首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
杂草对AHAS抑制剂的抗药性分子机理研究进展   总被引:3,自引:1,他引:2  
除草剂在田间的重复及不合理使用,导致了杂草抗药性的发生和发展。其中AHAS抑制剂由于靶标单一,抗性发展十分迅速。截至2009年,已有103种杂草对AHAS抑制剂产生了抗药性,占19类化学除草剂总抗药性杂草生物型的近1/3。从AHAS基因突变位点及种类与杂草抗药性水平的关系、AHAS基因突变与AHAS酶活性的关系、AHAS基因拷贝数与杂草抗药性的关系以及AHAS酶与除草剂结合前后的三维结构等方面,综述了杂草对AHAS抑制剂产生抗药性的机理,旨在为AHAS抑制剂抗性研究提供参考。并对自然种群目标基因的等位基因检测技术(ECOTILLING)和衍生型酶切扩增多态性序列(dCAPS)两种通过检测等位基因多态性的手段快速诊断抗药性杂草的新技术进行了介绍,讨论了延缓杂草抗药性发生和发展的策略。  相似文献   

2.
类胡萝卜素生物合成抑制剂研究进展   总被引:8,自引:0,他引:8       下载免费PDF全文
概述了类胡萝卜素生物合成抑制剂类除草剂的作用机理以及八氢番茄红素去饱和酶(phytoene desaturase, PD酶)抑制剂的结构-活性关系。简要介绍了进入商品化开发应用的类胡萝卜素生物合成抑制剂类除草剂品种以及它们的除草活性。  相似文献   

3.
大多数除草剂都是通过特殊酶的抑制而产生杀草作用的。根据作用靶标对除草剂进行分类,了解靶标酶的作用机理及特性,对于新型除草剂的设计和杂草抗性的防治能够起到很大的帮助。本文介绍了谷胱甘肽转移酶(GST)、细胞色素P450酶、乙酰乳酸合成酶(ALS)、乙酞辅酶A羧化酶(ACCace)的研究进展。并分别从酶的生理功能、酶学特征、抑制剂作用机理、抑制剂的研究、抗性等方面进行了不同程度的阐述。  相似文献   

4.
原卟啉原IX氧化酶是血红素和叶绿素生物合成中的关键酶,是过氧化型除草剂的分子靶标,当植物用二苯醚类,酞酰亚胺以及一些吡啶衍生物等除草剂处理后,造成原卟啉原IX积累,膜脂质破坏,最终细胞死亡,同ALS抑制剂一样,作用靶标为原卟啉原化酶的除草剂,具有用药量低,活性高,杀草谱广,对哺乳动物低毒,对环境影响较小等良好特性,本文介绍了作用靶标为原卟啉原氧化酶的代表性品种。  相似文献   

5.
除草剂安全剂作用机理研究进展   总被引:4,自引:0,他引:4  
除草剂安全剂是一类可在不影响除草剂对靶标杂草活性的前提下,有选择性地保护作物免受除草剂伤害的特殊用途化合物,有关安全剂作用机理的研究对新安全剂的开发具有重要意义。目前关于除草剂安全剂的作用机理主要有4种观点:1)影响除草剂在作物体内的吸收和转运;2)与除草剂竞争靶标位点;3)影响靶标酶的活性;4)增强作物对除草剂的代谢。文章对近年来安全剂作用机理及安全剂对杂草的影响等研究进展进行了综述,并分析了当前存在的问题及未来的研究方向,旨在为深入研究安全剂的作用机理及新安全剂开发提供参考。  相似文献   

6.
几种除草剂靶酶及其抑制剂的研究进展   总被引:1,自引:0,他引:1  
根据作用靶标对除草剂进行分类,对于新型除草剂的设计能够起到很大的帮助。迄今为止,人们已发现除草剂的不同作用位点近30种,涉及到50余种不同化学结构的化合物。文中介绍了谷氨酰胺合成酶(GS)、咪唑甘油磷酯脱水酶(IGPD)、乙酰辅酶A羧化酶(ACCace)、八氢番茄红素脱氢酶(PDS)及其各自抑制剂的研究进展。分别从酶的生理功能、酶学特征、抑制剂作用机理、抑制剂的研究、抗性等方面进行了不同程度的阐述。  相似文献   

7.
乙酰羟基酸合成酶(AHAS)是磺酰脲类、咪唑啉酮类、三唑嘧啶磺酰胺类及水杨酸类除草剂的作用靶标,大田使用中杂草对这几类除草剂产生抗性的主要因素是AHAS酶的突变。利用大肠杆菌AHAS Ⅱ中464位的色氨酸突变体(W464A、W464F、W464L、W464Y),研究了野生型和突变酶对商品化除草剂(氯嘧磺隆、氯磺隆、咪唑乙烟酸、咪唑喹啉酸)以及烷硫基磺酰脲的敏感性。野生型E. coli AHAS Ⅱ对这些化合物的抑制作用较为敏感,而突变酶对其呈现出不同程度的抗性,使商品化除草剂的抑制常数增加了10~1.0×104倍不等,烷硫基磺酰脲的抑制常数增加幅度较小。烷硫基磺酰脲 1a 对W464L突变酶的高抑制活性,暗示着发展针对靶酶抗性的除草剂的可能性。  相似文献   

8.
对羟基苯基丙酮酸双氧化酶抑制剂筛选方法研究进展   总被引:1,自引:1,他引:0  
对羟基苯基丙酮酸双氧化酶(HPPD)是植物体正常生长所必需的质体醌和生育酚生物合成路径中的关键酶,已成为当前最重要的除草剂作用靶标之一。发展快速、可靠的HPPD抑制剂筛选方法对研究小分子化合物与HPPD之间的相互作用,以及开展基于靶酶结构的新型HPPD抑制剂设计均具有重要意义。结合HPPD的结构和功能,文章从生物分析的角度分别就高效液相色谱、同位素标记、偶联法、电化学及简易筛选模型等方法在HPPD抑制剂筛选中的运用进行了总结,并对发展HPPD抑制剂的高通量筛选方法进行了展望。  相似文献   

9.
大多数除草剂都是通过特殊酶的抑制而产生杀草作用的。因此,以靶标进行分子设计,鉴定化合物分子结构中的活性团,开发能有效杀死杂草、而不伤害作物并对动物及环境安全的除草剂品种有着重要意义。本文着重对各种不同类型靶标酶在除草剂的研究与开发过程中的应用加以阐述。  相似文献   

10.
除草剂安全剂的生理生化作用机制研究进展   总被引:9,自引:0,他引:9  
除草剂安全剂是一种化学物质,它可以通过生理或生化的途径降低除草剂对作物的毒性,而不降低除草剂的功效.安全剂影响作物的吸收和传导,诱导作物体内P450酶活性、谷胱甘肽调控及其靶标酶ALS的活性.其生理和生化机制研究,不仅有助于安全剂的开发和优化,同时也是了解和运用除草剂活性和抗性机制的途径.该文综述了近年来国内外安全剂生理生化作用机制的研究进展,并探讨其研究方向.  相似文献   

11.
Imidazolinone-tolerant crops: history, current status and future   总被引:15,自引:0,他引:15  
Imidazolinone herbicides, which include imazapyr, imazapic, imazethapyr, imazamox, imazamethabenz and imazaquin, control weeds by inhibiting the enzyme acetohydroxyacid synthase (AHAS), also called acetolactate synthase (ALS). AHAS is a critical enzyme for the biosynthesis of branched-chain amino acids in plants. Several variant AHAS genes conferring imidazolinone tolerance were discovered in plants through mutagenesis and selection, and were used to create imidazolinone-tolerant maize (Zea mays L), wheat (Triticum aestivum L), rice (Oryza sativa L), oilseed rape (Brassica napus L) and sunflower (Helianthus annuus L). These crops were developed using conventional breeding methods and commercialized as Clearfield* crops from 1992 to the present. Imidazolinone herbicides control a broad spectrum of grass and broadleaf weeds in imidazolinone-tolerant crops, including weeds that are closely related to the crop itself and some key parasitic weeds. Imidazolinone-tolerant crops may also prevent rotational crop injury and injury caused by interaction between AHAS-inhibiting herbicides and insecticides. A single target-site mutation in the AHAS gene may confer tolerance to AHAS-inhibiting herbicides, so that it is technically possible to develop the imidazolinone-tolerance trait in many crops. Activities are currently directed toward the continued improvement of imidazolinone tolerance and development of new Clearfield* crops. Management of herbicide-resistant weeds and gene flow from crops to weeds are issues that must be considered with the development of any herbicide-resistant crop. Thus extensive stewardship programs have been developed to address these issues for Clearfield* crops.  相似文献   

12.
针对除草剂敏感型乙酰羟基酸合成酶E. coli AHAS II的抗性域,引入W464A、W464F、W464L、W464Y点突变。采用Megaprimer PCR定点突变,测序鉴定,构建了4个E. coli AHAS IIW464位点的突变体。通过对E. coli AHAS II野生型及突变体动力学性质的测定,发现它们对于底物—丙酮酸及3种辅助因子(FAD、ThDP、Mg2+)有着不同的特征常数。这些部分抗性酶系的建立以及对动力学性质的系统研究,为探讨AHAS酶对农药分子抗性的作用机制、设计合成新除草剂及其筛选体系提供了基础。  相似文献   

13.
M Choe  W Choe  I Lee  M Wu  S Liu 《Weed Research》2015,55(4):359-369
Sulfonylurea (SU) herbicides that target acetohydroxyacid synthase (AHAS, also called acetolactate synthase (ALS)) are regarded as one of the most important classes of herbicides, due to their extremely low toxicity towards mammals, ultra‐low dosage application and high selectivity. However, mutations of AHAS to a herbicide‐insensitive form appear to be a worldwide problem for acquired resistance. In this study, three mutated AHAS sequences were used. In the mutated AHASs, the proline (Pro) was replaced by one of threonine (Thr), alanine (Ala) or serine (Ser) in AHAS amino acid (AA) position 197Pro. To understand the herbicide resistance mechanism, we built dimeric AHAS complex models based on 1YBH of protein data bank (PDB) with SU herbicide, chlorimuron ethyl (CIE), using a homology. The three mutated AHASs in complex with CIE were analysed, and the resistance mechanism to SU herbicides was studied by molecular dynamics (MD) simulation performed using GROMACS 4.5.5. MD simulation analysis of wild‐type and the three mutated dimeric AHAS–CIE complex systems revealed the conformational stability and changes in herbicide binding to dimeric AHAS system due to the mutation. Additionally, it showed that conformational change of amino acid residue 200Met (methionine) was associated with the imidazolinone herbicide resistance mechanism. According to our computation, the detailed mechanism of herbicide resistance was variable, depending on the type of mutated amino acid, providing new insights for designing herbicides specific to each mutant AHAS.  相似文献   

14.
MIA-QSAR evaluation of a series of sulfonylurea herbicides   总被引:1,自引:0,他引:1  
  相似文献   

15.
The structure of the imidazolinone herbicides consists of three distinct moieties: the imidazolinone ring, the carboxylic acid and the backbone. The effect of changes in each of these on herbicidal activity, crop selectivity and AHAS enzyme inhibition has been studied. Though both whole-plant and enzyme activity were drastically affected by changes in the carboxylic acid or imidazolinone ring portions of the molecule, a variety of backbones and of substituents on the backbones afforded good activity. Methyl-isopropyl was found to be the best combination of substituents on the imidazolinone ring. While pyridine backbones generally gave the most active herbicides, benzene backbones led to the strongest enzyme inhibition. A QSAR study in the pyridine series generated two equations which proved useful for guiding the analog program toward the synthesis of potent heteropyridyl compounds. Selectivity in wheat is dependent upon differences in the rate of metabolism of key groups. Rapid metabolism of either the imidazolinone ring or backbone alkyl groups occurs rapidly in soybeans compared with susceptible weeds.  相似文献   

16.
A herbicide with a new mode of action has not been commercialized for more than 30 years. A recent paper describes a novel genomic approach to herbicide and herbicide mode of action discovery. Analysis of a microbial gene cluster revealed that it encodes genes for both the biosynthetic pathway for production of the sesquiterpene aspterric acid and an aspterric acid‐resistant form of dihydroxy acid dehydratase (DHAD), its target enzyme. Aspterric acid is weak compared with commercial synthetic herbicides, and whether DHAD is a good herbicide target is unclear from this study. Nevertheless, this genomic approach provides a novel strategy for the discovery of herbicides with new modes action. © 2018 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号