首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 253 毫秒
1.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is a disease of crucifer crops. The objective of this study was to characterize races of Xcc, their distribution and genetic diversity in India. Two hundred and seventeen isolates of bacteria were obtained from 12 different black rot‐infected crucifer crops from 19 states of India; these were identified as Xcc based on morphology, hrpF gene and 16S rRNA gene based molecular markers and pathogenicity tests. Characterization of races was performed by using a set of seven differential crucifer hosts, comprising two cultivars of turnip (Brassica rapa var. rapa) and cultivars of Indian mustard (B. juncea), Ethiopian mustard (B. carinata), rapeseed mustard (B. napus), cauliflower (B. oleracea) and Savoy cabbage (B. oleracea var. sabauda). Races 1, 4 and 6 of Xcc were identified and, among these races, race 1 followed by race 4 dominated most of the states of India. Genetic diversity of the Indian isolates of Xcc was analysed using repetitive sequence‐based PCR (rep‐PCR) including primers for REP (repetitive extragenic palindromic), ERIC (enterobacterial repetitive intergenic consensus) and BOX (amplifying with BOX A1 R primer) repetitive elements. This method of fingerprinting grouped the isolates into 56 different DNA types (clusters) with a 75% similarity coefficient. Among these clusters, DNA types 22 and 53 contained two different races 1 and 4, whereas DNA type 12 contained races 1, 4 and 6. However, no clear relationship was observed between fingerprints and races, hosts or geographical origin.  相似文献   

2.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is a severe seedborne disease of Brassica crops around the world. Nine races are recognized, being races 1 and 4 the most aggressive and widespread. The identification of Xcc races affecting Brassica crops in a target area is necessary to establish adequate control measures and breeding strategies. The objectives of this study were to isolate and identify Xcc strains from northwestern Spain by using semi-selective medium and pathogenicity tests, determine the existing races of Xcc in this area by differential series of Brassica spp., and evaluate the use of repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) to differentiate among the nine existing Xcc races. Seventy five isolates recovered from infected fields were identified as Xcc. Race-typing tests determined the presence of the following seven pathogen races: 1, 4, 5, 6, 7, 8 and 9. Race 4 was the most frequent in Brassica oleracea and race 6 in Brassica rapa crops, therefore breeding should be focussed in obtaining resistant varieties to both races. Cluster analysis derived from the combined fingerprints showed four groups, but no clear relationship to race, crop or geographical origin was found. Rep-PCR analysis was found not to be a reliable method to discriminate among Xcc races, therefore race typing of Xcc isolates should be done by using the differential series of Brassica spp. genotypes or another alternative approach.  相似文献   

3.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is a major disease constraint to cabbage production by smallholder farmers in Africa. Variability exists within the pathogen, and yet differentiation of Xcc strains from other closely-related xanthomonads attacking crucifers is often difficult. The Biolog system, fatty acid methyl ester analysis using microbial identification system (MIS), rep-PCR and pathogenicity tests were used to identify and characterise Xcc strains from Tanzania. Great diversity was observed among Xcc strains in their Biolog and rep-PCR profiles. Specific rep-PCR genomic fingerprints were linked to some geographical areas in the country. Most of the Xcc strains were clustered in two groups based on their fatty acid profiles and symptom expression in cabbage although some deviant strains were found. Each of the methods allowed a degree of identification from species, pathovar to the strain level. Biolog and MIS identified all Xcc strains at least to the genus level. Additionally, Biolog identified 47% of Xcc strains to the pathovar and 43% to strain level, whereas MIS identified 43% of the strains to pathovar level. In the absence of a database, the utility of rep-PCR for routine diagnosis of strains was limited, although the procedure was good for delineation of Xcc to the strain level. These findings indicate the existence of Xcc strains in Tanzania that are distinct from those included in Biolog and MIS databases. The limitations noticed warrant continued improvement of databases and inclusion of pathogenicity testing, using universally susceptible cultivars, as an integral part of strain identification.  相似文献   

4.
Polyclonal and monoclonal antibodies (PCAs and MCAs), produced to whole cells and flagellar extracts ofXanthomonas campestris pv.campestris (Xcc), respectively, were tested for specificity. In immunofluorescence microscopy (IF) the three PCAs tested, reacted at low dilutions with all Xcc strains, some other xanthomonads and non-xanthomonads. At higher dilutions most cross-reactivity with non-xanthomonad strains disappeared. However, the cross-reactivity with strains ofX. c. pv.vesicatoria (Xcv),X. c. pv.amoraciae (Xca) andX. c. pv.phaseoli var. fuscans (Xcpf) remained.Six MCA-producing cell clones viz. 20H6, 2F4, 18G12, 10C5, 17C12 and 16B5 were selected for specificity tests with an enzyme immunoassay (EIA), IF and a dot-blot immunoassay (DBI). None of the MCAs reacted with all Xcc strains in IF and EIA. In DBI, only MCAs 17C12 and 16B5 reacted with all Xcc strains. All six MCAs tested, cross-reacted in one of either tests with other pathovars ofX. campestris, such as Xcv or Xca. The MCAs were also tested in immunoblotting experiments using total bacterial extracts, cell envelope and flagellar extracts. MCAs 20H6, 2F4, 18G12 and 10C5 reacted with the lipopolysaccharide (LPS) of Xcc. MCAs 16B5 and 17C12 reacted with a 39 kilodalton and a 29 kilodalton protein, respectively.It is concluded that the PCAs and MCAs discussed in this study may be used for routine identification and differentiation of (a group of) Xcc strains. The significance of the cross-reactions with other pathovars ofX. campestris needs to be determined by testing seed lots.  相似文献   

5.
Polyclonal and monoclonal antibodies (PCAs and MCAs) were tested for the detection ofXanthomonas campestris pv.campestris (Xcc) in cabbage seeds using immunofluorescence microscopy (IF). It was concluded that PCA 94, MCAs 20H6, 2F4, 18G12 and a mixture of MCAs 20H6, 18G12, 2F4 and 16B5 could be used to detect Xcc in seed extracts when 5 min and 2.5 h shaking of seeds are used as extraction methods. The reliability of confirming suspect colonies with MCAs and PCA 94 in IF depended in part on the seed lot tested and the antibody used. Some virulent Xcc strains derived from seed lots, did not react with MCAs 10C5, 2F4, 18G12, 17C12 and 16B5. On the other hand, saprophytic isolates obtained from one seed lot cross-reacted with MCA 17C12 and to a lesser extent with MCAs 2F4, 18G12 and PCA 94. No relationship was found between IF-reactions of Xcc strains using MCAs and reactions of Xcc strains in pathogenicity testing. Xcc andX. c. pv.amoraciae (Xca) could in general not be distinguished on the basis of reactions with MCAs and PCAs. Also in pathogenicity tests Xcc and Xca were hard to distinguish.  相似文献   

6.
The phyllosphere and rhizosphere of weeds are important niches for phytobacterial survival. The absence of information in Brazil regarding Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot in crucifers, motivated this study. Twenty‐six weed species belonging to 14 botanical families were included in field experiments between August 2014 and October 2015. Lepidium virginicum and Raphanus raphanistrum (Brassicaceae) demonstrated great potential for survival of Xcc in the phyllosphere, with the bacterium isolated after 56 and 70 days, respectively. Low variation between maximum and minimum temperatures, high rainfall and high relative humidity at specific times of the year contributed to longer Xcc survival periods in the phyllosphere of some species. Xcc survived in the rhizosphere only in R. raphanistrum, where it was isolated for up to 28 days. No relation was found between climatic factors and survival in the rhizosphere. The data indicate that control of brassicaceous weeds will contribute to the control of black rot.  相似文献   

7.
Choy sum (Brassica rapa var. parachinensis), leafy mustard (Brassica juncea) and pak choi (B. rapa var. chinensis) are highly nutritious components of diets in Taiwan and other Asian countries, and bacterial black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a major biotic constraint in these crops. As very little was known about the Xcc strains from these crops in these regions, including their cross‐pathogenicity and aggressiveness on different hosts, Xcc strains were obtained from cabbage (Brassica oleracea var. capitata), choy sum, leafy mustard and pak choi crops in Taiwan. Two previously published PCR‐based assays reliably distinguished the Xcc strains from other Xanthomonas species and subspecies. Phylogenetic analysis based on repetitive sequence‐based PCR assays placed the Xcc strains in a clade distinct from other Xanthomonas species, and also showed host specificity. Although all of the Xcc strains from the different host species were pathogenic on all five Brassica test species in both a detached leaf assay and an intact plant assay, in the intact plant assay they showed differences in virulence or aggression on the different test hosts. The Xcc strains from leafy mustard and pak choi were consistently highly aggressive on all the test host genotypes, but the strains from choy sum and cabbage were less aggressive on leafy mustard and choy sum. The intact plant assay proved more discriminating and reliable than the detached leaf assay for comparing the aggressiveness of Xcc strains on different host genotypes, and so, with the new Xcc strains isolated in this study, will be useful for screening leafy brassica germplasm accessions for resistance to black rot.  相似文献   

8.
The genetic diversity of Xanthomonas campestris pv. campestris isolates from South Africa was evaluated using 28 isolates obtained from the Johannesburg Fresh Produce Market. Samples were collected from cabbage supplies from farms in Gauteng, Mpumalanga and North West Provinces. Strains were isolated from small sections of infected cabbage leaf samples and cultured on Yeast Dextrose Agar. Isolates identity was confirmed by ELISA and Pathogenicity test. Pathogenicity tests were performed by inoculating leaves of known susceptible cabbage seedlings. Infection symptoms induced could be categorized into three groups, ranging from typical to non-typical black rot symptoms. Four differential Brassica cultivars with known avirulence genes were used for race typing done by spray inoculation. Four races, namely 1, 3, 4 and 6, were identified. Of the 28 isolates, four were identified as race 1, two as race 3, 19 as race 4 and three as race 6. Repetitive DNA polymerase chain reaction-based fingerprinting using Eric- and Box-primers was used to assess the genetic diversity. Generated fingerprints of X. c pv. campestris were relatively similar. Cluster analysis could not strictly group isolates by their geographical origin, suggesting limited diversity of Xanthomonas campestris pv. campestris strains within cabbage producing regions in South Africa.  相似文献   

9.
The present study provides insight into the diversity of 147 Xanthomonas campestris pv. campestris (Xcc) isolates obtained from six Brassica oleracea vegetable crops (broccoli, cabbage, cauliflower, collard greens, kale, kohlrabi) and the winter oilseed rape crop Brassica napus, collected from different regions in Serbia in 2014. The XCF/XCR pathovar-specific primer set was used for fast preliminary identification. In repetitive sequence-based PCR (BOX, ERIC and REP) of all isolates, a higher level of genetic diversity was found in winter oilseed rape isolates compared to isolates from the other hosts. ERIC and REP-PCR showed the highest heterogeneity, with 10 and nine banding patterns, respectively. The REP-PCR results showed the highest correlation (70%) with those obtained with multilocus sequence analysis (MLSA), performed with 10 housekeeping genes (fusA, gap-1, gltA, gyrB1, lacF, lepA, rpoD, dnaK, fyuA and gyrB2). Three distinct phylogenetic groups of winter oilseed rape isolates were detected using MLSA. Two genes, gltA and rpoD, showed the greatest ability to identify and discriminate winter oilseed rape Xcc isolates from isolates of the other six hosts. The lepA gene exhibited specific three-nucleotide changes in sequences of some of the isolates. Results of virulence testing of 18 representative isolates showed statistically significant host–pathogen specialization for Xcc isolates from winter oilseed rape, cauliflower, kale and kohlrabi. In conclusion, oilseed rape isolates are more genetically diverse and show greater specialization to their host in comparison to the rest of the tested isolates from other brassica hosts.  相似文献   

10.
The species Xanthomonas campestris (Vauterin) groups bacteria associated with cruciferous plants. In order to clarify and refine the pathovar and race structures within X . campestris , 47 representative strains of six pathovars were characterized for their pathogenicity on a large host range of Brassicaceae, including all original hosts. Three diseases were observed on tested plants: (i) black rot disease on cruciferous plants; it was proposed that all strains causing black rot on at least one cruciferous plant be grouped in the single pathovar X . c . pv. campestris ; (ii) leaf spot disease caused by X . c . pv. raphani on hosts belonging to the Brassicaceae and Solanaceae; the sequenced strain 756C identified as X . c . pv. armoraciae was included in this pathovar and the existence of another leaf spot disease caused by X . c . pv. armoraciae was not supported; and (iii) bacterial blight of garden stocks caused by X . c . pv. incanae . No plants susceptible to X . c . pv. barbareae were found. Strains that did not induce any symptom on cruciferous plants tested, including their original hosts, were removed from the pathovar scheme and were named X . campestris only. Three new races were described in addition to the six races previously described within X . c . pv. campestris . The sequenced strains ATCC 33913 (CFBP 5241) and Xcc 8004 (CFBP 6650) belonged to race 3 and to race 9 (one of the new races described), respectively.  相似文献   

11.
Biological control efficiency of an antagonistic, endophytic strain of Bacillus subtilis (strain BB) was evaluated against three strains of the black rot pathogen, Xanthomonas campestris pv. campestris (Xcc), in four Brassica crops (cabbage, cauliflower, rape and broccoli) grown during three consecutive growing seasons and on two soil types, in two different areas in Zimbabwe. Strain BB controlled the disease caused by strain Xcc B-147 in all Brassica crops during the dry and short rainy seasons. A similar effect was observed in cabbage using the strain Xcc 33908. Biological control was effective in broccoli, but not in cabbage and rape during the main rainy season in clay loam soil and limited biological control effect was still observed when these crops were grown in sandy loam soil. The endophytic colonisation of cabbage roots by strain BB was confirmed by immuno-blotting during the whole growing season. Biological control of black rot with strain BB is discussed in relation to its effect on Xcc strains, Brassica crops and to the effect of weather and soil conditions.  相似文献   

12.
The development of a rapid detection method for Xanthomonas campestris pv. campestris (Xcc) in crucifer seeds and plants is essential for high-throughput certification purposes. Here we describe a diagnostic protocol for the identification/detection of Xcc by PCR amplification of fragments from the pathogenicity-associated gene hrcC. Under stringent conditions of amplification, a PCR product of 519 bp from hrcC was obtained from a collection of 46 isolates of Xcc, with the exception of two isolates from radish. No amplicons were obtained from 39 pure cultures of the phytopathogenic bacteria Xanthomonas campestris pv. cerealicola, X. campestris pv. juglandis, X. campestris pv. pelargonii, X. campestris pv. vitians, X. arboricola pv. pruni, X. axonopodis pv. phaseoli, X. axonopodis pv. vesicatoria, X. vesicatoria, Pseudomonas syringae pv. phaseolicola, P. syringae pv. syringae, P. syringae pv. tomato, P. fluorescens, P. marginalis, Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum. In addition, PCR reactions were negative for fifty unidentified environmental isolates purified from the surface of crucifers. The PCR fragment was obtained from four strains previously classified as X. campestris pv. aberrans, X. campestris pv. armorociae, X. campestris pv. barbarae and X. campestris pv. incanae using pathogenicity assays. Our PCR protocol specifically detected Xcc in inoculated leaves, seeds and naturally infected leaves of crucifers.  相似文献   

13.
During the last two decades bacterial strains associated with necrotic leaf spots of pepper and tomato fruit spots were collected in Serbia. Twenty-eight strains isolated from pepper and six from tomato were characterized. A study of their physiological and pathological characteristics, and fatty acid composition analysis revealed that all of the strains belong to Xanthomonas campestris pv. vesicatoria. Being non-amylolytic and non-pectolytic, pathogenic on pepper but not on tomato, containing lower amounts of fatty acid 15 : 0 ante–iso, the pepper strains were designated as members of the A group of X. campestris pv. vesicatoria. However, the tomato strains hydrolyzed starch and pectate, caused compatible reactions on tomato but not on pepper, had higher percent of 15 : 0 ante–iso fatty acid, and were classified into B phenotypic group and identified as X. vesicatoria. PCR primers were developed which amplified conserved DNA regions related to the hrp genes of different strains of X. campestris pv. vesicatoria associated with pepper and tomato. Restriction analysis of the PCR product resulted in different patterns and enabled grouping of the strains into four groups. When xanthomonads isolated from pepper and tomato in Serbia were analyzed, they clustered into two groups corresponding to the grouping based on their physiological and pathological characteristics. According to the reaction of pepper and tomato differential varieties, the strains from pepper belong to races P7 and P8 and tomato strains belong to the race T2. All strains were sensitive to copper and streptomycin. Advantages and disadvantages of various bacterial spot management practices are discussed.  相似文献   

14.
Xanthomonas campestris pathovars are widely distributed throughout the globe and have a broad host range, causing severe economic losses in the food and ornamental crucifers markets. Using an approach based on multilocus sequence typing, phylogenetic diversity and population structure of a set of 75 Portuguese and other Xanthomonas campestris isolates from several cruciferous hosts were assessed. Although this population displayed a major clonal structure, neighbour‐net phylogenetic analysis highlighted the presence of recombinational events that may have driven the ecological specialization of X. campestris with different host ranges within the Brassicaceae family. A high level of genetic diversity within and among X. campestris pathovars was also revealed, through the establishment of 46 sequence types (STs). This approach provided a snapshot of the global X. campestris population structure in cruciferous host plants, correlating the existing pathovars with three distinct genetic lineages. Phylogenetic relationships between the founder genotype and remaining isolates that constitute the X. campestris pv. campestris population were further clarified using goeBURST algorithm. Identification of an intermediate link between X. campestris pv. campestris and X. campestris pv. raphani provided new insights into the mechanisms driving the differentiation of both pathovars. Wide geographic distribution of allelic variants suggests that evolution of X. campestris as a seedborne pathogen was not shaped by natural barriers. However, as Portuguese isolates encompass 26 unique STs and this country is an important centre of domestication of Brassica oleracea crops, a strong case is made for its role as a diversification reservoir, most probably through host–pathogen coevolution.  相似文献   

15.
Fifty-five strains of Xanthomonas axonopodis pv. vignicola, isolated from blight and pustule symptoms of cowpea leaves, originating from 11 countries, were characterized for their carbon-source metabolization pattern using the Biolog GN microplate system. Great variation was found between strains according to origin. Dextrin, glycogen and succinamic acid were not used by strains from Benin, Uganda or Thailand, but by all the other strains (excluding two strains from Mozambique), whereas N-acetyl-D-glucosamine and malonic acid were used by the strains from Benin, Uganda and Thailand, but generally not by the other strains. The strains from Benin, Uganda and Thailand, as well as strains from Venezuela, Brazil and Mozambique, clustered separately from the others in multivariate analysis. Nineteen substrates were used by all the strains, 47 not by any strain and 29 only by some strains. No considerable differences were found between strains isolated from blight symptoms and from pustules. Virulence of strains was not related to the metabolic pattern. The Biolog database was not representative of the diversity of X. axonopodis pv. vignicola, since all strains were identified as Xanthomonas campestris, although belonging to eight pathovars, while only eight of nine strains from Benin and both strains from Thailand were identified as X. campestris pv. vignicola. The Biolog system appeared to be useful for characterizing the diversity of X. axonopodis pv. vignicola strains. A set of representative strains based on metabolic and molecular diversity, virulence and geographic origin is suggested for screening for resistant cowpea cultivars.  相似文献   

16.
During 1997 and 1998, serious outbreaks of bacterial leaf spot disease were observed on zinnia plants grown in home and commercial gardens in Ohio, USA. Twenty-two strains of Xanthomonas campestris pv. zinniae, isolated from diseased zinnia plants and contaminated seeds, were identified based on morphological, physiological and biochemical tests, fatty acid methyl ester analyses and pathogenicity tests on zinnia cv. Scarlet. Host range studies indicated that all of the X. campestris pv. zinniae strains were pathogenic on zinnia and tomato, but not on cabbage, lettuce, pepper and radish. The phenotypic and genotypic relationships among the strains determined based on serological reaction pattern, fatty acid profiles, repetitive extragenic palindromic-polymerase chain reaction (rep-PCR) fingerprints and sequence analysis of the 16S–23S rDNA spacer region suggested that X. campestris pv. zinniae strains were closely related to each other, but clearly distinct from other Xanthomonas species including X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. vesicatoria and X. hortorum pv. vitians tested in this study. The results also demonstrated that rep-PCR fingerprinting is rapid, reliable and the most practical method for routine detection and identification of X. campestris pv. zinniae strains.  相似文献   

17.
Northern Iran has one of the largest and most diverse populations of cultivated crucifers in Iran. Symptoms of black rot disease were observed in 40 % of fields. To assess the genetic diversity of Xanthomonas campestris pv. campestris (Xcc) strains, associated with black rot disease, 40 strains were isolated from infected samples of crucifers such as cabbage, radish, cauliflower, turnip and kohlrabi, and were collected from different geographic regions of northern Iran including West and East Azarbayjan and Ardabil provinces. Bacterial strains were characterized by their morphological, biochemical and physiological features and pathogenicity tests. Four races were found in northern Iran (1, 4, 5 and 6) and the majority of the tested strains belonged to either race 4 (45 %) or race 6 (20 %). To examine the distribution of dispersed repetitive DNA, Enterobacterial Repetitive Intergenic Consensus (ERIC), BOX, Repetitive Extragenic Palindromic (REP) and random amplified polymorphic DNA (RAPD) sequences in the genome of Xcc using conserved primers. The different markers produced characteristic banding patterns and the similarity matrices from binary banding data was derived with the similarity for qualitative data program (SIMQUAL). On the basis of the fingerprint patterns generated by the combination data set of both rep-PCR and RAPD, the Xcc strains were differentiated into seven clusters (A–G) at 76 % similarity level. The geographical origin of the Iranian strains does not seem to be correlated with the RAPD and rep-PCR clusters. The clusters seem to be more related to the race of the strains. This is the first study on genetic diversity of Xcc strains inducing black rot disease of crucifers in Iran.  相似文献   

18.
Quantitative data were collected to describe the relation between temperature and growth of the cabbage black rot pathogen,Xanthomonas campestris pv.campestris (Xcc). Relative growth rates derived from experiments at constant temperatures were used in dynamic simulation of bacterial population development. The relative growth rates were adequate to simulate growth ofXcc populations at constant temperatures but overestimated growth of populations at variable temperatures. This finding gives rise to the hypothesis, that under field conditions, disease development is slower than is expected on the basis of growth parameters obtained from studies with constant temperatures.  相似文献   

19.
Xanthomonas citri subsp. citri (Xcc) strain A is the causal agent of citrus bacterial canker (CBC) on most Citrus spp. and close relatives. Two restricted host range strains of CBC, Aw and A*, from Florida and southwest Asia, respectively, infect Mexican lime. Several studies have linked biofilm formation by Xcc to bacterial colonization prior to and after plant ingress, but none have evaluated connections between biofilm formation and the behaviour of different strains of Xcc on citrus hosts and non‐hosts. In this study biofilm formation and swimming motility were evaluated for citrus pathogenic xanthomonads including wide and restricted host range strains of Xcc, X. alfalfae subsp. citrumelonis (Xac) (the causal agent of citrus bacterial spot) and X. campestris pv. campestris (Xc). Differential biofilm formation was observed in vitro and in planta among the Xanthomonas strains assayed. Minimal medium XVM2 increased biofilm formation, especially for those strains with a host range restricted to Mexican lime. In planta, strains produced more biofilm on leaves or fruits of their host than on non‐hosts. Scanning electron microscopy of biofilms on leaf and fruit surfaces revealed differences in structure of bacterial aggregates with respect to the strain's host range. In addition, swimming motility varied widely depending on the host range of the strain. It was concluded that biofilm formation in vitro and in planta for strains of Xcc and Xac was related to their host range, as these processes affect colonization at the early stages of the infection process.  相似文献   

20.
A study was conducted in the East African countries of Kenya, Tanzania and Uganda in the months of July and August 2009 with the objectives of assessing the status of black rot and race structure of Xanthomonas campestris pv. campestris in the three countries. Samples infected with black rot were collected from farmers’ fields mainly from Brassica oleracea crops (broccoli, cabbage, cauliflower and kales). A total of 399 farms were surveyed of which 260 were from Kenya, 91 from Tanzania and 48 from Uganda. Following successful isolations, a total of 249 isolates of the causal agent, Xanthomonas campestris pv. campestris were recovered. Pathogenicity of all isolates was confirmed on B. oleracea susceptible cultivars Copenhagen Market F1 and Wirosa F1. Sixty of the 250 isolates were race-typed using a differential set Brassica spp. Only two races, 1 (Kenya and Tanzania) and 4 (Kenya, Tanzania and Uganda) were observed however, another race (5) was observed from one isolate recovered from a B. rapa sample obtained from Tanzania in 2003. Genomic fingerprinting with repetitive-PCR revealed clusters that did not depict significant correlations between isolates and geographical location, isolates and host adaptation or isolates and race. However, it did demonstrate existence of genetic differences within the East African X. campestris pv. campestris population indicating that it is not a similar clonal population of the same genetic background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号