首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshwater growth of juvenile sockeye salmon (Oncorhynchus nerka) depends upon the quality and quantity of prey and interactions with potential competitors in the foraging environment. To a large extent, knowledge about the ecology of lake‐rearing juvenile sockeye salmon has emerged from studies of commercially important runs returning to deep nursery lakes, yet information from shallow nursery lakes (mean depth ≤ 10 m) is limited. We examined seasonal and ontogenetic variation in diets of juvenile sockeye salmon (N = 219, 30–85 mm) and an abundant potential competitor, threespine stickleback (Gasterosteus aculeatus; N = 198, 42–67 mm), to understand their foraging ecology and potential trophic interactions in a shallow Alaska lake. This study revealed that adult insects made up 74% of all sockeye salmon diets by weight and were present in 98% of all stomachs in Afognak Lake during the summer of 2013. Diets varied temporally for all fishes, but small sockeye salmon (<60 mm) showed a distinct shift in consumption from zooplankton in early summer to adult insects in late summer. We found significant differences in diet composition between sockeye salmon and threespine stickleback and the origin of their prey indicated that they also separated their use of habitat on a fine scale; however, the two species showed overlap in size selectivity of zooplankton prey. Considering that aquatic insects can be a primary resource for juvenile sockeye salmon in Afognak Lake, we encourage the development of nursery lake carrying capacity models that include aquatic insects as a prey source for sockeye salmon.  相似文献   

2.
To understand the interplay between habitat use and contemporary anadromous Pacific salmon, Oncorhynchus spp., distributions we explored the habitat associations of three species, pink (O. gorbuscha), chum (O. keta) and Chinook salmon (O. tshawytscha) in streams of the Wood River system of Bristol Bay, Alaska, where sockeye salmon (O. nerka) are numerically dominant. We developed models to investigate the occurrence of nondominant salmon in relation to habitat characteristics and sockeye salmon density, using four decades of salmon presence and abundance data. The frequency of occurrence and abundance of nondominant species increased with watershed drainage area and stream depth and decreased with sockeye salmon density. The range of occurrence varied from nonexistent to perennial for the other species in sockeye‐dominated streams. Increasing watershed area resulted in larger stream habitat area and deeper habitats, allowing for the sympatric occurrence and persistence of all salmon species. The relationships between habitat and the presence of these Pacific salmon help define their requirements but also remind us that the patterns of presence and absence, within the overall ranges of salmon species, have yet to be fully understood.  相似文献   

3.
Abstract – In high northern latitudes, a wide range of geomorphic processes associated with fluvial, glacial and permafrost activity may interact with climate change to produce unexpected changes in lake thermal regimes with attendant effects on ecological processes. We coupled output from a hydrodynamics model of lake thermal structure to a bioenergetics model to assess how alternative scenarios of climate change, geomorphic evolution and habitat restoration in a shallow Alaskan lake may affect juvenile sockeye salmon bioenergetics and growth. In particular, we evaluated the metabolic costs of different thermal regimes and the potential for changes in consumption to offset those costs. Increased water temperatures associated with future climate increased metabolic costs which were partially offset if fish were able to maintain feeding rates, expressed as a constant proportion of maximum consumption. In this lake, water levels have declined substantially in the last 50 years. Simulated restored lake level had negligible effects on lake temperature and thus on sockeye salmon growth when compared to current conditions. Maintaining lake connectivity to inlet tributaries (cooling lake temperature) was crucial in reducing sockeye salmon metabolic costs particularly with further drops in lake level and climate warming. While considerable research is focused on predicting future thermal and geomorphic conditions in aquatic ecosystems, these processes are rarely considered together, especially for lakes. Understanding the biological responses to geomorphic–climate interactions will be required for developing scenarios for coping with ecosystem responses to global change and evaluating restoration alternatives, especially in high‐latitude systems that support economically and culturally important fisheries.  相似文献   

4.
In high‐latitude lakes, air temperature is an important driver of ice cover thickness and duration, which in turn influence water temperature and primary production supporting lake consumers and predators. In lieu of multidecadal observational records necessary to assess the response of lakes to long‐term warming, we used otolith‐based growth records from a long‐lived resident lake fish, lake trout (Salvelinus namaycush), as a proxy for production. Lake trout were collected from seven deep, oligotrophic lakes in Lake Clark National Park and Preserve on in southwest Alaska that varied in the presence of marine‐derived nutrients (MDN) from anadromous sockeye salmon (Oncorhynchus nerka). Linear mixed‐effects models were used to partition variation in lake trout growth by age and calendar‐year and model comparisons tested for a mean increase in lake trout growth with sockeye salmon presence. Year effects from the best mixed‐effects model were subsequently compared to indices of temperature, lake ice, and regional indices of sockeye salmon escapement. A strong positive correlation between annual lake trout growth and temperature suggested that warmer springs, earlier lake ice break‐up, and a longer ice‐free growing season increase lake trout growth via previously identified bottom‐up increases in production with warming. Accounting for differences in the presence or annual escapement of sockeye salmon with available data did not improve model fit. Collectively with other studies, the results suggest that productivity of subarctic lakes has benefitted from warming spring temperatures and that temperature can synchronise otolith growth across lakes with and without sockeye salmon MDN.  相似文献   

5.
In this study, we examined summer and fall freshwater rearing habitat use by juvenile coho salmon (Oncorhynchus kisutch) in the quickly urbanising Big Lake drainage in south‐central Alaska. Habitat use was assessed by regressing fish count data against habitat survey information across thirty study sites using generalised linear mixed models. Habitat associations were examined by age‐0 and age‐1+ cohorts separately, providing an opportunity to compare habitat use across different juvenile coho salmon life stages during freshwater rearing. Regression results indicated that the age‐0 cohorts were strongly associated with shallow, wide stream reaches with in‐stream vegetation, whereas age‐1+ cohorts were associated with deeper stream reaches. Furthermore, associations between fork length and habitat characteristics suggest cohort‐specific habitat use patterns are distinct from those attributable to fish size. Habitat use information generated from this study is being used to guide optimal fish passage restoration planning in the Big Lake drainage. Evidence for habitat use partitioning by age cohort during freshwater juvenile rearing indicates that pooling age cohorts into a single “juvenile” stage for the purposes of watershed management may mask important habitat use dynamics.  相似文献   

6.
Abstract –  In some populations the phenomenon of partial migration develops where some individuals stay in a given habitat rather than move with the migratory component. Depending on the selective pressures, the individuals that stay may be larger, smaller or similar in size to those that move. Freshwater movements of juvenile sockeye salmon ( Oncorhynchus nerka Walbaum) fry vary among and within populations, and can be complex, especially in interconnected lake systems. We examined variation of movement patterns by a sockeye salmon population in an interconnected lake system during a period of rapid natural habitat change and found that fry migrating downstream were shorter, had lower body condition, and were more likely ill and moribund compared with fish remaining in the lake. However, otolith microstructure measurements indicated that emigrants did not grow significantly slower than residents prior to downstream movement. We show that patterns (i.e., demography of migrants, timing of movement) of downstream movement have changed since the 1970s, corresponding to changes in rearing habitat. Our findings parallel the results with other salmonid species and are generally consistent with the paradigm that density-dependent interactions from declining habitat availability or quality result in the downstream movement of competitively inferior individuals, although the mechanisms governing downstream migration are unclear in this system.  相似文献   

7.
8.
Drift of propagules occurs within many populations inhabiting flow fields. This affects the number of propagules that rejoin their source population (recruitment) and plays a role in adaptive spatial redistribution. We focus on the cause and consequence of interannual variation in geographic distribution of population density among five cohorts of young‐of‐the‐year (age‐0) juvenile walleye pollock Gadus chalcogrammus in the western Gulf of Alaska (GOA). The coastal GOA is a wind‐driven advective system. Walleye pollock spawn during spring and their eggs and larvae drift southwestward; by late summer, age‐0 juveniles are variously distributed over the shelf. We found that high population densities of age‐0 juveniles (ca. 6 months old) near the southwestward exit of the Alaska Coastal Current from the GOA corresponded with high abundance of larvae from the major spawning area upstream, but did not translate into high abundance at older ages. Further, offshore and upwelling‐favorable winds were associated with the high downstream abundance and presumed export. In contrast, downwelling‐favorable (northeasterly) wind during and shortly after spawning (April–May) was associated with high recruitment at age 1. Finally, we found that recruitment also increased with apparent retention of age‐0 juveniles in favorable habitat upstream near the main spawning area. We hypothesize that wind‐related retention in superior upstream habitat favors recruitment. Our results argue for including wind‐driven transport in future walleye pollock recruitment models. We encourage more work on the juvenile stage of marine fishes aimed at understanding how transport and species‐specific habitat suitability interact to affect population response to large‐scale forcing.  相似文献   

9.
A catchment‐scale salmon, Salmo salar L., habitat enhancement scheme was developed for the River Main (Northern Ireland) with reference to baseline habitat and electric fishing surveys. In total, 19 separate sites were enhanced using flow deflectors or random boulder addition. Habitat suitability for juvenile salmon increased at enhanced sites following the scheme, and significant changes in underlying physical habitat characteristics (particle size, depth and flow) were detected after the installation of flow deflectors. The overall index of salmon fry recruitment, monitored across the catchment, showed no change between pre‐ and post‐enhancement periods. The mean biomass of salmon evident at individual enhancement sites (5.1 g m?2) was significantly higher than the mean biomass at control sites (1.2 g m?2). Increased densities of >0+ juvenile salmon were associated with enhanced sites relative to controls. Marking studies indicated the potential for long‐range dispersal of juvenile salmon between 0+ (summer) and 1+ (summer) age classes. The potential of the scheme to enhance the local salmon stock was discussed.  相似文献   

10.
Piscirickettsia salmonis, the aetiological agent of salmonid rickettsial septicaemia (SRS), is a global pathogen of wild and cultured marine salmonids. Here, we describe the development and application of a reproducible, standardized immersion challenge model to induce clinical SRS in juvenile pink (Oncorhynchus gorbuscha), Atlantic (Salmo salar) and sockeye salmon (O. nerka). Following a 1‐hr immersion in 105 colony‐forming units/ml, cumulative mortality in Atlantic salmon was 63.2% while mortality in sockeye salmon was 10%. Prevalence and levels of the bacterium in kidney prior to onset of mortality were lower in sockeye compared with Atlantic or pink salmon. The timing and magnitude of bacterial shedding were estimated from water samples collected during the exposure trials. Shedding was estimated to be 82‐fold higher in Atlantic salmon as compared to sockeye salmon and peaked in the Atlantic salmon trial at 36 d post‐immersion. These data suggest sockeye salmon are less susceptible to P. salmonis than Atlantic or pink salmon. Finally, skin lesions were observed on infected fish during all trials, often in the absence of detectable infection in kidney. As a result, we hypothesize that skin is the primary point of entry for P. salmonis during the immersion challenge.  相似文献   

11.
Abstract – We sampled three limnetic fish species: juvenile sockeye salmon (Oncorhynchus nerka), three‐spine stickleback (Gasterosteus aculeatus) and longfin smelt (Spirinchus thaleichthys) in Lake Washington to quantify species‐specific patterns of diel vertical migration (DVM). Catch‐per‐unit‐effort data analysed from 15 years of midwater trawling documented seasonal and diel differences in vertical distributions for each species. These results were consistent with the hypothesis that the patterns of DVM in Lake Washington were affected by life history, size and morphology. Sockeye salmon showed clear DVM in spring but essentially no DVM in fall, remaining in deep water, whereas three‐spine sticklebacks were prevalent at the surface at night in both seasons. In fall, distribution patterns may be explained by differences in thermal performance (e.g., sticklebacks favouring warm water), but the patterns were also consistent with inter‐specific differences in predation risk. Younger sockeye salmon and longfin smelt were present in greater proportions higher in the water column during dusk and night periods than older conspecifics. Compared with sockeye salmon, the greater use by three‐spine sticklebacks of surface waters throughout the diel cycle during weak thermal stratification in spring was consistent with the hypothesis that sticklebacks’ armour reduces predation risk, but use of this warmer, metabolically beneficial stratum may also have promoted growth. This study illustrates variation in the vertical distribution of three sympatric planktivores and offers broader implications for the DVM phenomenon and applied lake ecology.  相似文献   

12.
Management agencies in several western states of the United States are implementing suppression programmes to control non‐native lake trout, Salvelinus namaycush (Walbaum), for the conservation of native species. This study was implemented to ascertain the population demographics of an expanding lake trout population and use those data to construct an age‐structured model to inform suppression efforts. Population projection matrices were used to model population growth and identify age or stage classes with the greatest influence on population growth. The size and age structure of lake trout sampled was skewed towards juveniles, indicating strong recruitment and a growing population. Matrix‐model simulations corroborated the observed size and age structure, as the lake trout population was predicted to grow exponentially (λ = 1.35, 95% CL: 1.25–1.43) with no suppression efforts. Elasticity analysis of matrix models indicated the relative contribution of survival rates to population growth among immature age classes was equal from age 0 to age at first maturity, but immature survival rates contributed more than adult survival and fertility rates. These results emphasise the importance of targeting juvenile lake trout for suppression efforts during exponential growth in recently established populations.  相似文献   

13.
  • 1. The decline of salmonid populations in the Pacific Northwest has been well‐documented. It is unclear, however, which threats to salmonid persistence are the most serious, and how best to prioritize recovery efforts intended to ameliorate these threats.
  • 2. It has been argued previously that one possible cause of salmon endangerment is degradation of spawning grounds. In order to explore this hypothesis, this study examines the relationships between chinook salmon (Oncorhynchus tshawytscha) productivity and landscape‐level characteristics of spawning grounds in the interior Columbia River Basin.
  • 3. Population productivity is expressed as the mean and maximum recruitment rates for different stocks, measured from 1980 to 1990; habitat conditions are calculated using sub‐watershed scale data on land cover, land use, water quality and watershed hydrology.
  • 4. Significant linear regression results were obtained for three environmental variables: percentage of land classified as urban, proportion of stream length failing to meet water quality standards, and an index of the ability of streams to recover from sediment flow events. A multiple regression with all three variables accounts for over 60% of the variation in mean salmon recruitment.
  • 5. It further appears that these landscape attributes may limit the maximum recruitment rates of salmon, with a magnitude of difference in productivity large enough to be relevant to recovery planners. Additional study will be necessary to identify cause‐and‐effect linkages between habitat quality and salmon recruitment success, and to determine the ultimate impact of changes in recruitment rates on short‐ and long‐term salmon population trajectories.
Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Previous research has documented two main migratory routes of juvenile sockeye salmon (Oncorhynchus nerka) through the Strait of Georgia, British Columbia, Canada, and large interannual variability in marine survival rates of the Chilko Lake stock. Simulation models were used to explore the influence of surface currents on the migratory route of juvenile sockeye salmon (smolts) through the Strait of Georgia. We used a model of downstream migration to generate daily numbers of Chilko Lake sockeye salmon smolts entering the Strait of Georgia, based on daily counts of smolts leaving the rearing lake. A numerical hydrodynamic model (driven by surface wind, tide, and Fraser River discharge) hindcasted surface currents in the Strait of Georgia on a 2 km × 2 km grid. A smolt migration model simulated fish moving through the Strait with different compass-oriented migratory behaviours (i.e. swimming speed and directional orientation) within the time-varying surface advection field. Results showed that surface currents within the Strait of Georgia can affect the migratory route of sockeye salmon smolts in spite of their large size (8 cm). Wind is the forcing mechanism primarily responsible for determining which migratory route would be used. Under prevailing wind conditions (i.e. toward the north-west), most sockeye salmon smolts would use the eastern migratory route; however, relatively brief south-eastward wind events (lasting about 2 days) would force most smolts into the western migratory route. Given the heterogeneity of food for salmon within the Strait, we hypothesize that wind-driven variability in the annual proportion of smolts that use the western and eastern migratory routes in the Strait of Georgia affects early marine survival rates of Fraser River sockeye salmon.  相似文献   

15.
Abstract– In contrast to the well-known "lake-type" sockeye salmon, two additional anadromous life-history types have been recognized within the species: 'river-type' sockeye salmon whose juveniles spend 1 or 2 years in off-channel river habitats prior to migrating to sea, and "sea-type" sockeye salmon that initially rear in similar river habitats yet migrate to sea as underyearlings. Persistent populations of river-/sea-type sockeye salmon occur in small numbers throughout the species'range in North America but are usually associated with glacier-fed rivers. We found published and unpublished records showing that riverine-spawning sockeye salmon occur in 11 rivers in western Washington, USA, that don't have access to juvenile lake-rearing habitat. Evidence of persistent spawning was strongest for the Nooksack and Skagit rivers in northern Puget Sound. We analyzed allozyme frequency differentiation in 26 laketype and 12 river-/sea-type populations of sockeye salmon in North America, ranging from northern Puget Sound, Washington (including 3 in the Nooksack and Skagit rivers) to northern Southeast Alaska. Across this 2000 km range, river-/sea-type sockeye salmon showed very little genetic differentiation between populations, much less than that displayed by the highly divergent lake-type sockeye salmon. Genetic similarity among river-/sea-type sockeye salmon in this study is likely a result of common ancestry and a high level of historical gene flow among river-/sea-type sockeye salmon populations.  相似文献   

16.
Imperfect detection associated with sampling gear presents challenges for wildlife inventory and monitoring efforts. We examined occupancy dynamics and habitat use of juvenile coho salmon, Oncorhynchus kisutch, in shallow lake environments over a summer and early fall season in the Knik River area of south central Alaska using models which control for and estimate sampling gear detection efficiency. In addition, we present statements for the probability that observed absences at a survey site or from a survey area (a collection of sites) are true absences given some amount of sampling effort and analysts' beliefs about site occupancy and sampling gear detection efficiency which can be used to guide inventory and monitoring efforts for juvenile salmon or other wildlife and plant species. Occupancy modelling results demonstrate that minnow traps were effective at sampling juvenile coho in shallow lake environments, with a mean probability of detection across the study period of 0.68 (i.e., probability of detecting the presence of juvenile coho given that they are present at a trap site; SE = 0.03). Juvenile coho salmon migrated into shallow water lakes in late summer and early fall, presumably to seek out overwinter habitat. N‐mixture modelling examination of habitat use demonstrated that once in shallow lake environments, juvenile coho were widely distributed across a range of microhabitats, with some evidence for preference for shallower depths and warmer water temperatures.  相似文献   

17.
The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd‐numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd‐year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977–97 indicated that smolts entering the ocean during even‐numbered years and interacting with abundant odd‐year pink salmon during the following year experienced 26% (age‐2 smolt) to 45% (age‐1 smolt) lower survival compared with smolts migrating during odd‐numbered years. Adult sockeye salmon returning to Bristol Bay from even‐year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd‐year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.  相似文献   

18.
Migrations of juvenile salmon smolts are generally high‐risk, with predation often implicated in reduced survival. In theory, smolts can maximise survival via depensation, or synchronising movements to swamp predators. Depensation, however, is difficult to assess in the wild. Accounting for depensation could also generate more realistic telemetry‐based survival estimates for management. Here, we assess six years (2010–2014, 2016) of acoustic telemetry and outmigration density data for sockeye salmon (Oncorhynchus nerka) from Chilko Lake, British Columbia, Canada. Prevoiusly, depensation for this population wasassessed for a single year, but interannual consistency is not known. We found evidence of depensation in each year, although its strength varied. In addition, by integrating depensation with outmigration densities, annual population‐level survival estimates in this initial (14‐km) migratory segment increased by 0.02–0.24 relative to previously published estimates. However, when extending these survival rates from the first 14 km through the entire tracked migration (1,044 km), increases in estimates were small (~0.01). Potential conservation and management applications of depensation include implications for recovering imperiled populations and informing hatchery release strategies.  相似文献   

19.
In August 2008 the Kasatoshi volcano in the Aleutian archipelago erupted. Prevailing winds carried volcanic ash to the Gulf of Alaska, where its soluble iron dissolved and initiated a widespread phytoplankton bloom. Two years later, the abundance of sockeye salmon (Oncorhynchus nerka) returning to spawn in the Fraser River was larger than any observed since 1913. Kasatoshi's influence on growth and survival has been proposed as the ultimate cause of the abundant return. However, when relevant data are brought to bear on the hypothesis, it shows that: (1) survival of the abundant sockeye salmon cohort was unremarkable when compared with the historical record; (2) without an accompanying volcano, survival of the returns in 2011 was about the same as in 2010; (3) parental abundance that spawned the abundant return in 2010 was the sixth largest since 1948; (4) during their first summer at sea, sockeye salmon are not known to migrate in the offshore region where the anomalous chlorophyll bloom occurred; (5) an older cohort that was likely exposed to the chlorophyll bloom had the second lowest productivity on record when it returned in 2009; (6) immature sockeye salmon do not feed on diatoms, so any trophodynamic benefit derived from excess chlorophyll in mid‐to late August 2008 would have to have found a rapid trophic pathway to sockeye salmon on the continental shelf; and (7) no other populations of sockeye salmon or other species of salmon that are known to rear in the same region had unexpectedly high returns.  相似文献   

20.
Salmonid fishes may reside within or migrate between stream and lake habitats, or undergo anadromous migrations between freshwater and the ocean. While the degree of anadromy of salmonids has been thoroughly compared, no analogous review has examined the degree of lake use. To assess the extent of reliance on lake habitat in this family, we considered 16 species of salmon, trout and charr from the genera Oncorhynchus, Salmo and Salvelinus, comparing their (a) use of lakes as spawning habitat, (b) rearing strategies in lakes, and (c) occurrence and diversity of lacustrine trophic polymorphism. In identifying the primary life‐history patterns of each species and exploring the lesser‐known lacustrine behaviours, we found that the extent of reliance on lakes exhibits a negative association with the degree of anadromy. Oncorhynchus rely least on lakes, Salmo to an intermediate level and Salvelinus the most, opposite of the general prevalence of anadromy among these genera. Lakes are critical to adfluvial and lake‐resident salmonids, but they also support anadromous and fluvial life histories by providing spawning, rearing, overwintering and/or summer refuge habitat. Adfluviality, although a non‐anadromous life history, consists of similar migration‐related traits and behaviours as anadromy, including the parr–smolt transformation, sex‐biased patterns of migration and residency, and the presence of precocious males. Lakes support life‐history variants, reproductive ecotypes and trophic morphs unique to lacustrine habitat. Therefore, conservation of salmonids is dependent on maintaining the diversity and quality of their habitats, including lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号