首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
Six groups of Atlantic salmon, initial weight 142 ± 1 g, were fed increasing dietary inclusion of rapeseed oil (RO) in a regression design and one group was fed a 50% olive oil/50% capelin oil diet. Fatty acid composition was measured in red and white muscle, liver, and fatty acid and lipid class composition was measured in plasma and in the lipoproteins; very low density lipoprotein, low density lipoprotein, high density lipoprotein and nonlipoprotein fraction after 22 and 42 weeks of feeding. Further, the activities of liver NADH‐isocitrate dehydrogenase (ICDH), malic enzyme, glucose‐6‐phosphate dehydrogenase (G6PDH) and 6‐phosphogluconate dehydrogenase were measured at each sampling point. After 42 weeks of feeding the experimental diets, the tissue and lipoprotein fatty acid composition was highly affected by dietary fatty acid composition. Regressions showed that 22:1n ? 11, 18:1n ? 9, 18:3n ? 3 and 18:2n ? 6 are readily metabolized in all tissues analysed. Further, 20:5n ? 3 seems to be metabolized in muscle and retained in liver. 22:6n ? 3 was selectively retained in all the analysed tissues, and with higher retention in liver and plasma with higher polar lipid/neutral lipid ratio compared to white and red muscle. Liver from salmon fed 100% RO showed decreased G6PDH and increased ICDH activities compared to the other dietary groups; however, no linear relationship related to increased RO inclusion was detected. The amount of plasma lipoproteins, liver monoene fatty acid level and lipogenic enzyme activity decreased from the autumn to the winter sampling with concomitant decrease in temperature.  相似文献   

2.
This study was undertaken to assess the effects of fish oil (FO) substitution by a mixture of alternative vegetable oils (VO) on Seriola dumerili culture performance. A 154‐day feeding experiment was conducted using juveniles (39.2 ± 1.6 g average weight). Three isolipidic and isoenergetic meal‐based diets were formulated varying their lipid component. The control diet contained 100% FO (FO100), whereas diets VO50 and VO100 included 1/2 of oil blend and all the oil from blend of palm oil (PO) and linseed oil (LO) as substitute for FO, respectively. Dietary regime did not significantly affect growth performance, biometric indices, feed efficiency, plasma chemistry and liver and muscle lipid contents. Nonetheless, dietary VO inclusion impacted on the fatty acid profile of target tissues, especially in the liver. Fatty acid profiles of the fillets reflected those of the dietary oils except that there was apparent selective utilization of palmitic acid (C16:0) and oleic acid (C18:1n‐9) and apparent selective retention of long‐chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA, C20:5n‐3) and docosahexaenoic acid (DHA, C22:6n‐3). The nutritional value and the potential ability to prevent the development of coronary heart diseases of the flesh lipid fraction decreased with gradual FO substitution.  相似文献   

3.
The major aim of the current study was to evaluate the effect of substituting fish oil (FO) for a vegetable oil blend (VO) as dietary lipid source on lipid catabolism in Atlantic salmon (Salmo salar L.). The experiment endured from the start of feeding until the salmon reached 2.5 kg. Total and peroxisomal β‐oxidation capacities were determined in red and white muscle and liver. In addition, fatty acid productive value (FAPV) was calculated during the four time periods the experiment was divided into. In all the three tissues, an increased β‐oxidation capacity was found prior to seawater transfer; however, calculating the difference between the peroxisomal β‐oxidation capacity and the total, the peroxisomal β‐oxidation increased more than the mitochondrial β‐oxidation capacity. Hence, in liver and red muscle, 100%and 70%, respectively, of the total β‐oxidation capacity was accounted by peroxisomes prior to seawater transfer, compared with approximately 60% and 3% during the seawater phase. In contrast, white‐muscle mitochondria was the main organelle responsible for oxidizing fatty acids during the entire experiment (>90%). However, during the period of high energy demand (parr‐smolt transformation), fish fed VO exhibited significantly lower β‐oxidation capacity than fish fed FO, coinciding with low FAPV and low specific growth rate (SGR). Further, during periods of high growth rate, fish oxidized even essential fatty acids (18:2n‐6, 18:3n‐3, 20:5n‐3, and 22:6n‐3) when given in surplus. Low dietary levels of essential fatty acids gave significantly higher FAPV of these fatty acids in the whole body. However, the FAPV of 22:1n‐11 was low, indicating that this fatty acid is highly utilized as a substrate for β‐oxidation, irrespective of the dietary levels. There were no differences in whole lipid content between fish fed either FO or VO.  相似文献   

4.
Changes in fatty acid metabolism in Atlantic salmon (Salmo salar) induced by vegetable oil (VO) replacement of fish oil (FO) and high dietary oil in aquaculture diets can have negative impacts on the nutritional quality of the product for the human consumer, including altered flesh fatty acid composition and lipid content. A dietary trial was designed to investigate the twin problems of FO replacement and high energy diets in salmon throughout the entire production cycle. Salmon were grown from first feeding to around 2 kg on diets in which FO was completely replaced by a 1:1 blend of linseed and rapeseed oils at low (14–17%) and high (25–35%) dietary oil levels. This paper reports specifically on the influence of diet on various aspects of fatty acid metabolism. Fatty acid compositions of liver, intestinal tissue and gill were altered by the diets with increased proportions of C18 polyunsaturated fatty acids and decreased proportions of n-3 highly unsaturated fatty acids (HUFA) in fish fed VO compared to fish fed FO. HUFA synthesis in hepatocytes and enterocytes was significantly higher in fish fed VO, whereas β-oxidation was unaltered by either dietary oil content or type. Over the entire production cycle, HUFA synthesis in hepatocytes showed a decreasing trend with age interrupted by a large peak in activity at seawater transfer. Gill cell prostaglandin (PG) production showed a possible seasonal trend, with peak activities in winter and low activities in summer and at seawater transfer. PG production in seawater was lower in fish fed the high oil diets with the lowest PG production generally observed in fish fed high VO. The changes in fatty acid metabolism induced by high dietary oil and VO replacement contribute to altered flesh lipid content and fatty acid compositions, and so merit continued investigation to minimize any negative impacts that sustainable, environmentally-friendly and cost-effective aquaculture diets could have in the future. Abbreviations: FO - fish oil; HUFA - highly unsaturated fatty acids acids (carbon chain length ≥C 20 with ≥3 double bonds); LO - linseed oil; RO - rapeseed oil; VO - vegetable oil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The effects of a double replacement of fish oil (FO) and fish meal (FM) by dietary vegetable ingredients in juvenile gilthead sea bream (Sparus aurata L. 1758) on some indices of lipid metabolism and plasma insulin levels were analysed. Four experimental diets with a replacement of 75% of FM by plant proteins (PP) were administered. Added oil was either FO (75PP/FO diet), or a vegetable oil mix (VO), replacing 33%, 66% or 100% of FO (75PP/33VO, 75PP/66VO, 75PP/100VO diets). Another diet with 50% of substitution of FM by PP and with 100% of VO was also tested (50PP/100VO diet). Final body weight was similar in all diet groups, except for the 75PP/100VO group, which presented lower values. Circulating insulin levels increased with feed administration in all groups and no differences between diets were observed, with the exception of the 75PP/FO group, which presented higher plasma insulin values. In adipose tissue, glucose‐6‐phosphate dehydrogenase and malic enzyme activities decreased with the inclusion of vegetable oil, especially 5 h after feeding. Diet had no significant effect on the hepatic activity of either enzyme. Lipoprotein lipase activity decreased in white muscle and adipose tissue with the replacement of fish oil in 75PP diets, 5 h after feeding. In conclusion, the use of a combined replacement of fish oil and fish meal by vegetable ingredients in gilthead sea bream permits satisfactory growth, with moderate changes in tissue lipogenesis and lipid uptake.  相似文献   

6.
Atlantic salmon were fed extruded diets based on either 100% fish oil (FO) or 100% vegetable oil blend (VO) substitution for 22 months. A total of seven distinct feeding periods were studied that incorporated higher levels of dietary oil inclusion, and larger pellet size as fish size increased. Whole fish levels of polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/F) and dioxin‐like PCBs (DLPCB) were analysed at the beginning and end of each of the seven feeding periods. The PCDD/F and DLPCB concentrations in the FO diets increased from 2.43 to 4.74 ng WHO‐TEQ kg?1 (TEQ, toxic equivalents), while VO diets decreased from 1.07 to 0.33 WHO‐TEQ kg?1 as oil inclusion increased. Partial least square regression analyses identified feed concentration, growth rate and feed utilization, but not variations in lipid content, as factors significantly affecting fish PCDD/F and DLPCB levels. Accumulation efficiencies for DLPCB (740 ± 90 g kg?1) were significantly (P < 0.01) higher than for PCDD/F (430 ± 60 g kg?1), explaining the increasing dominance of DLPCB levels over PCDD/F levels in whole fish (DLPCB : PCDD/F ratio of 2.4 ± 0.1 for both VO and FO fed fish) compared with feed (DLPCB : PCDD/F ratio of 1.5 and 0.34 for FO and VO feed respectively). Vegetable oil substitution significantly reduced the level of PCDD/F and DLPCB (eightfold and twelve‐fold, respectively) in the fillet of a 2 kg salmon, but, also negatively affected beneficial health components such as fillet n‐3/n‐6 fatty acid ratio.  相似文献   

7.
8.
Relative gene expression pattern of fatty acid transport proteins (FATP and cd36), intracellular fatty acid-binding proteins (FABP3, FABP10 and FABP11), β-oxidation-related genes [carnitine palmitoyl transferase II (CPTII), peroxisome proliferator-activated receptor β (PPARβ), acyl-CoA oxidase (AOX), long-chain fatty acyl-CoA synthetase (FACS), acyl-CoA dehydrogenase (dehydrogenase)] and uncoupling protein 2 (UCP2) was assessed by RT-qPCR in Atlantic salmon muscle (red and white), liver, heart, myosepta and visceral fat. FABP11, a FABP isoform not previously described in Atlantic salmon, was highly expressed in visceral fat and myosepta and at the lower level in red muscle, white muscle, myosepta and heart. Furthermore, Atlantic salmon were fed either a diet containing fish oil (FO) or a complete replacement of FO with a vegetable oil blend (55% rapeseed oil, 30% palm oil and 15% linseed oil; VO) for the production cycle (27 months from start of feeding and until ∼4.5 kg mean weight). The expression of genes related to β-oxidation, fatty acid uptake and transport in the white muscle indicate ( n  = 3) significant down-regulation in VO fed Atlantic salmon and correlated with previously reported white muscle triacylglycerol stores and β-oxidation. FABP11 in visceral fat and myosepta was also down-regulated in VO fed fish.  相似文献   

9.
Recent studies in terrestrial animals have shown that feeding the oxidized lipids led to a reduction in triacylglycerols (TAG) and total cholesterol (TC) in liver and plasma. However, limited information is available on the effect of oxidized lipids on lipid metabolism in fish. In this study, four diets containing 0 g kg?1 (control: fresh fish oil), 30 g kg?1 (low‐oxidized oil, LOO), 60 g kg?1 (medium‐oxidized oil, MOO) and 90 g kg?1 (high‐oxidized oil, HOO) graded oxidized oil levels with the same dietary lipid level were fed to channel catfish for 86 days. The tissue lipid metabolism and fatty acid composition of the fish were investigated after this period. The results showed that plasma and liver concentrations of TAG and TC decreased with increasing dietary oxidized oil level (< 0.05). Decreasing liver lipoprotein lipase and hepatic lipase activities were observed with increasing dietary oxidized fish oil inclusion (< 0.05). The liver C22:6n?3 concentrations significantly decreased with increasing dietary oxidized oil level (< 0.05), while muscle lipid had a high proportion of polyunsaturated fatty acids. It suggests that the adverse effects of dietary oxidized oil may be induced by inhibiting lipid metabolism enzymes and, consequently, inhibition of cholesterol homoeostasis and fatty acid synthesis.  相似文献   

10.
A feeding trial was conducted to investigate the complete substitution of either fish oil (FO) or squid liver oil (SLO) with crude palm oil (CPO), canola oil (CO) sunflower oil (SFO) or linseed oil (LO), as the sole added lipid source in diets fed to triplicate groups of giant freshwater prawn, Macrobrachium rosenbergii (initial weight = 0.42 ± 0.01 g) for 6 weeks. Prawns fed the CO or SLO diets showed significantly higher (< 0.05) specific growth rate than those fed the FO or CPO diets. The feed conversion ratio of the prawns was significantly better when fed the CO diet, compared with the FO, CPO, SFO and LO diets. The muscle eicosapentaenoic acid content of prawns fed the vegetable oil (VO) diets were not significantly different (P > 0.05) from those fed the FO diet, although all VO‐based diets led to a significantly lower docosahexaenoic acid content compared with prawns fed the FO or SLO diet. The whole‐body total carotenoid content was significantly lower for prawns fed the SLO diet compared with prawns on the CO or CPO diets. The successful use of VO instead of marine‐based oils in prawn diets will likely reduce feeding costs associated with M. rosenbergii aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号