首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
细沟侵蚀临界坡度研究   总被引:4,自引:0,他引:4  
根据细沟泥沙运动特点,考虑细颗粒泥沙的粘着力作用和非均匀沙的暴露度,建立了细沟泥沙起动公式。结合细沟泥沙起动公式和细沟稳定条件得到坡面侵蚀临界坡度的计算方法。通过计算得到如下的结论:(1)坡面细沟侵蚀临界坡度是土壤性质的函数,在反映土壤性质的容重等参数一定的情况下,仅是粒径的函数。(2)黄土坡面细沟侵蚀临界坡度在21.3°~50.4°之间。对于中值粒径为0.0185mm的黄土坡面,临界坡度为39.9°。(3)对应细沟侵蚀临界坡度存在一临界粒径,当粒径大于该粒径时,不存在细沟侵蚀临界坡度。当临界粒径为0.0198mm,对应的最大临界坡度为50.4°。  相似文献   

2.
文中利用室内模拟降雨技术,通过不同覆沙方式和不同降雨强度的组合试验,对坡面侵蚀产沙特性进行了研究。得到结果:坡面初始产流时间基本随雨强的增大而提前。坡面覆沙后侵蚀量增多,且侵蚀量随雨强的增大而增大,半覆沙坡面的产沙量是全覆沙坡面的1.06~2.48倍。0.5、1.0mm/min雨强时半覆沙坡面产沙高于无覆沙坡面,1.5mm/min雨强时低于无覆沙坡面,而半覆沙坡面产沙则均高于全覆沙坡面。全覆沙破面含沙量受雨强影响较小,减沙效果较稳定。试验结果表明,坡面覆沙可以有效延迟初始产流时间;坡面覆沙后侵蚀程度增强,且随降雨强度的增大而增大,半覆沙坡面侵蚀程度高于全覆沙坡面;无覆沙坡面受降雨强度影响较大。文中为研究风水复合侵蚀提供了数据支撑,以期为揭示黄土坡面侵蚀发生机理和水土流失规律提供一些参考。  相似文献   

3.
不同土地利用方式对丘陵山区坡面侵蚀产沙量的影响   总被引:3,自引:0,他引:3  
选取安徽省霍山县大官山的典型研究区域,通过径流试验,分析了近20年6种典型土地利用方式的侵蚀产沙特性及影响因素.结果表明:不同土地利用方式对坡面侵蚀产沙量的影响依次是顺坡耕作区>标准小区>经济林区>牧草区>乔木用材林区>梯田小区.在不同土地利用方式下,防止土壤流失最有效的是梯田,而顺坡耕作区水土流失量最大.坡面侵蚀产沙量与降雨侵蚀力表现为幂函数关系,且相关性达到了极显著水平.  相似文献   

4.
面积高程积分(Hypsometric Integral,HI)是定量表征地形发育阶段及侵蚀趋势的重要指标。通过90mm/h雨强下4个典型坡度的人工模拟分段降雨试验,在三维激光扫描的基础上,利用点云数据生成DEM,对微地形坡面HI值的3种计算方法及其变化特征进行了分析,并根据细沟河网格网的HI值进行了验证。结果表明:1)HI方法可用于微地形坡面侵蚀发育的定量表征,HI值介于0.50-0.59之间。在不同坡度条件下,细沟出现之前坡面侵蚀量逐渐增加且HI总体呈现递减趋势,而细沟出现后侵蚀量在细沟中有所堆积且HI值有一定回增。2)河网格网HI值介于0.45±0.11之间。随着坡度的增加,HI值总体上表现出增加的趋势,潜在侵蚀能力有增大的趋势且侵蚀量和坡度之间存在一定的转折关系。3)对比3种不同HI计算精度来看,坡面HI与格网HI之间的RMSE和SAE值差别并不明显,但总体均表现为积分曲线法的计算精度要略优于体积比例法和起伏比法。研究结果对于丰富微地形尺度下HI的计算,深入认识坡面侵蚀发育过程及其机理具有重要的参考价值。  相似文献   

5.
坡长对径流及侵蚀的影响   总被引:15,自引:0,他引:15  
张家口市水保试验站坡长小区五年观测资料表明,降雨强度影响径流量、侵蚀量随坡长的变化。降雨强度较小时,径流量不能用坡长与降雨强度的乘积代替,侵蚀量随坡长增加较慢。降雨强度较大时,径流量可用坡长与降雨强度的乘积代替,侵蚀量方程中坡长指数较大。  相似文献   

6.
基于GIS的青海共和盆地风水交互侵蚀格局初析   总被引:2,自引:0,他引:2  
基于野外调查,遥感影像辨析和GIS技术,利用DEM、地形图、沙漠化图等图件以及气象资料,对青海共和盆地坡度、坡向和地表形态类型进行了统计分析,分析了青海共和盆地风水交互侵蚀的基本格局,初步得到:1)研究区坡面的侵蚀强弱呈现垂直分带性.在各流域的分布中,沙沟河流域的坡面切沟侵蚀最为严重;2)坡向与风向的夹角决定了风在谷地...  相似文献   

7.
以青海省乐都县、互助县6条侵蚀沟为研究对象,收集了研究区域的降雨、地形地貌、植被、土壤等数据,系统分析了各因子与土壤侵蚀量的关系。结果表明,该研究区域年侵蚀厚度与年降雨总量的变化规律不明显,土壤容重、植被覆盖度和坡度三个因子的共同作用对侵蚀量有显著的影响。区域内各影响因子对土壤侵蚀影响的大小排序为:植被盖度坡度土壤容重土壤可蚀性降雨侵蚀力,再次说明退耕还林(还草)工程能够有效改善区域水土流失问题。  相似文献   

8.
针对单一径流调控措施难以得到较好水土保持效果的问题,本研究通过天然降雨径流、产沙的试验定位观测,对几种措施复合后的次降雨径流、产沙的调控率,及对作物产量的影响做了分析.研究表明:复合措施可以有效地对坡面径流、产沙进行调控,减少坡面径流量和产沙量90%以上,同时提高农作物的产量10%以上.复合措施因其优异的径流、产沙调控能力,增产明显,成本低廉,实施简便,成为一种性价比较高的坡面径流调控模式.  相似文献   

9.
覆沙坡面微地形变化与侵蚀产沙的响应关系   总被引:2,自引:0,他引:2  
坡面微地形的发育反映了侵蚀的强度及变化过程。为了定量研究不同覆沙厚度下坡面的微地形变化与侵蚀之间的响应,通过模拟1. 5 mm·min~(-1)雨强下的3场连续降雨试验,结合三维激光扫描仪技术,分析了坡面微地形与土壤侵蚀的空间变化特征,较好地拟合了微地形变幅与侵蚀量之间的关系。结果表明:坡面平均含沙量随着降雨场次的增加而减小。覆沙坡面主要产沙区的长度是黄土坡面的3倍左右,且坡段侵蚀量的峰值多分布在坡面4~6 m的位置,而黄土坡面侵蚀峰值分布在3~4 m的位置。随着降雨场次的增加,黄土坡面微地形因子显著增大(P 0. 05),覆沙坡面微地形因子总体呈增大趋势,但并不显著(P 0. 05)。与黄土坡面和覆沙坡面的侵蚀响应最强烈的微地形因子分别为地表切割深度和地表粗糙度,黄土坡面微地形变幅与侵蚀量的响应关系较强于覆沙坡面,覆沙坡面应寻找其他敏感的指标对方程进行优化。该研究为揭示风水复合侵蚀地区的侵蚀机理提供一定参考。  相似文献   

10.
坡度对黄土坡面径流溶质迁移特征的影响   总被引:6,自引:0,他引:6  
通过田间模拟降雨试验,分析了坡度对坡面物质迁移特性的影响.结果显示,坡度对坡面物质迁移的影响十分显著;降雨强度一定时,坡度达到15°左右时,径流量达到最大;坡度对径流养分流失量的影响是通过径流量起主导作用,径流量大相应径流携带养分流失总量增加.利用幂函数对径流溶质浓度变化过程进行了拟合,结果显示幂函数可以很好反映田间坡面溶质随地表径流变化过程,说明在侵蚀环境下径流溶质浓度变化过程符合幂函数.  相似文献   

11.
Climate change can escalate rainfall intensity and cause further increase in sediment transport in arid lands which in turn can adversely affect water quality. Hence, there is a strong need to predict the fate of sediments in order to provide measures for sound erosion control and water quality management. The presence of microtopography on hillslopes influences processes of runoff generation and erosion, which should be taken into account to achieve more accurate modelling results. This study presents a physically based mathematical model for erosion and sediment transport coupled to one-dimensional overland flow equations that simulate rainfall-runoff generation on the rill and interrill areas of a bare hillslope. Modelling effort at such a fine resolution considering the flow connection between interrill areas and rills is rarely verified. The developed model was applied on a set of data gathered from an experimental setup where a 650 cm×136 cm erosion flume was pre-formed with a longitudinal rill and interrill having a plane geometry and was equipped with a rainfall simulator that reproduces natural rainfall characteristics. The flume can be given both longitudinal and lateral slope directions. For calibration and validation, the model was applied on the experimental results obtained from the setup of the flume having 5% lateral and 10% longitudinal slope directions under rainfall intensities of 105 and 45 mm/h, respectively. Calibration showed that the model was able to produce good results based on the R2(0.84) and NSE(0.80) values. The model performance was further tested through validation which also produced good statistics(R2=0.83, NSE=0.72). Results in terms of the sedigraphs, cumulative mass curves and performance statistics suggest that the model can be a useful and an important step towards verifying and improving mathematical models of erosion and sediment transport.  相似文献   

12.
黄土丘陵区土壤侵蚀链各垂直带能量转化特征研究   总被引:3,自引:0,他引:3  
黄土坡面各种侵蚀方式以水流能量、侵蚀物质及侵蚀微地貌相关联 ,水流能量是制约侵蚀物质和侵蚀微地貌的时空分异的本质原因。研究表明 ,雷诺数 (Re)、费罗德数 (Fr)及过水断面单位能量 (∈ )等复合参数为判别不同侵蚀方式的水动力学指标。根据二维多坡段组合模型实验结果 ,系统分析了土壤侵蚀链内细沟、浅沟及切沟发生的雷诺数、费罗德数及过水断面单位能量指标的变化特征 ,建立起各种侵蚀方式发生变化与侵蚀能量之间的联系。  相似文献   

13.
As an important parameter in the soil erosion model, soil surface roughness(SSR) is used to quantitatively describe the micro-relief on agricultural land. SSR has been extensively studied both experimentally and theoretically; however, no studies have focused on understanding SSR on the Loess Plateau of China. This study investigated changes in SSR for three different tillage practices on the Loess Plateau of China and the effects of SSR on runoff and erosion yield during simulated rainfall. The tillage practices used were zero tillage(ZT), shallow hoeing(SH) and contour ploughing(CP). Two rainfall intensities were applied, and three stages of water erosion processes(splash erosion(I), sheet erosion(II) and rill erosion(III)) were analyzed for each rainfall intensity. The chain method was used to measure changes in SSR both initially and after each stage of rainfall. A splash board was used to measure the splash erosion at stage I. Runoff and sediment data were collected continuously at 2-min intervals during rainfall erosion stages II and III. We found that SSR of the tilled surfaces ranged from 1.0% to 21.9% under the three tillage practices, and the order of the initial SSR for the three treatments was ZT〈SH〈CP. For the ZT treatment, SSR increased slightly from stage I to III, whereas for the SH and CP treatments, SSR decreased by 44.5% and 61.5% after the three water erosion stages, respectively, and the greatest reduction in SSR occurred in stage I. Regression analysis showed that the changes in SSR with increasing cumulative rainfall could be described by a power function(R2〉0.49) for the ZT, SH and CP treatments. The runoff initiation time was longer in the SH and CP treatments than in the ZT treatment. There were no significant differences in the total runoff yields among the ZT, SH and CP treatments. Sediment loss was significantly smaller(P〈0.05) in the SH and CP treatments than in the ZT treatment.  相似文献   

14.
坡耕地是保障粮食安全与经济发展的重要资源.本文利用承德市南山径流场资料对不同坡长下径流深、含沙量及侵蚀量进行对比分析,结果显示:坡长和降雨强度都对土壤侵蚀有影响,随着坡长变化,导致土壤侵蚀量变化的两个主导因素不断变换.雨强小于0.25 mm/min时,坡面土壤侵蚀模数随坡长的增加而增大;雨强大于0.25mm/min时,随坡长的增加先增大后减小,最大侵蚀量总是出现在22 m坡长范围内.径流深均值与侵蚀量增量随坡长变化趋势一致,含沙量均值变化与雨强关系密切.所以治理京津水源区坡耕地水土流失,应在22 m坡长以内采取等高植物篱等措施,既可降低工程投入,又减少坡面土壤流失,提高土地生产力.  相似文献   

15.
WANG Xinyu 《干旱区科学》2023,15(2):180-190
Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conservation measures in ephemeral gullies. In this study, an artificial simulated confluence test and stereoscopic photogrammetry were used to analyze the distribution characteristics of erosion and deposition in ephemeral gullies protected by geocells and the effect of different confluence flows on the erosion process of ephemeral gullies. Results showed that when the confluence flow was larger, the effect of geocell was more evident, and the protection against ephemeral gully erosion was stronger. When the confluence flow rates were 0.6, 1.8, 2.4, and 3.0 m3/h, ephemeral gully erosion decreased by 37.84%, 26.09%, 21.40%, and 35.45%. When the confluence flow rates were 2.4 and 3.0 m3/h, the average sediment yield rate of the ephemeral gully was close to 2.14 kg/(m2?min), and the protective effect of ephemeral gully erosion was enhanced. When the flow rate was higher, the surface fracture of the ephemeral gully was more serious. With an increase in confluence flow rate, the ratio of erosion to deposition increased gradually, the erosion area of ephemeral gullies was expanded, and erosion depth changed minimally. In conclusion, geocell measures changed erosion patterns by altering the rill erosion/deposition ratio, converting erosion from rill erosion to sheet erosion.  相似文献   

16.
KANG Yongde 《干旱区科学》2021,13(10):995-1014
Erosion is an important issue in soil science and is related to many environmental problems, such as soil erosion and sediment transport. Establishing a simulation model suitable for soil erosion prediction is of great significance not only to accurately predict the process of soil separation by runoff, but also improve the physical model of soil erosion. In this study, we develop a graphic processing unit (GPU)-based numerical model that combines two-dimensional (2D) hydrodynamic and Green-Ampt (G-A) infiltration modelling to simulate soil erosion. A Godunov-type scheme on a uniform and structured square grid is then generated to solve the relevant shallow water equations (SWEs). The highlight of this study is the use of GPU-based acceleration technology to enable numerical models to simulate slope and watershed erosion in an efficient and high-resolution manner. The results show that the hydrodynamic model performs well in simulating soil erosion process. Soil erosion is studied by conducting calculation verification at the slope and basin scales. The first case involves simulating soil erosion process of a slope surface under indoor artificial rainfall conditions from 0 to 1000 s, and there is a good agreement between the simulated values and the measured values for the runoff velocity. The second case is a river basin experiment (Coquet River Basin) that involves watershed erosion. Simulations of the erosion depth change and erosion cumulative amount of the basin during a period of 1-40 h show an elevation difference of erosion at 0.5-3.0 m, especially during the period of 20-30 h. Nine cross sections in the basin are selected for simulation and the results reveal that the depth of erosion change value ranges from -0.86 to -2.79 m and the depth of deposition change value varies from 0.38 to 1.02 m. The findings indicate that the developed GPU-based hydrogeomorphological model can reproduce soil erosion processes. These results are valuable for rainfall runoff and soil erosion predictions on rilled hillslopes and river basins.  相似文献   

17.
SU Yuanyi 《干旱区科学》2020,12(6):937-949
Seasonal freeze-thaw processes have led to severe soil erosion in the middle and high latitudes. The area affected by freeze-thaw erosion in China exceeds 13% of the national territory. So understanding the effect of freeze-thaw on erosion process is of great significance for soil and water conservation as well as for ecological engineering. In this study, we designed simulated rainfall experiments to investigate soil erosion processes under two soil conditions, unfrozen slope (UFS) and frozen slope (FS), and three rainfall intensities of 0.6, 0.9 and 1.2 mm/min. The results showed that the initial runoff time of FS occurred much earlier than that of the UFS. Under the same rainfall intensity, the runoff of FS is 1.17-1.26 times that of UFS; and the sediment yield of FS is 6.48-10.49 times that of UFS. With increasing rainfall time, rills were produced on the slope. After the appearance of the rills, the sediment yield on the FS accounts for 74%-86% of the total sediment yield. Rill erosion was the main reason for the increase in soil erosion rate on FS, and the reduction in water percolation resulting from frozen layers was one of the important factors leading to the advancement of rills on slope. A linear relationship existed between the cumulative runoff and the sediment yield of UFS and FS (R2>0.97, P<0.01). The average mean weight diameter (MWD) on the slope erosion particles was as follows: UFS0.9 (73.84 μm)>FS0.6 (72.30 μm)>UFS1.2 (72.23 μm)>substrate (71.23 μm)>FS1.2 (71.06 μm)>FS0.9 (70.72 μm). During the early stage of the rainfall, the MWD of the FS was relatively large. However, during the middle to late rainfall, the particle composition gradually approached that of the soil substrate. Under different rainfall intensities, the mean soil erodibility (MK) of the FS was 7.22 times that of the UFS. The ratio of the mean regression coefficient C2 (MC2) between FS and UFS was roughly correspondent with MK. Therefore, the parameter C2 can be used to evaluate soil erodibility after the appearance of the rills. This article explored the influence mechanism of freeze-thaw effects on loess soil erosion and provided a theoretical basis for further studies on soil erosion in the loess hilly regions.  相似文献   

18.
Complex erosion by wind and water causes serious harm in arid and semi-arid regions. The interaction mechanisms between water erosion and wind erosion is the key to further our understanding of the complex erosion. Therefore, in-depth understandings of the influences of water erosion on wind erosion is needed. This research used a wind tunnel and two rainfall simulators to investigate the influences of water erosion on succeeding wind erosion. The wind erosion measurements before and after water erosion were run on semi-fixed aeolian sandy soil configured with three slopes(5°, 10° and 15°), six wind speeds(0, 9, 11, 13, 15 and 20 m/s), and five rainfall intensities(0, 30, 45, 60 and 75 mm/h). Results showed that water erosion generally restrained the succeeding wind erosion. At a same slope, the restraining effects decreased as rainfall intensity increased, which decreased from 70.63% to 50.20% with rainfall intensity increased from 30 to 75 mm/h. Rills shaped by water erosion could weaken the restraining effects at wind speed exceeding 15 m/s mainly by cutting through the fine grain layer, exposing the sand layer prone to wind erosion to airflow. In addition, the restraining effects varied greatly among different soil types. The restraining effects of rainfall on the succeeding wind erosion depend on the formation of a coarsening layer with a crust and a compact fine grain layer after rainfall. The findings can deepen the understanding of the complex erosion and provide scientific basis for regional soil and water conservation in arid and semi-arid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号