66倍;2050s间歇越冬区扩大约25.99万km2(约50.63%),安全越冬区增加约18.82万km2或5.93倍。这些结果表明褐飞虱越冬界限对气候变暖响应明显,其中安全越冬北界较越冬北界北移幅度更大。气候变暖导致的安全越冬北界北移对未来褐飞虱的发生动态可能产生重要影响。  相似文献   

3.
Comprehensive assessments of ecosystem services in environments under the influences of human activities and climate change are critical for sustainable regional ecosystem management. Therefore, integrated interdisciplinary modelling has become a major focus of ecosystem service assessment. In this study, we established a model that integrates land use/cover change (LUCC), climate change, and water retention services to evaluate the spatial and temporal variations of water retention services in the Loess Plateau of China in the historical period (2000-2015) and in the future (2020-2050). An improved Markov-Cellular Automata (Markov-CA) model was used to simulate land use/land cover patterns, and ArcGIS 10.2 software was used to simulate and assess water retention services from 2000 to 2050 under six combined scenarios, including three land use/land cover scenarios (historical scenario (HS), ecological protection scenario (EPS), and urban expansion scenario (UES)) and two climate change scenarios (RCP4.5 and RCP8.5, where RCP is the representative concentration pathway). LUCCs in the historical period (2000-2015) and in the future (2020-2050) are dominated by transformations among agricultural land, urban land and grassland. Urban land under UES increased significantly by 0.63×103 km2/a, which was higher than the increase of urban land under HS and EPS. In the Loess Plateau, water yield decreased by 17.20×106 mm and water retention increased by 0.09×106 mm in the historical period (2000-2015), especially in the Interior drainage zone and its surrounding areas. In the future (2020-2050), the pixel means of water yield is higher under RCP4.5 scenario (96.63 mm) than under RCP8.5 scenario (95.46 mm), and the pixel means of water retention is higher under RCP4.5 scenario (1.95 mm) than under RCP8.5 scenario (1.38 mm). RCP4.5-EPS shows the highest total water retention capacity on the plateau scale among the six combined scenarios, with the value of 1.27×106 mm. Ecological restoration projects in the Loess Plateau have enhanced soil and water retention. However, more attention needs to be paid not only to the simultaneous increase in water retention services and evapotranspiration but also to the type and layout of restored vegetation. Furthermore, urbanization needs to be controlled to prevent uncontrollable LUCCs and climate change. Our findings provide reference data for the regional water and land resources management and the sustainable development of socio-ecological systems in the Loess Plateau under LUCC and climate change scenarios.  相似文献   

4.
Zarrineh River is located in the northwest of Iran, providing more than 40% of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth. Lake Urmia is a highly endangered ecosystem on the brink of desiccation. This paper studied the impacts of climate change on the streamflow of Zarrineh River. The streamflow was simulated and projected for the period 1992-2050 through seven CMIP5 (coupled model intercomparison project phase 5) data series (namely, BCC-CSM1-1, BNU-ESM, CSIRO-Mk3-6-0, GFDL-ESM2G, IPSL-CM5A-LR, MIROC-ESM and MIROC-ESM-CHEM) under RCP2.6 (RCP, representative concentration pathways) and RCP8.5. The model data series were statistically downscaled and bias corrected using an artificial neural network (ANN) technique and a Gamma based quantile mapping bias correction method. The best model (CSIRO-Mk3-6-0) was chosen by the TOPSIS (technique for order of preference by similarity to ideal solution) method from seven CMIP5 models based on statistical indices. For simulation of streamflow, a rainfall-runoff model, the hydrologiska byrans vattenavdelning (HBV-Light) model, was utilized. Results on hydro-climatological changes in Zarrineh River basin showed that the mean daily precipitation is expected to decrease from 0.94 and 0.96 mm in 2015 to 0.65 and 0.68 mm in 2050 under RCP2.6 and RCP8.5, respectively. In the case of temperature, the numbers change from 12.33°C and 12.37°C in 2015 to 14.28°C and 14.32°C in 2050. Corresponding to these climate scenarios, this study projected a decrease of the annual streamflow of Zarrineh River by half from 2015 to 2050 as the results of climatic changes will lead to a decrease in the annual streamflow of Zarrineh River from 59.49 m3/s in 2015 to 22.61 and 23.19 m3/s in 2050. The finding is of important meaning for water resources planning purposes, management programs and strategies of the Lake's endangered ecosystem.  相似文献   

5.
As important freshwater resources in alpine basins, glaciers and snow cover tend to decline due to climate warming, thus affecting the amount of water available downstream and even regional economic development. However, impact assessments of the economic losses caused by reductions in freshwater supply are quite limited. This study aims to project changes in glacier meltwater and snowmelt of the Urumqi River in the Tianshan Mountains under future climate change scenarios (RCP2.6 (RCP, Representative Concentration Pathway), RCP4.5, and RCP8.5) by applying a hydrological model and estimate the economic losses from future meltwater reduction for industrial, agricultural, service, and domestic water uses combined with the present value method for the 2030s, 2050s, 2070s, and 2090s. The results indicate that total annual glacier meltwater and snowmelt will decrease by 65.6% and 74.5% under the RCP4.5 and RCP8.5 scenarios by the 2090s relative to the baseline period (1980-2010), respectively. Compared to the RCP2.6 scenario, the projected economic loss values of total water use from reduced glacier meltwater and snowmelt under the RCP8.5 scenario will increase by 435.10×106 and 537.20×106 CNY in the 2050s and 2090s, respectively, and the cumulative economic loss value for 2099 is approximately 2124.00×106 CNY. We also find that the industrial and agricultural sectors would likely face the largest and smallest economic losses, respectively. The economic loss value of snowmelt in different sectorial sectors is greater than that of glacier meltwater. These findings highlight the need for climate mitigation actions, industrial transformation, and rational water allocation to be considered in decision-making in the Tianshan Mountains in the future.  相似文献   

6.
21世纪开都-孔雀河流域未来气候变化情景预估   总被引:1,自引:0,他引:1  
利用Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections (DCHP)提供的31个 CMIP5降尺度数据和CRU逐月气温、降水格点数据集,通过评估PLS(偏最小二乘回归)、RR(岭回归)和EE(等权平均)3种多模式集合平均预估模型对历史气候变化的模拟能力,确定最优集合方法,进而预估开都-孔雀河流域21世纪气候变化情景。结果表明:① 所建立的PLS模型对流域的气温和降水具有较好的模拟能力,尤其对气温的模拟, r值均达到了0.64以上,明显优于降水(0.19~0.36),但存在空间异质性;② 21世纪开都-孔雀河流域各子区气温呈显著增加趋势,且RCP8.5情景下的增温速率〔0.58~0.67 ℃·(10a)-1〕是RCP4.5情景下〔0.25~0.31 ℃·(10a)-1〕的2倍以上,21世纪中叶是2种情景产生明显差异的开始。整个流域增温速率由西北山区向东南荒漠区逐渐增大;③ 未来降水在不同排放情景下变化速率的分布状况略有不同,但均呈显著增加趋势,且RCP8.5情景下的增加速率〔1.22%~1.54%·(10a)-1〕总体上高于RCP4.5〔0.80%~1.32%·(10a)-1〕。  相似文献   

7.
近50 a新疆≥0 ℃持续日数和积温时空变化   总被引:1,自引:0,他引:1  
利用新疆95个气象站1961-2010年的逐日平均气温资料,使用线性趋势分析、累积距平和[WTBX]t[WTBZ]检验以及基于ArcGIS的混合插值法,对新疆近50 a日平均气温稳定≥0 ℃的初日、终日、持续日数和活动积温的时空变化进行分析。结果表明:≥0 ℃的初日在空间分布上南疆早,北疆晚;平原和盆地早,山区晚的格局。≥0 ℃终日的空间分布与≥0 ℃初日大体相反。≥0 ℃持续日数和≥0 ℃积温的空间分布表现为南疆多,北疆少;盆地多,山区少的格局。在全球变暖背景下,1961-2010年新疆≥0 ℃初日总体呈显著提早趋势,≥0 ℃终日呈极显著推迟趋势,≥0 ℃的持续日数和积温分别以2.58 d·(10a)-1和66.26 ℃·d·(10a)-1的倾向率呈极显著的增多趋势,并且分别于1997年或1994年发生了突变。但突变后较突变前各要素的变化量具有明显的区域性差异,总体来说,≥0 ℃初日提前幅度的空间分布呈南疆大,北疆小的格局。≥0 ℃终日的推迟幅度呈北疆大,南疆小;山区大,平原和盆地小的特点,≥0 ℃持续日数的延长幅度表现为山区大,平原和盆地小的格局,≥0 ℃积温的增加幅度呈平原和盆地多,山区少的空间分布格局。  相似文献   

8.
近51 a伊犁河谷热量资源时空变化   总被引:6,自引:0,他引:6  
基于伊犁河谷10个气象站1960-2010年年平均气温、≥0 ℃和≥10 ℃积温及无霜冻期气象资料,采用线性趋势分析、[WTBX]t-检验、[WTBZ]Kriging空间插值等方法,对伊犁河谷近51 a的热量资源时空变化特征进行分析。结果表明:① 热量资源的空间分布总体呈现平原地区多山区少的特点;② 近51 a伊犁河谷的热量资源呈增加趋势,年平均气温、≥0 ℃和≥10 ℃积温及持续日数、无霜冻期分别以0.43 ℃·(10a)-1、89.9 ℃·d·(10a)-1、88.0 ℃·d·(10a)-1、4.0 d·(10a)-1、3.2 d·(10a)-1和5.4 d·(10a)-1的倾向率上升,51 a来分别增加了2.2 ℃、458.5 ℃·d、448.8 ℃·d、20.4 d、16.3 d和27.5 d。并且各热量资源要素在20世纪90年代中后期发生突变,突变后年平均气温、≥0 ℃持续日数和无霜冻期在平原地区增幅最大,在山间盆地增幅较小。≥0 ℃与≥10 ℃积温在丘陵地区增加最明显,在山间盆地增加最少。而≥10 ℃持续日数在山间盆地增加最多,在平原地区增加最少。  相似文献   

9.
河西走廊东部近50年气候变化特征及区内5站对比分析   总被引:2,自引:1,他引:1  
利用河西走廊东部武威市五个气象站近50年气温、降水资料,运用统计学的方法,详细分析了当地气温、降水的时空变化特征,并进行了对比分析.结果表明,北部川区气温远大于南部山区,随海拔高度的升高气温逐渐降低;北部川区降水远小于南部山区,随海拔高度的升高降水逐渐增多.各地年平均气温呈上升趋势,20世纪90年代以来升温明显.从平均...  相似文献   

10.
ZHANG Yin 《干旱区科学》2022,14(9):962-977
Estimating the snow cover change in alpine mountainous areas (in which meteorological stations are typically lacking) is crucial for managing local water resources and constitutes the first step in evaluating the contribution of snowmelt to runoff and the water cycle. In this paper, taking the Jingou River Basin on the northern slope of the Tianshan Mountains, China as an example, we combined a new moderate-resolution imaging spectroradiometer (MODIS) snow cover extent product over China spanning from 2000 to 2020 with digital elevation model (DEM) data to study the change in snow cover and the hydrological response of runoff to snow cover change in the Jingou River Basin under the background of climate change through trend analysis, sensitivity analysis and other methods. The results indicate that from 2000 to 2020, the annual average temperature and annual precipitation in the study area increased and snow cover fraction (SCF) showed obvious signs of periodicity. Furthermore, there were significant regional differences in the spatial distribution of snow cover days (SCDs), which were numerous in the south of the basin and sparse in the central of the basin. Factors affecting the change in snow cover mainly included temperature, precipitation, elevation, slope and aspect. Compared to precipitation, temperature had a greater impact on SCF. The annual variation in SCF was limited above the elevation of 4200 m, but it fluctuated greatly below the elevation of 4200 m. These results can be used to establish prediction models of snowmelt and runoff for alpine mountainous areas with limited hydrological data, which can provide a scientific basis for the management and protection of water resources in alpine mountainous areas.  相似文献   

11.
为确定旱雀麦在我国的空间分布及其对气候变化的响应,以期进一步开展生态防控,本研究利用旱雀麦在中国的地理分布数据,结合当前气候数据和未来气候变化情景(RCP8.5情景下2050s,2070s),建立最大熵模型(MaxEnt模型),确定影响旱雀麦分布的主导环境因子。应用地理信息系统(GIS)对中国地区旱雀麦的适生区进行划分,以ROC曲线作为模拟的准确性评价指标。结果表明,MaxEnt模型模拟效果极好(AUC=0.965);当前气候条件下,旱雀麦适生面积为2.5534×106 km2,主要集中分布于青海省东北部、甘肃省与青海省接壤的地区、四川省的西北部,以及新疆的西北部;其中影响旱雀麦分布的主要环境因子为海拔、bio12(年降水量)、bio9(最干季度平均温度)和bio15(降水量季变异系数),其贡献率分别为45.0%、17.5%、9.7%、9.7%,累计贡献率达81.9%;在RCP8.5情景下,未来2个时期,旱雀麦潜在高适生区分布面积与当前相比增加了12.2%~23.3%,但RCP8.5情景下2070s较RCP8.5情景下2050s旱雀麦的潜在高度适生区分布面积减少了8.9%。综上所述,气候变化情景下旱雀麦的潜在分布面积呈现出扩大趋势,且RCP8.5情景下2070s较RCP8.5情景下2050s的适生区分布面积有缩减趋势。  相似文献   

12.
Jing YANG 《干旱区科学》2017,9(4):622-634
Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21~(st) century for the Tianshan and northern Kunlun Mountains(TKM) based on the general circulation model(GCM) simulation ensemble from the coupled model intercomparison project phase 5(CMIP5) under the representative concentration pathway(RCP) lower emission scenario RCP4.5 and higher emission scenario RCP8.5 using the Bayesian model averaging(BMA) technique. Results show that(1) BMA significantly outperformed the simple ensemble analysis and BMA mean matches all the three observed climate variables;(2) at the end of the 21~(st) century(2070–2099) under RCP8.5, compared to the control period(1976–2005), annual mean temperature and mean annual precipitation will rise considerably by 4.8°C and 5.2%, respectively, while mean annual snowfall will dramatically decrease by 26.5%;(3) precipitation will increase in the northern Tianshan region while decrease in the Amu Darya Basin. Snowfall will significantly decrease in the western TKM. Mean annual snowfall fraction will also decrease from 0.56 of 1976–2005 to 0.42 of 2070–2099 under RCP8.5; and(4) snowfall shows a high sensitivity to temperature in autumn and spring while a low sensitivity in winter, with the highest sensitivity values occurring at the edge areas of TKM. The projections mean that flood risk will increase and solid water storage will decrease.  相似文献   

13.
Climate change may cause shifts in the natural range of species especially for those that are geographically restricted and/or endemic species. In this study, the spatial distribution of five endemic and threatened species belonging to the genus Onosma (including O. asperrima, O. bisotunensis, O. kotschyi, O. platyphylla, and O. straussii) was investigated under present and future climate change scenarios: RCP2.6 (RCP, representative concentration pathway; optimistic scenario) and RCP8.5 (pessimistic scenario) for the years 2050 and 2080 in Iran. Analysis was conducted using the maximum entropy (MaxEnt) model to provide a basis for the protection and conservation of these species. Seven environmental variables including aspect, depth of soil, silt content, slope, annual precipitation, minimum temperature of the coldest month, and annual temperature range were used as main predictors in this study. The model output for the potential habitat suitability of the studied species showed acceptable performance for all species (i.e., the area under the curve (AUC)>0.800). According to the models generated by MaxEnt, the potential current patterns of the species were consistent with the observed areas of distributions. The projected climate maps under optimistic and pessimistic scenarios (RCP2.6 and RCP8.5, respectively) of 2050 and 2080 resulted in reductions and expansions as well as positive range changes for all species in comparison to their current predicted distributions. Among all species, O. bisotunensis showed the most significant and highest increase under the pessimistic scenario of 2050 and 2080. Finally, the results of this study revealed that the studied plant species have shown an acute adaptability to environmental changes. The results can provide useful information to managers to apply appropriate strategies for the management and conservation of these valuable Iranian medicinal and threatened plant species in the future.  相似文献   

14.
甘肃旱区马铃薯晚疫病始发期的预测研究   总被引:1,自引:0,他引:1  
本研究利用2012—2013年甘肃省马铃薯主栽区的气象资料,结合甘肃马铃薯晚疫病发生的实情,筛选出显著影响晚疫病发生的相关气象因子,建立了甘肃干旱山区,二阴区和川塬区的马铃薯晚疫病始发期预报方程,但川塬区晚疫病始发期预报模型还需进一步的设计与优化。方程模拟结果:温度是二阴区内晚疫病始发的关键因素;降水量主要影响干旱山区马铃薯的晚疫病发生;在同一地区内,川塬区和二阴区晚疫病始发期早于干旱山区,这与干旱山区空气流动性相对强于川塬区和二阴区有关。通过对甘肃干旱山区,二阴区与川塬区马铃薯晚疫病始发期预报方程进行验证,得知预报方程对干旱山区和二阴区晚疫病始发期的预测准确率较高,预测始发期区间较小,误差小,在甘肃晚疫病预警和防治工作中具有较强的指导作用。  相似文献   

15.
Catchments dominated by meltwater runoff are sensitive to climate change as changes in precipitation and temperature inevitably affect the characteristics of glaciermelt/snowmelt, hydrologic circle and water resources. This study simulated the impact of climate change on the runoff generation and streamflow of Chu River Basin(CRB), a glacierized basin in Central Asia using the enhanced Soil and Water Assessment Tool(SWAT). The model was calibrated and validated using the measured monthly streamflow data from three discharge gauge stations in CRB for the period 1961–1985 and was subsequently driven by downscaled future climate projections of five Global Circulation Models(GCMs) in Coupled Model Inter-comparison Project Phase 5(CMIP5) under three radiative forcing scenarios(RCP2.6, RCP4.5 and RCP8.5). In this study, the period 1966–1995 was used as the baseline period, while 2016–2045 and 2066–2095 as the near-future and far-future period, respectively. As projected, the climate would become warmer and drier under all scenarios in the future, and the future climate would be characterized by larger seasonal and annual variations under higher RCP. A general decreasing trend was identified in the average annual runoff in glacier(–26.6% to –1.0%), snow(–21.4% to +1.1%) and streamflow(–27.7% to –6.6%) for most of the future scenario periods. The projected maximum streamflow in each of the two future scenarios occurred one month earlier than that in the baseline period because of the reduced streamflow in summer months. Results of this study are expected to arouse the serious concern about water resource availability in the headwater region of CRB under the continuously warming climate. Changes in simulated hydrologic outputs underscored the significance of lowering the uncertainties in temperature and precipitation projection.  相似文献   

16.
青海气候变化趋势及对植被生产力影响的研究   总被引:4,自引:3,他引:1  
应用青海省南部三江源区、东北祁连山地及环青海湖区气象站1961-2004年气温、降水和所在地区植被地上净初级生产力资料,分析和模拟了44年来有关气候变化特征以及植被生产力与气温、降水、地理坐标参数间的关系,模拟估算了假设未来气候温暖化情景下青海植被生产力变化的可能。结果表明:44年来青海各地气温均在升高,青海北部比南部增温明显;年降水量变化平稳,但北部比南部有所增加;土壤实际蒸发散表现出明显的升高趋势;青海南部植被地上净初级生产力(NPP)逐年降低,青海东北地区相对平稳。模拟计算表明,由于青藏高原植被的生长主要受温度条件的限制,在未来气候增暖,降水不变或增加的趋势下,植被地上NPP均有所增加。  相似文献   

17.
意大利蝗Calliptamus italicus(L.)是新疆草原主要优势蝗虫之一,每年给新疆畜牧业经济带来严重损失,气候变化对其潜在分布影响的预测对其科学防治有重要意义。本研究采用意大利蝗的分布数据和生物气候数据,结合MaxEnt模型和ArcGIS软件,预测了BCC_CSM1.1气候模式下政府间气候变化专门委员会第五次工作报告(IPCC AR5)采用的RCP2.6、RCP4.5和RCP8.5三种气候情景在2021-2040年(2030s)、2041-2060年(2050s)和2061-2080年(2070s)的意大利蝗新疆潜在适生区分布范围。结果表明:在BCC_CSM1.1的各情景下,意大利蝗适生区在北疆及天山一带分布格局基本保持不变,但高度适生区面积都有所增加,其中在天山和阿尔泰山地区,意大利蝗中、高度适生区范围将向更高海拔区域蔓延,在北疆阿勒泰地区高度适生区明显增加。极端水分条件和水热条件对意大利蝗在新疆潜在分布发挥主要作用,其中4月、10月、3月和11月降水量对意大利蝗在新疆潜在分布影响最大,因其直接影响土壤相对含水量和土壤温度,从而决定意大利蝗卵的存活量。  相似文献   

18.
锡林河流域地下水位管理阈值研究   总被引:2,自引:1,他引:1  
地下水资源是维系锡林河流域社会经济发展和生态环境稳定的关键因子。立足于地下水位这一关键性指标,采用地下水可持续性评价和数值模拟模型相结合的方法,探讨地下水安全利用方式。结果表明:现状年河谷平原的地下水可持续性较强,而开采集中的城市规划区及毛登牧场可持续性一般或较差;丰沛的降水及富水性较强的含水层增强了地下水资源可持续性,但农牧业快速发展和农灌集中开采,破坏了城市规划区周边及毛登牧场的地下水均衡关系,通过设置和对比不同开采方案,限制灌溉规模成为未来解决这一危机的首要途径,即2020年应减少903.23×104m3开采量,其管理地下水位阈值为0.13~0.55 m。  相似文献   

19.
Invasive species have been the focus of ecologists due to their undesired impacts on the environment.The extent and rapid increase in invasive plant species is recognized as a natural cause of global-biodiversity loss and degrading ecosystem services.Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions.Understanding the impact of climate change on species invasion is crucial for sustainable biodiversity conservation.In this study,the possibility of mapping the distribution of invasive Prosopis juliflora(Swartz)DC.was shown using present background data in Khuzestan Province,Iran.After removing the spatial bias of background data by creating weighted sampling bias grids for the occurrence dataset,we applied six modelling algorithms(generalized additive model(GAM),classification tree analysis(CTA),random forest(RF),multivariate adaptive regression splines(MARS),maximum entropy(Max Ent)and ensemble model)to predict invasion distribution of the species under current and future climate conditions for both optimistic(RCP2.6)and pessimistic(RCP8.5)scenarios for the years 2050 and 2070,respectively.Predictor variables including weighted mean of CHELSA(climatologies at high resolution for the Earth’s land surface areas)-bioclimatic variables and geostatistical-based bioclimatic variables(1979–2020),physiographic variables extracted from shuttle radar topography mission(SRTM)and some human factors were used in modelling process.To avoid causing a biased selection of predictors or model coefficients,we resolved the spatial autocorrelation of presence points and multi-collinearity of the predictors.As in a conventional receiver operating characteristic(ROC),the area under curve(AUC)is calculated using presence and absence observations to measure the probability and the two error components are weighted equally.All models were evaluated using partial ROC at different thresholds and other statistical indices derived from confusion matrix.Sensitivity analysis showed that mean diurnal range(Bio2)and annual precipitation(Bio12)explained more than 50% of the changes in the invasion distribution and played a pivotal role in mapping habitat suitability of P.juliflora.At all thresholds,the ensemble model showed a significant difference in comparison with single model.However,Max Ent and RF outperformed the others models.Under climate change scenarios,it is predicted that suitable areas for this invasive species will increase in Khuzestan Province,and increasing climatically suitable areas for the species in future will facilitate its future distribution.These findings can support the conservation planning and management efforts in ecological engineering and be used in formulating preventive measures.  相似文献   

20.
NING Like 《干旱区科学》2016,8(4):506-520
Runoff is a major component of the water cycle,and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions.This paper coupled the Distributed Time Variant Gain Model(DTVGM)into the Community Land Model(CLM 3.5),replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China.The coupled model was calibrated at five gauging stations for the period 1980–2005 and validated for the period 2006–2010.Then,future runoff(2010–2100)was simulated for different Representative Concentration Pathways(RCP)emission scenarios.After that,the spatial distributions of the future runoff for these scenarios were discussed,and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition(EEMD)analysis method.Finally,the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated.The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010–2100,whereas it had a non-monotonic trend for the RCP 4.5 scenario,with a slow increase after the 2050 s.Additionally,the future annual runoff clearly varied over a decadal time scale,indicating that it had clear divisions between dry and wet periods.The longest dry period was approximately 15 years(2040–2055)for the RCP 2.6 scenario and 25 years(2045–2070)for the RCP 4.5 scenario.However,the RCP 8.5 scenario was predicted to have a long dry period starting from 2045.Under these scenarios,the water resources situation of the study area will be extremely severe.Therefore,adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号