首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract – Habitat use and diet of Arctic charr (Salvelinus alpinus) coexisting with European whitefish (Coregonus lavaretus) and grayling (Thymallus thymallus) were studied in one deep and two relatively shallow subarctic lakes in northern Norway. Stomach content and stable isotope analyses revealed clear and temporally stable resource partitioning between the species in all three lakes. Arctic charr had a wide and flexible trophic niche and was the only piscivorous species. In contrast, whitefish and grayling had remarkably stable planktivorous and benthivorous niches, respectively. In the deepest lake, Arctic charr together with grayling mainly utilised littoral benthos, while piscivory was more prevalent in Arctic charr in the two shallower lakes. In one of the shallow lakes, whitefish was apparently relegated to the inferior profundal niche because of dominance of the littoral by grayling. Our results suggest that Arctic charr may not necessarily need an extensive profundal zone as a refuge, but can coexist with whitefish if a third competing fish species like grayling occurs in the littoral habitat or if profitable small prey fish are available. The study demonstrates that strong dietary plasticity of Arctic charr is instrumental in the observed coexistence with the commonly competitively superior whitefish.  相似文献   

2.
Abstract  – Brown trout ( Salmo trutta L.) and Arctic charr ( Salvelinus alpinus (L.)) use whitefish ( Coregonus lavaretus (L.)) as their main prey in the subarctic Lake Muddusjärvi. Brown trout dwelled in littoral and pelagic habitat, whereas Arctic charr lived only in epibenthic habitat. Both species shifted to whitefish predation at a length of 20–30 cm. At this size, brown trout fed on larger whitefish than Arctic charr. Whitefish occur in three sympatric forms, differing in their habitat, ecology and morphology. Both the predators preyed primarily upon the small-sized, densely rakered whitefish form (DR), which was the most numerous whitefish form in the lake. DR used both epibenthic and pelagic habitat, whereas two sparsely rakered whitefish forms dwelled (LSR and SSR) only in epibenthic habitat: LSR in littoral and SSR in profundal areas. Sparsely rakered whitefish forms had minor importance in predator diet.  相似文献   

3.
Habitat use, food composition and growth of stocked and native brown trout, Salmo trutta L., were studied in the subarctic Lake Muddusjärvi in northern Finland. Stocked brown trout and native brown trout preferred littoral and pelagic areas. Trout were stocked in October. In June stocked trout fed primarily on invertebrates while native fish were piscivorous. From July onwards the composition of the diet of both stocked and native trout was similar and consisted almost entirely of small‐sized whitefish. Brown trout were already piscivorous at a length of about 20 cm. The mean length of prey consumed was about 12 cm. Mean length‐at‐age was similar from the second year in the lake despite of the larger size of stocked fish during the first year in the lake.  相似文献   

4.
Proliferative kidney disease (PKD), caused by the myxozoan endoparasite Tetracapsuloides bryosalmonae, is of serious ecological and economical concern to wild and farmed salmonids. Wild salmonid populations have declined due to PKD, primarily in rivers, in Europe and North America. Deep lakes are also important habitats for salmonids, and this work aimed to investigate parasite presence in five deep Norwegian lakes. Kidney samples from three salmonid species from deep lakes were collected and tested using real-time PCR to detect PKD parasite presence. We present the first detection of Tbryosalmonae in European whitefish in Norway for the first time, as well as the first published documentation of the parasite in kidneys of Arctic charr, brown trout and whitefish in four lakes. The observed prevalence of the parasite was higher in populations of brown trout than of Arctic charr and whitefish. The parasite was detected in farmed, but not in wild, charr in one lake. This suggests a possible link with a depth of fish habitat and fewer Tbryosalmonae-infected and PKD-affected fish. Towards a warmer climate, cold hypolimnion in deep lakes may act as a refuge for wild salmonids, while cold deep water may be used to control PKD in farmed salmonids.  相似文献   

5.
Abstract – Bull trout, a species of char listed as threatened under the US Endangered Species Act, have been displaced from portions of their historic range following the introduction of nonnative lake trout. It has been suggested that competitive exclusion as a result of trophic overlap between bull trout and lake trout may be the causal mechanism associated with displacement of bull trout. This study used stable isotope data to evaluate trophic relationships among native bull trout, nonnative lake trout and other fishes in seven lakes in Glacier National Park (GNP), Montana. Bull trout and lake trout had greater δ15N values relative to other fishes among lakes (δ15N ≥ 3.0‰). Lake trout had greater δ15N values relative to bull trout (δ15N = +1.0‰). Bull trout had greater δ13C values relative to lake trout in six of the seven lakes examined. Although both bull trout and lake trout had greater δ15N values relative to other fishes within lakes in GNP, differences in δ15N and δ13C between bull trout and lake trout suggest that they are consuming different prey species or similar prey species in different proportions. Therefore, displacement of bull trout as a direct result of complete overlap in food resource use is not anticipated unless diet shifts occur or food resources become limiting. Additionally, future studies should evaluate food habits to identify important prey species and sources of partial dietary overlap between bull trout and lake trout.  相似文献   

6.
Galaxias platei is widespread and common in southern South America, but its ecology is poorly documented relative to other native species, especially those of commercial importance. Galaxias platei occurs across a large range of environmental conditions, including hydrologically isolated, high‐elevation lakes. Consequently, there were several lakes in the Patagonian region where it was the only native fish species. Introduction of salmonids into almost all lakes in Patagonia where G. platei occurs has potentially resulted in changes in its ecology and behaviour. Thompson Lake is a small, high‐elevation lake located in the Aysen River basin (Chile) where G. platei still occurs essentially in isolation. We collected G. platei from this lake to characterise the ecology of the species in the absence of other native and introduced fishes. We documented age and growth patterns from otolith analysis and characterised size‐ and age‐specific habitat use, diet and trophic niche. In Thompson Lake, G. platei is long‐lived and grows to comparatively large size (max. age = 18 years; max. TL = 348 mm). As it grows, it exhibits an ontogenetic niche shift in habitat use, diet and trophic niche. Large adults are piscivorous, and they occupy deep benthic habitats. Preservation of the last few remaining lakes where G. platei is found in isolation is an important priority for maintaining the full expression of ontogenetic niche variation in this species.  相似文献   

7.
Salmonid fishes may reside within or migrate between stream and lake habitats, or undergo anadromous migrations between freshwater and the ocean. While the degree of anadromy of salmonids has been thoroughly compared, no analogous review has examined the degree of lake use. To assess the extent of reliance on lake habitat in this family, we considered 16 species of salmon, trout and charr from the genera Oncorhynchus, Salmo and Salvelinus, comparing their (a) use of lakes as spawning habitat, (b) rearing strategies in lakes, and (c) occurrence and diversity of lacustrine trophic polymorphism. In identifying the primary life‐history patterns of each species and exploring the lesser‐known lacustrine behaviours, we found that the extent of reliance on lakes exhibits a negative association with the degree of anadromy. Oncorhynchus rely least on lakes, Salmo to an intermediate level and Salvelinus the most, opposite of the general prevalence of anadromy among these genera. Lakes are critical to adfluvial and lake‐resident salmonids, but they also support anadromous and fluvial life histories by providing spawning, rearing, overwintering and/or summer refuge habitat. Adfluviality, although a non‐anadromous life history, consists of similar migration‐related traits and behaviours as anadromy, including the parr–smolt transformation, sex‐biased patterns of migration and residency, and the presence of precocious males. Lakes support life‐history variants, reproductive ecotypes and trophic morphs unique to lacustrine habitat. Therefore, conservation of salmonids is dependent on maintaining the diversity and quality of their habitats, including lakes.  相似文献   

8.
In subarctic lake systems, fish species like brown trout are often important predators, and their niche performance is a key characteristic for understanding trophic interactions and food web functioning at upper trophic levels. Here, we studied summer habitat use and stomach contents of brown trout under both allopatric and sympatric conditions in six subarctic lakes to reveal its trophic role, and population‐ and individual‐level niche plasticity. In allopatry, brown trout mainly used the littoral habitat, but also less commonly used the pelagic zone. In sympatry with stickleback, there was always a considerable habitat overlap between the two species. In contrast, sympatric populations of brown trout and Arctic charr generally revealed a distinct habitat segregation. In the sympatric systems, in general, there was a distinct resource partitioning between the trout and charr, whereas the observed diet overlap between trout and stickleback was much larger. Trout modified their individual dietary specialisation between the littoral and pelagic zone, always being lower in the pelagic. Piscivorous behaviour of trout was only found in sympatric systems, possibly contributing to a competitive advantage of trout over charr and stickleback. Hence, the trophic level of trout was strongly related to the fish community composition, with a higher trophic level in sympatric systems where piscivorous behaviour was frequent. These changes in the trophic level of trout linked with the observed food resource partitioning might be an important mechanism in the ecosystem functioning of subarctic lakes to allow coexistence among sympatric‐living fish species.  相似文献   

9.
Despite long‐standing interest in foraging modes as an important element of animal space use, few studies document and compare individual foraging mode differences among species and ecological conditions in the wild. We observed and compared foraging modes of 61 wild Arctic charr, Salvelinus alpinus, 42 brown trout, Salmo trutta, and 50 Atlantic salmon, Salmo salar, in their first growing season over a range of habitats in 10 Icelandic streams. We found that although stream salmonids typically sit‐and‐wait to ambush prey from short distances, Arctic charr were more mobile during prey search and prior to prey attack than Atlantic salmon, whereas brown trout were intermediate. In all three species, individuals that were mobile during search were more likely to be moving when initiating attacks on prey, although the strength and the slope of this relationship differed among species. Arctic charr also differed from salmon and trout as more mobile individuals travelled longer distances during prey pursuits. Finally, coupled with published data from the literature, salmonid foraging mobility (both during search and prior to attack) clearly decreased from still water habitats (e.g., brook charr), to slow‐running waters (e.g., Arctic charr) to fast‐running waters (e.g., Atlantic salmon). Hence, our study suggests that foraging mode of young salmonids can vary distinctly among related species and furthers our understanding of the behavioural mechanisms shaping the geographical distribution of wild salmonids.  相似文献   

10.
Brown trout Salmo trutta were first introduced into Japan in 1892, and they currently naturally reproduce in several rivers in Honshu and Hokkaido, Japan. Although negative impacts of brown trout introductions on native salmonid fishes have been documented in some Hokkaido rivers, studies of ecological interactions between brown trout and native salmonid fishes on Honshu are limited. In this study, we describe the longitudinal distribution patterns of introduced brown trout, white-spotted charr Salvelinus leucomaenis and masu salmon Oncorhynchus masou in a 4 km stretch of a stream in central Honshu. Underwater observations were conducted in all pools within upstream, middle and downstream sections (190–400 m in length) of this stretch in order to estimate the densities of these species. Only white-spotted charr was observed in the upstream section, while brown trout and masu salmon were observed in the middle and downstream sections. Masu salmon densities, however, were much lower than brown trout densities. In the downstream section, white-spotted charr was absent. These results are consistent with results from previous studies of Hokkaido rivers, where it was found that white-spotted charr in low-gradient areas tend to be displaced by brown trout.  相似文献   

11.
Abstract – Resource partitioning between Atlantic salmon parr, brown trout and Arctic charr was studied throughout the ice-free season in a north Norwegian lake. Juvenile salmon and trout (≤160 mm) utilized the littoral zone and juvenile charr the profundal, while adult trout and charr (>160 mm) were found in both. Juvenile salmon and trout had a similar diet, although trichopteran larvae were more important for the trout and chironomid pupae and three-spined sticklebacks for the salmon parr. Small salmon and trout parr (≤120 mm) had a higher diet overlap than larger parr (121–160 mm). The feeding habits of adult trout were similar to that of juvenile trout, but the former took larger prey items. At the population level, both salmon and trout were generalistic feeders with a broad diet, but at the individual level, both species had specialized on a single or a few prey categories. Juvenile charr were segregated from salmon and trout in both habitat and food utilization; they had a narrow diet consisting of chironomids and zooplankton, possibly reflecting their confinement to the profundal habitat which have a low diversity of potential prey. Larger charr also took zoobenthos and sticklebacks in the littoral zone. Note  相似文献   

12.
Non‐native piscivores can alter food web dynamics; therefore, evaluating interspecific relationships is vital for conservation and management of ecosystems with introduced fishes. Priest Lake, Idaho, supports a number of introduced species, including lake trout Salvelinus namaycush, brook trout S. fontinalis and opossum shrimp Mysis diluviana. In this study, we used stable isotopes (δ13C and δ15N) to describe the food web structure of Priest Lake and to test hypotheses about apparent patterns in lake trout growth. We found that isotopic niches of species using pelagic‐origin carbon did not overlap with those using more littoral‐origin carbon. Species using more littoral‐origin carbon, such as brook trout and westslope cutthroat trout Oncorhynchus clarki lewisi, exhibited a high degree of isotopic niche overlap and high intrapopulation variability in resource use. Although we hypothesised that lake trout would experience an ontogenetic diet shift, no such patterns were apparent in isotopic signatures. Lake trout growth rates were not associated with patterns in δ15N, indicating that variation in adult body composition may not be related to adult diet. Understanding trophic relationships at both the individual and species levels provides a more complete understanding of food webs altered by non‐native species.  相似文献   

13.
Abstract –  Arctic charr, Salvelinus alpinus (L.), is one of the several northern fishes that show resource polymorphisms in postglacial lakes. Two reproductively isolated morphs of Arctic charr coexist in distinct ecological niches in the subarctic lake Fjellfrøsvatn, North Norway. Offspring of the two morphs (termed littoral charr and profundal charr) were reared separately but under identical conditions. Their feeding behaviour was compared experimentally using different kinds of live prey. The fishes had no experience with natural prey before the experiments. The littoral morph were more effective in eating live plankton ( Daphnia ) and littoral benthos ( Gammarus ), and had a higher attack rate against pleuston (surface prey, Gerris ) compared with the profundal morph. The two morphs behaved in accordance with expectations from their in situ niche utilisation towards the three prey types. This indicates a case of incipient ecological speciation where divergence in resource utilisation in contrasting niches has evolved adaptations in feeding behaviour by natural selection.  相似文献   

14.
Diet interactions between native and non‐native fishes may influence the establishment of native species within their historical range (i.e., reintroduction). Therefore, we illustrated the food web structure of and followed the transition of the federally endangered humpback chub Gila cypha into a novel food web following translocation and determined the potential for a non‐native species, rainbow trout Oncorhynchus mykiss, to influence translocation success. Humpback chub and rainbow trout used resources high in the food web and assimilated similar proportions of native fishes, suggesting non‐native rainbow trout may occupy an ecological role similar to humpback chub. Subsequently, humpback chub may be well suited to colonise tributaries because of their ability to consume resources high in the food web. Additionally, diet partitioning may occur between all members of the fish community as indicated by separation in trophic niche space and little trophic overlap; although all species, particularly bluehead sucker Catostomus discobolus, used a broad range of food resources. Rainbow trout stomach content analysis corroborated stable isotope analysis and suggested rainbow trout diet consisted of aquatic and terrestrial macroinvertebrates, while larger rainbow trout (>120 mm total length) consumed a greater proportion of fish (incidence of piscivory = 5.3%). Trophic interactions may reveal an underutilized niche space or biotic resistance to the establishment of translocated native fishes. Continued translocation of humpback chub into tributaries appears to be one option for conservation. However, successful establishment of humpback chub may depend on continued removal of non‐native trout, increasing availability of diet sources at higher trophic levels.  相似文献   

15.
Climate change is occurring rapidly in the Arctic, and an improved understanding of the response of aquatic biota and ecosystems will be important for this data-limited region. Here, we applied biochronology techniques and mixed-effects modelling to assess relationships among growth increments found on lake trout (Salvelinus namaycush) otoliths (N = 49) captured from 13 lakes on the Arctic Coastal Plain of northern Alaska, observed and modelled climate patterns, and individual-level fish and lake characteristics. We found that annual growth varied by year, fish growth slowed significantly as individuals aged, and females grew faster than males. Lake trout had higher growth in flow-through lakes relative to lakes that were perennially or seasonally connected. Annual growth was positively correlated with observed air temperature measurements from a local weather station for the period 1998–2014, but no clear warming trend was evident for this period. Modelled August air temperatures from 1978–2014 predicted lake trout annual growth (root mean squared error = 0.045 mm) and indicated increasing temperatures and annual lake trout growth over the period 1950–2014. This study demonstrated that biochronology techniques can reconstruct recent climate patterns and provide a better understanding of trends in Arctic lake ecosystems under a changing climate.  相似文献   

16.
Anadromous Arctic charr, Salvelinus alpinus (L.), was introduced to a sub‐Arctic river–lake system near the village of Kujjuuaq, Nunavik, and the stable isotope values and diets of key resident fish species were used to assess changes in feeding patterns. Stable isotope values for most species did not differ significantly between the pre‐ and post‐introduction periods, with observed shifts being within the bounds of expected natural variation. Lake chub, Couesius plumbeus (Agassiz), were the single species to show a difference between study periods, with a small but significant increase in δ15N. No significant post‐introduction changes were seen in lake trout, Salvelinus namaycush (Walbaum), omnivory or in any of the assessed quantitative food web metrics. Gut contents of major fish species similarly showed significant temporal overlap between the pre‐ and post‐introduction periods, and there was no significant change in species' weight–length relationships. The minor ecological impact was interpreted in relation to the availability of open niches exploitable by ecological generalists such as Arctic charr. The explanation accords with the known habitat and feeding flexibility of Arctic charr and the ecological immaturity of sub‐Arctic lakes known to have driven adaptive variation among Arctic charr. Findings suggest that anadromous Arctic charr may be introduced at moderate densities to other sub‐Arctic watersheds without major negative food web consequences for other resident fish species.  相似文献   

17.
Habitat use, growth and food composition of native and stocked Arctic charr, Salvelinus alpinus (L.), were studied in the subarctic Lake Muddusjärvi, northern Finland, to investigate reasons for poor stocking success. Samples were collected with pelagic and epibenthic gill nets. Stocked and native charr occurred in similar epibethic habitats, whereas pelagic habitat was avoided. Native charr grew fast after shifting to piscivory. Growth rate of stocked charr was slow because only a small proportion of stocked fish became piscivorous during the first year after stocking. During the first lake year, stocked charr divided into slow-growing planktivores and fast-growing piscivores. Piscivorous stocked and native charr consumed only whitefish, Coregonus lavaretus (L.), as their prey. Small-sized (<10 cm) whitefish were preferred when shifting to piscivory.  相似文献   

18.
Eleven Arctic charr (Salvelinus alpinus) (370–512 mm) and eight sea trout (Salmo trutta) (370–585 mm in length) were tagged externally or internally with depth‐ and temperature‐measuring data‐storage tags (DST) before they were released into the sea in the Alta Fjord in north Norway in June 2002. All sea trout were recaptured after they spent 1–40 days at sea, while all Arctic charr were recaptured after 0.5–33 days at sea. On average, trout preferred water about 0.6 m deeper and 1.3°C warmer than Arctic charr. Arctic charr spent >50% of their time between 0 and 1 m depth, while trout spent >50% of their time between 1 and 2 m depth. Both species spent >90% of their time in water no deeper than 3 m from the water surface. However, sea trout dove more frequently and to greater depths (max. 28 m) than Arctic charr (max. 16 m), and these deep dives were most frequently performed at the end of the sea migration. Arctic charr demonstrated a diel diving pattern, staying on average about 0.5 m deeper between 08:00 hours and about 15:00 hours than during the rest of the 24 h, even though there was continuous daylight during the experiments. When comparing data obtained from the DSTs with temperature measurements within the fjord system, the two species were observed to select different feeding areas during their sea migration, the sea trout choosing the inner and warmer parts of the fjord, in contrast to the Arctic charr that preferred the outer, colder parts of the fjord. The observed differences in migration behaviour between the two species are discussed in relation to species preferences for prey and habitat selection, and their optimal temperatures for growth.  相似文献   

19.
To study the effects on a stunted freshwater population of Arctic charr, Salvelinus alpinus (L.), two groups of large (26–45 cm) individually tagged brown trout, Salmo trutta L., were released and recaptured with gillnets after 1, 7, 11 and 63 weeks. One group of trout was trained on a fish diet before release, and the other, reared on commercial dry pellets, served as a control. Specific growth rates in both groups were negative 1 week after release and approached zero after 63 weeks. Condition factor and internal fat content decreased during the experiment. Although only 11% of the trout stomachs examined contained fish prey, charr represented 79% of the total stomach weight content. Gillnet samples of charr before and 63 weeks after the release of trout indicated a decreasing population size of charr. Individual growth and mean length of charr increased after release of trout, especially for charr at age 4 years. After the release of trout, 35% of the charr were longer than 20 cm as compared with 6% before the release.  相似文献   

20.
Abstract Non‐native lake trout, Salvelinus namaycush (Walbaum), threaten native salmonid populations in the western United States. Effective management of lake trout requires understanding movements within connected lake and river systems. This study determined the seasonal movements of subadult lake trout in the Flathead River upstream of Flathead Lake, Montana, USA using radio telemetry. The spatiotemporal distribution of lake trout in the river was related to water temperature. Lake trout were detected in the river primarily during autumn, winter and spring, when water temperatures were cool. By contrast, fewer were detected when temperatures were warmest during summer and during high spring flows. Downriver movements to Flathead Lake occurred throughout autumn and winter when water temperature decreased below 5 °C, and in late spring as water temperature rose towards 15 °C and river discharge declined following spring runoff. Upriver movements occurred primarily in October, which coincided with migrations of prey fishes. These results suggest that lake trout are capable of moving throughout connected river and lake systems (up to 230 km) and that warm water temperatures function as an impediment to occupancy of the river during summer. Controlling source populations and maintaining natural water temperatures may be effective management strategies for reducing the spread of non‐native lake trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号