首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic variability and aggressiveness of Brazilian Erwinia psidii isolates from Eucalyptus spp. was studied and compared with reference isolates from guava (Psidium guajava). Repetitive element sequence (rep)-based PCR markers of 101 isolates from Eucalyptus spp. and five from guava showed that the populations of E. psidii displayed a relatively low genetic variability. No correlation of genetic clustering based on rep-PCR analysis with geographic origin or host of origin was observed, indicating that genome rearrangements associated with adaptation to a particular host were not detected by these molecular markers. A higher genotypic richness was detected in the Mato Grosso do Sul population, probably reflecting a pathogen dissemination associated with the recent expansion in eucalypt plantations. Wilcoxon and ANOVA tests of disease severity data indicated differences in aggressiveness among isolates and an isolate × clone interaction. The area under the disease progress curve (AUDPC) and disease severity for some isolates were significantly different between two susceptible clones tested. Notably, isolate LPF681 from guava was not able to cause disease on a susceptible Eucalyptus urophylla clone, suggesting that some co-evolution between pathogen and host has taken place. The variability in aggressiveness and virulence among isolates of E. psidii observed in this study will be important for the establishment of appropriate screening approaches to select for disease resistance.  相似文献   

2.
Kiwifruit (Actinidia spp.) is native to southern China, but was first cultivated in New Zealand and then spread worldwide. Emerging diseases such as ceratocystis wilt have attracted the attention of kiwifruit growers due to the great losses observed in southern Brazil. Effective control can be achieved by screening for resistance, but the genetic variability of the pathogen must be considered. Thus, this study aimed to assess the genetic diversity and variation in aggressiveness of Ceratocystis isolates from kiwifruit in southern Brazil and then evaluate the resistance of kiwifruit cultivars with the most aggressive isolates. A collection of 46 isolates were obtained from southern Brazil and 14 simple-sequence repeat (SSR) markers was successfully used for genotyping. Out of 14 markers, 13 were polymorphic and identified 26 genotypes. Fourteen distinct genotypes were tested on a susceptible cultivar to select the most aggressive ones. Finally, inoculation with an equal mixture of five of the most aggressive isolates was used to evaluate the resistance of seven kiwifruit cultivars: Red Arguta, Green Arguta, Allison, Chieftain, Hayward, Monty, and Tomury. Cultivars varied in levels of susceptibility, with disease severity ranging from 40% to 100%. Considering the length of stem lesions, Chieftain showed the lowest level of severity at 40%, while no wilt symptoms were observed at 45 days after inoculation. In addition to the seven cultivars, a half-sibling progeny with 618 plants of the rootstock cv. Bruno was also assessed, but only seven individuals were resistant. These seven plants can be cloned and used as resistant rootstocks in commercial orchards.  相似文献   

3.
Boxwood blight is an emerging disease of ornamental as well as native boxwood. The disease became widely established in Europe at the beginning of the 21st century, prior to its more recent discovery in North America and Asia. Two sister-species of fungi cause the disease, Calonectria pseudonaviculata (Cps) and C. henricotiae (Che). Prior efforts to quantify intraspecific genetic polymorphisms of Cps and Che have yielded little information, limiting the ability to understand the evolution and migration of these pathogens. This study describes the development and implementation of simple sequence repeat (SSR) markers to analyse genetic diversity from a global collection of Cps and Che isolates, representing major blight outbreaks since the disease was first identified in the UK in the late 1990s. Analysis of the Cps CB002 genome sequence identified 180 single copy SSR loci using stringent search criteria, 11 of which were polymorphic and used to screen a global sample of 306 isolates. Fourteen multilocus genotypes of Cps and two multilocus genotypes of Che were identified. Twelve of the 14 Cps genotypes differed from each other by a single allele. The most common Cps genotype was found on all continents where boxwood blight is confirmed. Based on measurement of linkage disequilibrium, Cps showed no evidence of sexual recombination. Further in silico analysis identified 1594 SSRs using relaxed SSR definition criteria. Comparison of these SSR-containing loci with Cps and Che genome sequences representing three different genotypes demonstrated that single nucleotide polymorphisms might serve as informative genetic markers for future studies.  相似文献   

4.
Coffee leaf rust is the most limiting disease for coffee cultivation in Brazil. Despite its importance, relatively little is known about the genetic diversity of Hemileia vastatrix, the rust causal agent. In this work, the DNA from 112 monopustule isolates from different geographic locations and coffee genotypes were analysed by amplified fragment length polymorphisms (AFLP). The objectives were to assess the influence of the host and geographic origin on the diversity and population differentiation in H. vastatrix. The fungal population showed a low level of genotypic diversity. Gene diversity (h) was 0·027 and the hypothesis of random mating in the total population was rejected, but evidence for recombination was found for two subpopulations (São Paulo and Paraná). The analysis of molecular variance revealed that 90% of the genetic distribution of the pathogen occurs among isolates within the subpopulation (states or host of origin). There was no correlation between geographic and genetic distance (= ?0·024, = 0·74), which together with the high number of migrants and the low degree of differentiation in populations of Hvastatrix, is consistent with the fact that the inoculum is probably easily dispersed by wind over long distances, allowing dispersal of the pathogen among coffee growing areas in Brazil. Therefore, it is difficult to predict the durability of resistant sources to coffee rust. The recommendation for the breeding programmes is thus to incorporate multigenic resistance as a control strategy.  相似文献   

5.
Quambalaria shoot blight, caused by the fungal pathogen Quambalaria pitereka, is a serious disease of eucalypt plantations in Australia. The aggressiveness of four Q. pitereka isolates was compared on a range of host genera, species, provenances and clones. Isolates differed substantially in their aggressiveness, with two consistently showing higher levels of aggressiveness based on incidence and severity of disease and lesion size. Isolates derived from Corymbia citriodora subsp. variegata (Ccv) and C. torelliana were shown to have a relatively restricted host range, with lesions but no sporulation found on Eucalyptus species, Angophora species other than A. costata and Corymbia species other than Ccv, the host of origin. The level of aggressiveness toward the different provenances of spotted gum and C. torelliana varied between isolates and there was evidence of some isolate × host interaction within provenances of Ccv. The two methods of inoculation used in this study, spray and spot inoculation, gave similar results. However, the fact that the spot inoculation method was labour‐intensive was a disadvantage limiting the numbers of isolates and hosts that can be tested.  相似文献   

6.
Sheath blight, caused by Rhizoctonia solani AG1‐IA, is one of the most serious diseases of rice. In this study, a total of 175 isolates of R. solani AG1‐IA were collected from five rice‐growing regions in China. Pathogenicity tests revealed that all isolates were virulent to five cultivars with different levels of resistance at the rice seedling stage in the greenhouse. There was considerable variation in aggressiveness, and the isolates were classified into three pathotypes based on disease severity, with moderately virulent isolates prevalent in the population. Forty‐three haplotypes were identified based on ITS sequencing, and 39 haplotypes were distinct among isolates. There were high levels of haplotype diversity and nucleotide diversity within the populations of Rsolani AG1‐IA. High gene flow (Nm = 1·63–5·22) was detected, consistent with relatively low differentiation between pairs of populations. Five populations were divided into two distinct clusters by the unweighted pair group method with arithmetic mean (UPGMA), and no spatial population differentiation was discernible. The majority (97·8%) of genetic diversity was distributed among isolates within populations, with only 2·2% of the genetic diversity attributed to differences among populations. The star‐like shape of the haplotype network provided evidence of signatures of population expansion in recent history. No significant relationships were found between the genetic diversity and aggressiveness or geographic origin among populations of R. solani AG1‐IA. These results highlight that the population characteristics of R. solani AG1‐IA should be taken into account in evaluating the germplasm resistance of rice cultivars to sheath blight.  相似文献   

7.
Colletotrichum kahawae is an emerging fungal pathogen, which has recently undergone a speciation process from a generalistic ‘C. gloeosporioides species complex' background by acquiring the unique capacity to infect green coffee berries, thus causing coffee berry disease. This is a severe and widespread disease in Africa and an imminent threat to Arabica coffee cultivation in Asia and America, if the pathogen enters those continents. Genetic diversity within C. kahawae is low but notorious differences in pathogen aggressiveness have been described. This work characterized two cytogenomic traits (genome size and minichromosome profiles) of a collection of C. kahawae isolates, representing the breadth of its genetic diversity and distinct aggressiveness classes, along with closely related taxa. The results obtained constitute the first flow cytometry‐based genome size estimation in the genus Colletotrichum and show a c. 8 Mb genome size expansion between C. kahawae (79·5 Mb on average) and its closest relatives (71·3 Mb), corroborating evidence indicating that C. kahawae (i.e. the coffee berry disease pathogens) should remain as a distinct species. Results have also shown the presence of two to five minichromosomes in C. kahawae, suggesting a positive relationship between the number of minichromosomes and the level of aggressiveness of the different isolates analysed, while no correlation could be established between aggressiveness and whole genome size. Overall, these results may be the basis for the identification of pathogenicity/aggressiveness‐related factors in such minichromosomes, and may provide clues to the characterization of specific markers for aggressiveness classes.  相似文献   

8.
Lasiodiplodia theobromae is one of the most frequent fungal pathogens associated with dieback, gummosis, leaf spot, stem-end rot and fruit rot symptoms in cashew, mango, papaya and grapevine. In this study, the variation in the genetic diversity of 117 L. theobromae isolates from northeastern Brazil (= 100) and Mexico (= 17), which were collected from these four crops, was analysed using microsatellite markers. The results revealed low genetic diversity among L. theobromae populations and the existence of two genetic groups. All Mexican isolates were grouped with Brazilian isolates, suggesting a low level of differentiation between these populations. Furthermore, no evident host or climate-based population differentiation was observed for L. theobromae in Brazil. The populations studied were mostly clonal, but additional studies are needed to better understand the mode of reproduction of the pathogen. The low genetic diversity of L. theobromae populations in northeastern Brazil suggests that resistant cultivars could be used as a durable management strategy to reduce the impact of the diseases caused by this pathogen.  相似文献   

9.
Phytophthora ramorum has been detected in official plant health surveys on Rhododendron, Viburnum and Camellia in ornamental nurseries in northern Spain since 2003. A collection of 94 isolates of P. ramorum was obtained from 2003 to 2008 from plants with symptoms at different geographical locations. Isolates were identified based on morphology and sequence of the rDNA ITS region. Mating type, genetic variation, sensitivity to phenylamide fungicides and aggressiveness of these isolates were determined. All isolates belonged to the A1 mating type, ruling out the possibility of genetic recombination. Seven microsatellite markers were used to study genetic diversity; three out of the seven microsatellite markers were polymorphic within the Spanish population of P. ramorum. This study confirms that all Spanish isolates of P. ramorum belonged to the EU1 lineage. Twelve intralineage genotypes were detected, five that are unique to Spain (EU1MG38, EU1MG41, EU1MG37, EU1MG39 and EU1MG40) and seven that are also present in at least one other European country (EU1MG1, EU1MG29, EU1MG22, EU1MG13, EU1MG2, EU1MG18 and EU1MG26). Genotypes EU1MG37, EU1MG39 and EU1MG40 were isolated from Rhododendron from one region; EU1MG38 and EU1MG41 were isolated from Camellia from two different regions. Isolates of genotype EU1MG38 were resistant to metalaxyl and mefenoxam. The level of genetic diversity within the Spanish population of P. ramorum is limited and indicates a relatively recent clonal expansion.  相似文献   

10.
Downy mildew (Plasmopara viticola) is one of the most important diseases in grape-growing areas worldwide, including Brazil. To examine pathogen population biology and structure, P. viticola was sampled during the 2015/16 growing season from 516 lesions on nine grape cultivars in 11 locations in subtropical areas of São Paulo State, Brazil. For identification of cryptic species, a subsample of 130 isolates was subjected to cleaved amplified polymorphic sequence (CAPS) analysis, and for 91 of these isolates the ITS1 region was sequenced. These analyses suggest that the population of P. viticola in São Paulo State consists of a single cryptic species, P. viticola clade aestivalis. Seven microsatellite markers were used to determine the genetic structure of all 516 P. viticola isolates, identifying 23 alleles and 55 multilocus genotypes (MLGs). Among these MLGs, 34.5% were clonal and represented 93% of the isolates sampled. Four dominant genotypes were present in at least five different locations, corresponding to 65.7% of the isolates sampled. Genotypic diversity (Ĝ = 0.21–0.89) and clonal fraction (0.58–0.96) varied among locations (populations). Most populations showed significant deviation from Hardy–Weinberg expectations; in addition, excess of heterozygosity was verified for many loci. However, principal coordinate analysis revealed no clusters among locations and no significant isolation by distance was found, suggesting high levels of migration. The results indicate that downy mildew epidemics result from multiple clonal infections caused by a few genotypes of P. viticola, and reproduction of P. viticola in São Paulo State is predominantly asexual.  相似文献   

11.
The ascomycete Hymenoscyphus fraxineus causes devastating damage to the European common ash (Fraxinus excelsior). The fungus originates from Asia, where it coexists with native ash species and completes its life cycle by sporulating on degrading ash leaf litter on the forest floor. Given this life cycle of the fungus, genotypes of Hfraxineus with varying degrees of aggressiveness may coexist in infected European ash forests. To test this hypothesis, we cultured 19 single-spore isolates from apothecia collected in a trial of heavily infected ash in Denmark and carried out stem inoculations on young ash seedlings. Microsatellite markers revealed that the 19 isolates were all genetically unique and did not show any genetic structure. High variation was observed among the 19 isolates in pathogenicity on young seedlings. The variation (assessed as necrosis development) was highly significant, but not correlated with the vigour of the fungal isolates when grown on culture media. The results support the hypothesis that aggressiveness of Hfraxineus may not be crucial for its fitness. In this sense, ash dieback disease may differ from other recent emerging infectious diseases on trees. We discuss the variation in aggressiveness of Hfraxineus in relation to durability of resistance and future management of the ash dieback epidemic. The findings of this study call for more research into natural variation in endophytic versus pathogenic behaviour of Hfraxineus on European ash.  相似文献   

12.
Colletotrichum kahawae is a specialized plant pathogen of arabica coffee in Africa, able to infect green berries. The economic impact of this pathogen means there is an urgent need to better understand its pathogenic lifestyle, in particular its aggressiveness. In this study, several quantitative traits including disease severity, latent period and incubation period were measured to concomitantly assess the aggressiveness of 26 C. kahawae isolates. The results show that the area under disease progression curve is the most informative variable, particularly when joined together with the index disease intensity 10 days after inoculation and latency period, while the incubation period is not a reliable trait to distinguish aggressiveness levels in C. kahawae. This study also confirms the suitability of hypocotyls and detached green berries to perform C. kahawae aggressiveness assays, revealing that hypocotyls are a more reproducible testing material. Based on isolate profiles, three aggressiveness classes were established (high, moderate and low). A cytological analysis of representative isolates from each class showed that aggressiveness can be related to the development of post-penetration stages, rather than conidia germination and appressoria differentiation. This study provides, for the first time, the best metrics to evaluate C. kahawae aggressiveness, characterizing the profile of a broad range of isolates, and defining a set of parameters that can be used to classify new isolates. Furthermore, the collected information will contribute to the improvement of coffee breeding programmes, through the selection of tester isolates for prescreening of resistant coffee materials, and offers the opportunity to engage on future genotype–phenotype studies.  相似文献   

13.
Since 2006, verticillium wilt of olive induced by Verticillium dahliae has caused considerable economic losses in olive orchards in Tunisia. The genetic structure of V. dahliae isolates collected from different olive growing regions was investigated using virulence tests, vegetative compatibility grouping (VCG) and amplified fragment length polymorphism (AFLP) analyses. In total, 42 isolates of V. dahliae from diseased olive trees were tested. Cluster analysis and principal coordinate analysis revealed that geographic origin was the main factor determining the genetic structure of V. dahliae populations and both methods indicated a genetic separation between the central and coastal isolates. Isolates were divided into two major groups: the AFLP‐I group included all isolates from Sidi Bouzid, Kairouan, Kasserine and Sfax (centre of the country) and the AFLP‐II group included isolates from Monastir, Zaghouane, Sousse, Mahdia (coastal region), and two isolates from Sfax. Analysis of the molecular variance (amova ) indicated a significant level of genetic differentiation among (76%) and within (23%) the two populations. Analyses of both the defoliating (D) and non‐defoliating (ND) pathotypes and VCG markers indicated that most of the isolates belong to VCG 2A and 4B/ND pathotype. The disease severity was highly variable among the isolates tested (< 0·05) with no evidence of association between aggressiveness and geographical origin of the isolates. Overall, results of this study revealed a clear association between the genetic diversity of the isolates and their geographic origin, but not between genetic diversity and virulence patterns.  相似文献   

14.
Calonectria pseudonaviculata, the causal agent of the disease of Buxus spp. known as ‘box blight’, was first detected in the mid‐1990s in the UK and New Zealand. Since then, the geographic range of box blight has rapidly expanded to at least 21 countries throughout temperate regions of the world, causing significant losses in nurseries, gardens and wild boxwood populations. This study determined the genetic diversity in a collection of 234 Calonectria isolates from diseased Buxus plants, originating from 15 countries and four continents. Two genetic clades, G1 and G2, were identified within this sample using multilocus phylogenetic analysis. The application of genealogical concordance phylogenetic species recognition criteria using four independent nuclear loci determined that the Calonectria isolates in these two clades are separate phylogenetic species. The isolates in the G1 clade were upheld as C. pseudonaviculata sensu stricto. Based on phylogenetic distinctiveness and the lack of mating, a new species is proposed, Calonectria henricotiae sp. nov., for the Calonectria isolates in the G2 clade. A PCR‐RFLP assay and real‐time PCR assays were developed to easily and reproducibly differentiate these species. To assess the practical implications of the identification of the two species, their physiology, fungicide susceptibility and pathogenicity were compared. No differences in pathogenicity were observed. However, C. henricotiae isolates exhibited greater thermotolerance and reduced sensitivity to specific triazole as well as strobilurin fungicides. The identification of a second phylogenetic species causing box blight may have a substantial impact on the epidemiology and control of this destructive disease.  相似文献   

15.
Species‐ and population‐specific differences in fungicide resistance and aggressiveness within Botrytis makes basic data on genetic diversity important for understanding disease caused by this fungus. Genetic diversity of Botrytis was surveyed between 2008 and 2012 from grapes from five New Zealand wine‐growing regions. A total of 1226 isolates were gathered from symptomless flower buds at the start of the growing season and 1331 isolates from diseased fruit at harvest. Two species were found, B. cinerea and B. pseudocinerea. Botrytis pseudocinerea was common in both Auckland vineyards sampled, and infrequent elsewhere. However, even in Auckland, it was rarely isolated from diseased fruit. The presence of the Boty and Flipper transposons was assessed. Isolates with all four transposon states (Boty only, Flipper only, both Boty and Flipper, no transposons) were found for both species. Both vineyards in the Auckland region had high numbers of Flipper‐only isolates at flowering; both vineyards from the Waipara region had high numbers of Boty‐only isolates at flowering. Most isolates from diseased fruit at harvest contained both transposons. These observations suggest that B. pseudocinerea, and isolates with one or both of the transposons missing, may be less aggressive than B. cinerea, or than isolates with both transposons present. Two clades were resolved within B. pseudocinerea, only one of which has been reported from European vineyards. Phylogenetic diversity within B. cinerea in New Zealand was similar to that known from Europe, including isolates that appear to match Botrytis ‘Group S’. The taxonomic implications of this genetic diversity are discussed.  相似文献   

16.
Moniliophthora perniciosa, causal agent of witches’ broom disease in cacao plantations in South America and the Caribbean Islands, has co‐evolved with its host cacao, but the pathogen has also emerged in many solanaceous hosts in Brazil, including economically important food crops and wild species. This study was carried out to: (i) determine the existence of host subpopulations of M. perniciosa in Brazil; (ii) estimate gene and genotypic diversity of M. perniciosa host subpopulations infecting solanaceous hosts in southeastern Bahia and Minas Gerais states, Brazil; and (iii) estimate the amount and directionality of historical migration of M. perniciosa subpopulations. Up to 203 M. perniciosa isolates collected from solanaceous hosts with symptoms from Bahia and Minas Gerais states in Brazil and from Theobroma spp. (cacao) and Herrania spp. were characterized with 11 microsatellite markers. Factorial correspondence analyses, minimum‐spanning network and Bayesian clustering revealed genetic clusters associated with their host of origin. Significant subpopulation differentiation was evident (ΦST = 0.30,  0.05) among M. perniciosa host subpopulations. Most of the multilocus microsatellite genotypes (MLMGs) were host‐specific, with few MLMGs shared among subpopulations. Pairwise comparisons among M. perniciosa host subpopulations were significant, except between jurubeba (Solanum paniculatum) and cultivated solanaceous subpopulations. The combined analyses rejected the null hypothesis that M. perniciosa in Brazil is a single genetic population not structured by host. These findings support a scenario of introduction and subsequent adaptation to solanaceous hosts that should be taken into consideration to improve mitigation and management of M. perniciosa.  相似文献   

17.
Evaluations of plant resistance to pathogens are rarely made using isolates from wild habitats, although the heterogeneity of such habitats may generate pathogen diversity which could be a source of new virulence in cultivated habitats. The aim of this study was to investigate whether scab resistance factors, identified and characterized in apples using isolates of Venturia inaequalis from a cultivated habitat, remained effective against isolates from a wild habitat. Three V. inaequalis core collections originating from the cultivated apple Malus × domestica and from two wild species, M. sieversii and M. sylvestris, were established to maximize pathogen diversity. For each core collection, 10 isolates were inoculated in mixtures onto 51 genotypes from an apple progeny segregating for two qualitative resistance genes and six quantitative resistance loci (QRL). On each apple genotype, isolates that contributed to the scab symptoms were identified within the mixture using microsatellite markers. The most frequently detected isolates were inoculated singly to compare their aggressiveness according to their host origin. The results showed that isolates from a wild habitat were able to infect the susceptible apple genotypes. However, these isolates were never more aggressive than isolates from the cultivated habitat on the resistance factors tested. It can therefore be concluded that the resistance factors used in this study, identified with V. inaequalis isolates from a cultivated habitat, remained effective against isolates from M. sylvestris and M. sieversii.  相似文献   

18.
The ascomycete fungus Cryphonectria parasitica, causal agent of chestnut blight, is probably one of the best known invasive fungal pathogens in forests of Europe and North America. Mycovirus that reduces virulence of C. parasitica can be used as a biocontrol agent of the chestnut blight. However, anastomosis‐mediated virus transmission is limited by a vegetative (in)compatibility (vc) system involving at least six known diallelic vic genetic loci. This study looked at vegetative compatibility (vc) diversity in two populations of C. parasitica in Croatia. For that purpose, a PCR assay was validated and implemented using already known/published and newly designed primers for amplification of six known vic loci. The vc genotypes determined by PCR for 158 C. parasitica isolates investigated in this study were in complete agreement with the vc genotypes determined by pairwise co‐culturing of the same isolates, revealing the specificity and accuracy of the PCR‐based molecular vic genotyping assay. Twenty‐six unique vc genotypes were found among 158 isolates, and 19 vc types per population, which makes Croatian C. parasitica populations among the most diverse in Europe regarding the number of vc types and genetic diversity. Low values of multilocus linkage disequilibrium suggest sexual reproduction as a major contributor to high C. parasitica genetic diversity in studied populations.  相似文献   

19.
20.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号