首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 343 毫秒
1.
Periphyton is an additional food source in African and Asian brackish and freshwater fish ponds. The present study was a preliminary assessment of periphyton development on artificial substrates in temperate marine ponds. The effects of submersion time, substrate type, water depth, and total or partial sampling methods on the quantity and quality of periphyton collected, were evaluated. Four types of substrate (W: wooden poles, S: smooth fiber-glass strips, m: mosquito screen (1 mm-mesh) and M: garden netting (5 mm-mesh)) were deployed in a marine pond, and periphyton was collected 15 and 30 days later. The total amount of periphyton per substrate unit was collected as one sample or as 5 sub-samples. Results showed that (i) periphyton biomass in a marine pond increased between day 15 and day 30, (ii) more periphyton was collected on mosquito screen than on wooden poles, fiberglass strips and garden netting, (iii) periphyton biomass increased with submersion depth, (iv) sub-sampling leads to an underestimate compared to whole unit sampling, and (v) a correction of periphyton weight must be carried out considering the dissolved inorganic salts present in periphyton samples from marine and brackish ponds. Whole substrate unit sampling using a tube and stopper is recommended to avoid underestimation of periphyton development. Finally, the autotrophic fraction in the periphyton communities was very low compared to periphyton developed on biodegradable substrates in fertilized tropical ponds. Studies on fertilization and use of biodegraded substrates (i.e. long-time submerged wood) are recommended to further optimize periphyton development in temperate marine ponds.  相似文献   

2.
The project evaluated the effect of installing scrap bamboo (‘kanchi’) as a substrate for periphyton on growth and production of the indigenous major carp calbaush, Labeo calbasu (Hamilton). The impacts of fish grazing on the periphyton community were also assessed. Six ponds were used, three of which were provided with kanchi poles (700 per pond, spaced 30 cm apart). Ponds were limed and fertilized and stocked with L. calbasu fingerlings (mean total length = 5.16 cm; mean weight = 2.10 g) at a rate of 10 000 fingerlings ha–1 (75 fish per pond). There were no statistically significant differences in water quality between treatments, although differences in phytoplankton community composition were observed. Zooplankton numbers were the same in both treatments. While there was clear evidence that periphyton was being exploited by the fish, Chlorophycae being most affected, grazing was insufficient to cause significant reductions in total periphyton densities. Fish survival and specific growth rates (SGRs) were significantly higher in ponds with substrates, production in treatments with and without scrap bamboo substrate being 712.90 and 399.11 kg ha–1, respectively, over the 120-day period. However, production in both treatments was low in comparison with other studies, water temperatures (23.6–32.7 °C) being less than optimum for growth. It was concluded that kanchi and other locally available materials might be used to increase the production of some species of fish, although further evaluation of production economics is required.  相似文献   

3.
In fish production under organic standards, only organic feeds and manures can be supplied. The cost of organic pelleted feeds is twice that of regular feeds. To support the organic production of hybrid tilapia [Oreochromis niloticus (L.) ×Oreochromis aureus (Steindachner)], a series of experiments in earthen ponds, to improve natural food production for this fish while reducing costs of added feed, are in progress. To improve natural food production for tilapia, plastic substrates equivalent to 50% of the pond surface were introduced into the water column to induce periphyton growth on them. To reduce costs, the feeding rate on pelleted feed was reduced to 60%. Tilapia growth in these periphyton ponds was then compared with ponds without underwater substrates that received the full feed rate. The polyculture consisted of 90% large (320 g stocking weight) hybrid tilapia and small amounts of other fish, at a total stocking density of 13 800 fish ha?1, during 87 summer days. The results showed improved nitrification and the development of a large autotrophic periphyton biomass that competed with the phytoplankton in the periphyton ponds, and only a 10% and 15% reduction, respectively, in the tilapia daily and specific growth rates, with 40% feed saving. These results point towards periphyton‐based aquaculture as an appropriate technology for the reduction in production costs, allowing economically viable organic tilapia production.  相似文献   

4.
Two trials were conducted in mud‐bottomed concrete tanks to assess the potential of using artificial substrates to enhance fish production in ponds. Three substrate types were tested: bamboo poles, PVC pipes and sugarcane bagasse bundles. In one trial, periphyton was grown on the substrates in the absence of fish. In the second trial, masheer (Tor khudree Sykes) fingerlings were stocked at three densities. Results showed a significant effect of substrate type on fish growth (P≤ 0.001) and on net fish production (P≤ 0.05), with best growth in the tanks using the bamboo substrate. In the bagasse treatment, 100% fish mortality occurred. Highest extrapolated periphyton‐based gross fish yield (i.e. without feed inputs) was 450 kg ha?1 90 d?1 with PVC and 491 kg ha?1 90 d?1 with bamboo substrate. The best periphyton growth occurred on bamboo, followed by bagasse and PVC. Without fish, mean periphyton biomass during the culture period was 0.56–1.20 mg cm?2 on bamboo [ash‐free dry matter (DM)], against 0.09–0.36 mg cm?2 on PVC and 0.20–0.59 mg cm–2 on bagasse. No clear effect of fish density or water depth on periphyton biomass could be seen. Only on bamboo, fish density seemed to have a negative effect on periphyton ash‐free dry matter and a positive effect on pigment content (chlorophyll‐a and phaeophytin). Periphyton from bamboo had a lower ash content (38–47% of DM) than from PVC (54–55% of DM) or bagasse (51–58% of DM). It is concluded that substrate type has a strong effect on periphyton productivity and composition, and on fish productivity. Good fish production was achieved without feed inputs. More research is needed to study the economic viability of periphyton‐based systems in the context of Indian aquaculture.  相似文献   

5.
The effects of four rates of application of fertilizer, with cow manure (3000 kg ha−1), urea (100 (kg ha−1) and triple super phosphate (TSP) (100 kg ha−1) (treatment F)), treatment F × 0.5 (treatment 0.5F), treatment F × 1.5 (treatment 1.5F) and treatment F × 2 (treatment 2F), on periphyton, plankton and water quality in tropical freshwater ponds were studied. The highest periphyton biomass in terms of dry matter (3.27 mg cm−2 substrate), ash-free dry matter (2.06 mg cm−2 substrate) and chlorophyll a (7.49 µg cm−2 substrate) developed in treatment 1.5F. The ash content of periphyton was lower in treatment 1.5F (38% of dry matter) than in other treatments (57–66% of dry matter). Total ammonia and chlorophyll a of water increased with fertilization rate. Treatment 1.5F (cow manure, urea and TSP at rates of 4500, 150 and 150 kg ha−1 respectively) appears to be the optimum, yielding high quantity and quality periphyton. By supplying a substrate area for periphyton equivalent to the pond surface, it was estimated that this level of fertilization could support a fish production of around 5000 kg ha−1 y−1, without recourse to supplementary food.  相似文献   

6.
Sparus aurata were cultured during an 8-month period in brackish water (salinity about 25 ppt) in an extensive culture system comprising eight earthen ponds, each with a water surface of 2.1 ha. Initial mean wet weight of fish in all ponds varied from 13.6 ± 1.9 to 19.2 ± 2.6 g/fish. The eight ponds were randomly allocated one of four experimental treatments (two ponds/treatment). In the first treatment, ponds were fertilized monthly with 100 kg urea and 50 kg triple super phosphate. The other treatments (2–4) were fed a locally produced tilapia pellet feed containing 25% crude protein made using different processes. Fish in the second treatment were fed tilapia feed pelleted by compressing machine, whereas in treatments 3 and 4 the pellets were produced by extruder machine (Wenger). Pellets in treatment 3 were floating and in the fourth were semi-sinking. Fish were fed pellets twice daily at 6% of their biomass. The mean final body weight for each treatment respectively was 104.6, 118.9, 156.8 and 158 g. Specific growth rate (SGR) of 0.8, 0.79, 0.99 and 0.95%/day, were obtained in ponds using only inorganic fertilizer, compressed sinking pellets, extruded floating pellets and extruded semi-sinking pellets, respectively. Feed conversion ratios (FCR) for treatments with the extruded tilapia pellets were 2.2 and 2.6 g feed/g gain, which were significantly (P < 0.05) better than treatments with compressed pellets (3.2 g feed/g gain). Production/ha/year were 1389, 1358, 945 and 682 kg fish for the groups fed with extruded floating, extruded semi-sinking, compressed and natural food, respectively. Under the present experimental circumstances, Sparus aurata fed extruded floating tilapia pellets (25% crude protein and 2,600 kcal/g), showed the best productive performance.  相似文献   

7.
The study was carried out to quantify the periphyton biomass developed on glass substrates over time, to investigate the effects of periphyton quantity and fish size on the ingestion rate by fish, and to determine the feed conversion ratio (FCR) of periphyton by tilapia Oreochromis niloticus. Periphyton was grown in two fertilised 1000‐l tanks on glass slides and monitored as dry matter (g), ash‐free dry matter (g) and chlorophyll a concentrations (mg) per unit surface area (m2) over a six week period. Ingestion rate was determined for two sizes of tilapia (7 and 24 g) which were provided with four different periphyton densities. Determination of FCR was made after feeding three individual fish ad libitum with periphyton for two weeks. Periphyton ash‐free dry matter increased sharply during the first half of the trial with a peak being recorded at week 3 (75.5 g m?2). Productivity was 2.4 g ash‐free dry matter m?2 d?1 during the first three weeks. Mean chlorophyll a concentration showed a cyclic pattern throughout the study with the lowest value being measured during the last week. Ingestion rates were 0.90 and 0.18 mg dry matter g fish body weight?1 h?1 for small and medium fish respectively. Ingestion rate among small fish increased significantly (P < 0.05) with periphyton density, but not for medium size fish. Although periphyton ash content was high (55% dry matter), fish growth was sustained. Fish harvested 70% of total periphyton dry matter that was offered to them. The FCR for periphyton was 2.81 on a dry matter basis and 1.34 on an ash‐free dry matter basis.  相似文献   

8.
Integrated multitrophic aquaculture (IMTA) systems are designed mainly for efficient use of resources. Substrates added to aquaculture ponds provide space for periphyton to settle and recover nutrients, making these nutrients available to the species being reared. The present study is centered on the phosphorus budget, analyzing the main ecological compartments of IMTA systems in earthen ponds stocked with Amazon River prawn, Macrobrachium amazonicum, and Nile tilapia, Oreochromis niloticus, with or without different added substrates. The experimental design was completely randomized, with three treatments (without a substrate, with a geotextile fabric substrate, and with a bamboo substrate) and four replications. Phosphorus entered the systems mainly in tilapia feed (ca. 50–61%), inlet water (ca. 17–27%), and fertilizer (ca. 6–7%). Input of phosphorus from other compartments ranged from 1.5 to 1.9%. Most phosphorus was accumulated at the pond bottom as sediment (ca. 60–68%) and fish biomass (ca. 18–26%), or discharged in the outlet water (ca. 7–10%). Feeding is the main driver for the distribution of phosphorus in the ponds. Levels of phosphorus retained in reared animals (20–28%) were higher in these IMTA systems than in tilapia and prawn monocultures (reported as 10–20% and 10–13%, respectively). Nonetheless, the present data showed that the addition of different types of substrates might not improve the recovery of phosphorus in animal biomass as initially supposed. Even so, these IMTA systems decreased the amount of phosphorus released in effluents, and this decrease was enhanced by the addition of substrates, reducing the impact on the receiving waterbodies.  相似文献   

9.
A comparative study was carried out to compare the effect of caging mullet and tilapia in a shrimp polyculture system. In six shrimp tanks (three tanks for each fish species), either mullet, Mugil cephalus (CCT‐SM), or tilapia, Oreochromis niloticus (CCT‐ST), was stocked in cages. In three other tanks, mullets were allowed to roam freely in shrimp tanks (D‐SM). White shrimp, Litopenaeus vannamei (0.50 g), was cultured as the predominant species were distributed randomly into nine fibreglass tanks (5 m3) at a density of 300 shrimp/tank, while fish (1.50 g) were stocked at the same density of 10% of the initial total shrimp biomass. The results showed that water quality parameters were not significantly different among treatments (p > .05), except for total suspended solids (TSSs). System performances based on parameters such as total weight gain (2,808.15 g/tank) and nutrient recovery were higher in D‐SM treatment (39.80% for nitrogen and 27.40% for phosphorus) than in CCT‐SM and CCT‐ST treatments (p < .05). These system performance parameters were significantly affected by the mullet‐holding strategy; however, they were not affected by fish species. The addition of mullet or tilapia in shrimp tanks did not affect shrimp growth differentially. Fish growth performances based on parameters such as final weight (98.43 g/fish) and DGR (1.29 g/day) were significantly higher in D‐SM treatment and were significantly different among D‐SM, CCT‐SM and CCT‐ST treatments (p < .05). It is concluded that in shrimp–fish polyculture with a stocking density of fish at 10% of the initial total shrimp biomass, tilapia is more effective than mullet, when caged. However, under free‐roaming conditions, the use of mullet is more effective in terms of system performances relative to a system holding caged tilapia.  相似文献   

10.
An on-station trial was conducted to evaluate the effect of stocking density of freshwater prawn and addition of different levels of tilapia on production in carbon/nitrogen (C/N) controlled periphyton based system. The experiment had a 2 × 3 factorial design, in which two levels of prawn stocking density (2 and 3 juveniles m? 2) were investigated in 40 m2 earthen ponds with three levels of tilapia density (0, 0.5 and 1 juveniles m? 2). A locally formulated and prepared feed containing 30% crude protein with C/N ratio close to 10 was applied considering the body weight of prawn only. Additionally, tapioca starch was applied to the water column in all ponds to increase C/N ratio from 10 (as in feed) to 20. Increasing stocking density of tilapia decreased the chlorophyll a concentration in water and total nitrogen in sediment, and increased the bottom dissolved oxygen. The concentrations of inorganic nitrogenous species (NH3–N, NO2–N and NO3–N) were low due to maintaining a high C/N ratio (20) in all treatment ponds. Increasing prawn density decreased periphyton biomass (dry matter, ash free dry matter, chlorophyll a) by 3–6% whereas tilapia produced a much stronger effect. Increasing stocking density of freshwater prawn increased the total heterotrophic bacterial (THB) load of water and sediment whereas tilapia addition decreased the THB load of periphyton. Both increasing densities of prawn and tilapia increased the value of FCR. Increasing prawn density increased gross and net prawn production (independent of tilapia density). Adding 0.5 tilapia m? 2 on average reduced prawn production by 12–13%, and tilapia addition at 1 individual m? 2 produced a further 5% reduction (independent of prawn density). The net yield of tilapia was similar between 0.5 and 1 tilapia m? 2 treatments and increased by 8.5% with increasing stocking density of prawn. The combined net yield increased significantly with increasing stocking density of prawn and tilapia addition. The significantly highest benefit cost ratio (BCR) was observed in 0.5 tilapia m? 2 treatment but freshwater prawn density had no effect on it. Therefore, both stocking densities (2 and 3 juveniles m? 2) of prawn with the addition of 0.5 tilapia m? 2 resulted in higher fish production, good environmental condition and economic return and hence, polyculture of prawn and tilapia in C/N controlled periphyton based system is a promising options for ecological and sustainable aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号