首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
在脊椎动物系统进化中,鱼类处于承前启后的关键地位.与高等脊椎动物相比,鱼类的性别决定机制具有原始性、多样性和易变性,并具有所有脊椎动物的性别决定方式,存在从雌雄同体到雌雄异体的各种性别类型,性逆转在鱼类也是较为常见的现象.  相似文献   

2.
人工雌核发育在鱼类遗传育种中的应用   总被引:5,自引:0,他引:5  
阐述了鱼类人工雌核发育的基本原理,介绍了人工雌核发育在研究鱼类性别决定机制,养殖生产中的性别控制和鱼类性别遗传机制分析及选育新品种等方面的应用成果。  相似文献   

3.
在脊椎动物中,鱼类具有多样的性别分化方式,大致可分为雌雄异体、雌雄同体以及单性生殖3类。一般情况下,鱼类性别决定后,性腺可分化为卵巢或精巢,并且在整个生命周期内保持不变。而在雌雄同体鱼类,其性别可以从雌性转变为雄性、雄性转变为雌性或者在雌雄两种性别间进行多次转变。雌雄同体鱼类具有多种性别转变形式,是研究脊椎动物性别决定与分化的理想模型。因此,本文从性腺发育组织学变化、性激素分泌、神经内分泌、性别决定与分化基因的分子调控等方面,综述了近年来雌雄同体鱼类性别分化与性转变相关的研究进展,为更深入地研究鱼类性别调控机制提供参考。  相似文献   

4.
在水产养殖期间,需合理控制鱼类性别比例,以此提升水产养殖收益,实现效益最大化,但对于部分鱼类而言,在自然生长期间将出现性别转变现象,为保障水产养殖效果,应做好鱼类性别控制.基于此,首先阐述了鱼类性别转变现象,分析鱼类性别决定的遗传基础,讨论环境因子对鱼类性别决定的影响,并以罗非鱼为例,探讨性别控制技术在水产养殖中的实际应用.  相似文献   

5.
脊椎动物性别分化和性腺发育的分子机制保守,但不同类群的最上游的性别决定基因却大不相同,尤其是鱼类,其性别决定基因表现出明显的多样性。性别决定包括环境性别决定和遗传性别决定,环境性别决定主要受温度、光照、激素和pH等的影响,而遗传性别决定一般由位于性染色体上的性别决定基因决定。转化生长因子-β(transforming growth factor β, TGF-β)信号通路参与介导了多种生物学过程,近年来很多研究表明,鱼类有多个性别决定基因都是TGF-β信号通路的成员,且该信号通路对于鱼类的性别分化也有重要的作用。本文总结了鱼类已报道的性别决定基因或候选基因,详细综述了TGF-β信号通路在鱼类性别决定与分化中的各种功能,并探讨了该信号通路参与鱼类性别决定的可能机制,这对认识TGF-β信号通路在鱼类性别决定、分化中的作用和性控育种有重要意义。  相似文献   

6.
FTZ-F1基因属于孤核受体超家族成员,最初是在果蝇(Drosophila)中发现的,该基因在果蝇胚胎发生的早期调控体节分化基因ftshi-tarazu(FTZ)表达。目前已经发现了很多它的同源基因。研究证明它在类固醇生成、性别分化过程中都发挥着重要的作用。鱼类在脊椎动物系统进化中处于承前启后的地位,是脊椎动物中分布最广、种类最多的类群,具有多种多样的生物学特征和重大的经济价值,所以对于鱼类性别决定机理的研究具有重大意义。文章就鱼类中发现的性别相关基因FTZ-F1,及该基因在胚胎发育过程中的作用、在性逆转鱼中的作用及与芳香化酶的相互作用关系等进行了综述,旨在为系统研究鱼类性别决定机制提供参考。  相似文献   

7.
鱼类性别相关基因及性别特异标记的研究进展   总被引:5,自引:0,他引:5  
对动物性别的研究一直深受人们关注,以哺乳类为代表已经取得了许多可喜的成果。由于鱼类在脊椎动物系统进化中处于承前启后的地位,是脊椎动物中分布最广、种类最多的类群,具有多种多样的生物学特征和重大的经济价值,所以,对于鱼类性别决定机理的研究具有重大意义。本文主要介绍了鱼类性别决定相关基因和性别特异标记的研究进展。  相似文献   

8.
鱼类性别决定的遗传基础研究概况   总被引:10,自引:4,他引:10       下载免费PDF全文
童金苟 《水产学报》2003,27(2):169-176
动物从受精卵发育到具有不同性别特征的个体是一个奇妙而又严谨的过程,是人类长期以来试图揭示的自然现象。上世纪90年代初在人类Y染色体上发现了性别决定基因SRY[1],进而发现了一个新的Sox基因家族[2]。上述基因的发现,促进了以哺乳类为代表的动物性别决定和分化机制研究。由于鱼类在脊椎动物中的特殊进化地位、庞大的种类数量以及显著的社会经济价值,鱼类的性别决定研究一直受到遗传和发育学者的重视。尽管离最终阐明鱼类性别决定的机制还有距离,但近20多年来鱼类性别决定的遗传基础研究已取得不少重要进展。本文试图根据现有文献资料,…  相似文献   

9.
鱼类的性别遗传机制正处于分化的初级阶段,其性别决定受环境因素和遗传因素的共同控制,其性别决定机制比较复杂.一直以来鱼类与性别连锁的遗传标记的研究备受到关注,近年来在分子标记方面的研究取得一些进展.本文从表型标记、蛋白质标记和DNA分子标记三方面对鱼类的性别决定和性别遗传标记研究现状进行综述,着重介绍鱼类DNA水平上的性别遗传标记的研究进展,为鱼类的性别标记及性别控制研究提供基础资料.  相似文献   

10.
鱼类性别决定的研究进展   总被引:3,自引:0,他引:3  
有关鱼类性别决定的研究主要集中在温度、性激素、芳香化酶以及随机重复序列、核受体基因等对性别分化的调控方面。由于鱼类所处分类地位较低 ,生活环境千差万别 ,鱼类性别决定没有一个普遍的模式 ,目前研究的鱼类又各不相同 ,因此象哺乳动物那样的性别决定级联模式还没能阐述。本综述旨在阐述近几年有关鱼类性别决定机制方面的研究动态和进展 ,为系统研究鱼类性别决定机制提供参考  相似文献   

11.
鱼类性别决定机制的研究进展   总被引:3,自引:0,他引:3  
鱼类的性别决定受多方面的调控,主要可分为基因型性别决定和环境型性别决定。文章阐述了鱼类性别决定机制方面的研究进展,近期的研究热点是性别决定的分子机制。  相似文献   

12.
Sex change in coral reef fish   总被引:1,自引:0,他引:1  
Gonadal differentiation can take many forms in fish, ranging from gonochorism, where individuals directly develop as male or female and finally possess only testis or ovaries at sexual maturation, to hermaphroditism where the same individuals can produce mature male and female gametes at some time in their lives. Hermaphrodite fish are, thus, an excellent model for studying the plasticity of sex determination and differentiation in vertebrates. We have shown that sex steroids play a principal role in sex differentiation and sex change in fish. Our laboratory implements several fish models that undergo sex change from female to male or male to female or in both directions. In this review, we will briefly discuss recent advances in our understanding of the mechanism of sex change in coral reef fish.  相似文献   

13.
Successful reproduction by an adult depends on the normal ontogenesis of the gonads, a complex process of cellular and histological differentiation that starts early in life. This process is theoretically predetermined by genetic factors and includes sensitisation of the bipotential gonads to endogenous endocrine factors prior to, during and even after commitment to maleness or femaleness. However, young fish are relatively vulnerable to a host of environmental (physical and chemical) factors that can affect this endogenous endocrine axis, disturbing or even overriding the putative developmental pathway. This sexually lability can be exploited to our advantage for the production of monosex fish populations of the most valuable sex for food production or aquarium fish trade. On the other hand, it represents also a potential path for undesirable influences from endocrine-disrupting chemicals and climatic factors, particularly environmental temperature. This paper provides a detailed account of the early histological process of gonadal sex differentiation, with special reference to gonochoristic species, and reviews the criteria employed to positively identify ovarian and testicular differentiation. It also reviews the development of endocrine competence and sensitivity of the differentiating gonads to exogenous influences in the context of the relative stability of genotypic sex determination in various fish species. Sex differentiation in some species seems to be under strong genetic control and may not require endogenous sex steroid production. Conversely, reliance on endogenous sex steroids for gonadal differentiation is observed in other species and this phenomenon is apparently associated with a higher incidence of environment (mainly temperature)-labile sex differentiation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
ABSTRACT:   The sex ratios of the offspring of males from broods of honmoroko Gnathopogon caerulescens that displayed thermolabile sex determination (TSD), and those from eggs collected from the wild, strongly suggest that the combination of parents plays an important supplementary role in TSD in this species. The proportion of females in all broods from eight pairings of fish captured in the field decreased significantly at 30°C compared to 20°C, and one brood was entirely female at the lower temperature. These results suggest that phenotypic males (XX-males) exist in nature, probably as a result of sex change from genetic females caused by TSD. Sex ratios in relation to water temperature fall into five patterns, two of which seem to result from normal pairings of XX-females and XY-males, and from pairings of XX-males and XX-females with non-thermosensitivity. Two other patterns are thought to result from the same types of pairing, but with thermosensitivity. The last pattern, which shows male bias at both low and high temperature, is not explained only by the combination of genotypic sex determination (XX/XY) and TSD. Fluctuating temperatures close to natural conditions showed little potential to masculinize broods laid in the field between April and early June. However, the sex ratios of fish spawned in early June showed male bias at low and high temperatures. The sex determination mechanism in G. caerulescens may involve the interaction between temperature and sex-determining genetic factors, and the relative importance of each component differs with breeding season.  相似文献   

15.
Environmental sex reversal (ESR) occurs when extreme environmental factors overpower predetermined sexual development. Scientific theory is beginning to acknowledge the potential roles of sex‐reversed individuals in influencing population dynamics and driving the evolution of sex‐determination mechanisms. ESR is a phenomenon that has been widely observed in fish and can be induced by exposing individuals to exogenous hormones. However, reports of the susceptibility of fish to hormonally induced ESR vary greatly – a concept we termed ‘inducibility’. It has been suggested that variation in inducibility can be attributed to biological differences among species of different taxonomic groups (i.e. phylogenetic effects are present). Here, we provide the first quantitative test of this theory, which was achieved by combining published data with phylogenetic trees, using phylogenetically controlled comparative analysis. Our results confirm that a great amount of variation exists in the reported inducibility of fish. However, species and taxonomic relationships were responsible for trivial portions of variation. Rather, we found that sampling (measurement) errors in combination with methodological differences across studies accounted for much more variation in inducibility than taxonomy did. Given that our analysis contains representatives from over 25% of all teleost orders, we conclude that inducibility is not a taxonomically constrained trait in teleosts. Therefore, we suggest that the sex‐determination mechanisms of most fish are uniformly plastic. Further, we propose that ESR occurs relatively regularly over evolutionary time in many teleost species, playing a vital role in the maintenance of homomorphic sex chromosomes in this taxonomic group.  相似文献   

16.
ABSTRACT: Functional sex reversal of all-female nigorobuna Carassius carassius grandoculis to phenotypic males was examined by immersion exposure of fry to 17-methyltestosterone (17-MT) and controlled water temperature during early development. Fry were reared in water containing different concentrations of 17-MT at 24 and 30°C for 80 days starting 20 days after hatching. Although the fish exposed to 0.1 and 1.0 μg/L 17-MT at 24°C were all male, treatment with 10.0 μg/L 17-MT resulted in 43% females. Twenty-two percent males appeared in the control treatment at 30°C but the control at 24°C was entirely female. The proportion of males in treatments exposed to 0.01– 1.0 μg/L 17-MT at 30°C was slightly lower than in the respective treatments at 24°C. These results indicate that the phenotypic expression of sex in nigorobuna is thermolabile and that sex determination is under the control of genetic factors and temperature. Also, control of temperature during early development has been shown to be important for the production of all-female offspring for use as breeding stock for pond culture of fish suitable for preparation as 'funazushi'.  相似文献   

17.
The mandarin fish Siniperca chuatsi is a historically important aquaculture species in China and exhibits sexually dimorphic growth. However, sex determination of this fish remains unclear so far. In this study, we induced meiotic gynogenesis in S. chuatsi using irradiated heterologous sperm from spotted mandarin fish (Siniperca scherzeri) to uncover its mechanism of sex determination. Up to 7.52% diploid progeny were obtained among three gynogenetic families in this study. Molecular analysis of female and male donors and sampled young gynogens by seven microsatellite loci further confirmed no genetic contributions from the ‘father’ S. scherzeri. After 8 months of culture, external morphology of adult fish showed that all gynogens were cloned from their mothers. Gonads of the gynogenetic progeny were examined by histological observations and the sexing results showed that they were almost 100% females, strongly supporting an assumption of female homogamety in mandarin fish. By this study, we obtained pure lines of S. chuatsi and elucidated its genetic mechanism of sex determination, providing a basis for possible sex control breeding in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号