首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
A primary goal of ecosystem‐based fishery management is to reduce non‐target stock impacts, such as incidental harvest, during targeted fisheries. Quantifying incidental harvest has generally incorporated fishery‐dependent catch data, yet such data may be biased by gear non‐retention, observation difficulties, and non‐random harvest patterns that collectively lead to an impartial understanding of non‐target stock capture. To account for such issues and explicitly recognize the combined influence of ecological and harvest factors contributing to incidental capture within targeted fisheries, we demonstrate a probabilistic modelling framework that incorporates: (i) background rates of target and non‐target stock co‐occurrence as the primary ecological basis for incidental harvest; (ii) the probability of harvesting at localities exhibiting co‐occurrences; (iii) the probability of selecting for non‐target species with fishery gear; and, (iv) as a function of harvest effort, the overall probability of incidental capture for any non‐target stock contained in the species pool available for harvest. To illustrate application of the framework, simulation models were based on fishery‐independent data from a freshwater fishery in Ontario, Canada. Harvest simulations of empirical stock data indicated that greatest species‐specific capture values were over 4000 times more likely than for species with lowest values, indicating highly variable capture probabilities because of the combined influence of stock heterogeneity and harvest dynamics. Estimated bycatch–effort relationships will allow forecasting incidental harvest on the basis of effort to evaluate future shifts in fishing activity against specific ecosystem‐based fishery management objectives, such as reducing the overall probability of bycatch while maintaining target landings.  相似文献   

2.
Fish stock productivity, and thereby sensitivity to harvesting, depends on physical (e.g. ocean climate) and biological (e.g. prey availability, competition and predation) processes in the ecosystem. The combined impacts of such ecosystem processes and fisheries have lead to stock collapses across the world. While traditional fisheries management focuses on harvest rates and stock biomass, incorporating the impacts of such ecosystem processes are one of the main pillars of the ecosystem approach to fisheries management (EAFM). Although EAFM has been formally adopted widely since the 1990s, little is currently known to what extent ecosystem drivers of fish stock productivity are actually implemented in fisheries management. Based on worldwide review of more than 1200 marine fish stocks, we found that such ecosystem drivers were implemented in the tactical management of only 24 stocks. Most of these cases were in the North Atlantic and north‐east Pacific, where the scientific support is strong. However, the diversity of ecosystem drivers implemented, and in the approaches taken, suggests that implementation is largely a bottom‐up process driven by a few dedicated experts. Our results demonstrate that tactical fisheries management is still predominantly single‐species oriented taking little account of ecosystem processes, implicitly ignoring that fish stock production is dependent on the physical and biological conditions of the ecosystem. Thus, while the ecosystem approach is highlighted in policy, key aspects of it tend yet not to be implemented in actual fisheries management.  相似文献   

3.
Coral reefs support numerous ornamental fisheries, but there are concerns about stock sustainability due to the volume of animals caught. Such impacts are difficult to quantify and manage because fishery data are often lacking. Here, we suggest a framework that integrates several data‐poor assessment and management methods in order to provide management guidance for fisheries that differ widely in the kinds and amounts of data available. First, a resource manager could assess the status of the ecosystem (using quantitative metrics where data are available and semi‐quantitative risk assessment where they are not) and determine whether overall fishing mortality should be reduced. Next, productivity susceptibility analysis can be used to estimate vulnerability to fishing using basic information on life history and the nature of the fishery. Information on the relative degree of exploitation (e.g. export data or ratios of fish density inside and outside no‐take marine reserves) is then combined with the vulnerability ranks to prioritize species for precautionary management and further analysis. For example, species that are both highly exploited and vulnerable are good candidates for precautionary reductions in allowable capture. Species that appear to be less vulnerable could be managed on a stock‐specific basis to prevent over‐exploitation of some species resulting from the use of aggregate catch limits. The framework could be applied to coral reef ornamental fisheries which typically lack landings, catch‐per‐unit‐effort and age‐size data to generate management guidance to reduce overfishing risk. We illustrate the application of this framework to an ornamental fishery in Indonesia.  相似文献   

4.
Landings in the blue crab, Portunus trituberculatus, fishery in Korean waters of the Yellow Sea have declined substantially from 11,000 t in the 1980s to 2,300 t in 2004. Blue crab habitat quality in the Yellow Sea has been degraded by anthropogenic activities including sand mining, land reclamation, and coastal pollution. Various traditional management measures have been implemented, including closed seasons during spawning and size limits, but these measures alone have been unsuccessful to conserve blue crab stocks. Consequently, a total allowable catch and a stock-rebuilding program using an ecosystem-based management approach were implemented in 2003 and 2006, respectively to rebuild blue crab stocks and restore habitats. This program involved assessment of both blue crab stock status and trammel-net fishery impacts at an ecosystem-level using an ecosystem-based fisheries assessment method ( [Zhang et al., 2009] and [Zhang et al., 2010]), which considered fishery data from catch and effort time-series, crab population biology, and ecosystem characteristics, including habitats and environmental conditions. Recent (2008) management status indices have shown significant positive change compared to conditions in 2000 with respect to sustainability of the stock and fishery and with regards to biodiversity and ecosystem habitat quality.  相似文献   

5.
Inland fisheries managers must account for multiple competing uses for aquatic resources; using methods such as ecosystem-based management allows for different priorities for aquatic ecosystems to be accounted for. Declining abundance of kokanee salmon Oncorhynchus nerka (Walbaum) in Arrow Lakes Reservoir in the 1990s led to the use of large-scale nutrient addition to improve productivity of kokanee and large piscivores. However, it is unclear what effect these measures had on the system given high discharge and highly variable annual flow regime throughout the watershed. An Ecopath with Ecosim model of the ecosystem was fitted to the available data and used to predict ecosystem structure and reservoir objectives under different nutrient addition strategies and varying annual flow regimes. Results from the model indicate that nutrient addition is an important driver in the system, with lower flows resulting in higher biomass for higher trophic levels. Decision analysis demonstrated the importance of maintaining nutrient additions to achieve management objectives despite losses in some high-flow years.  相似文献   

6.
Fished populations exist within complex ecosystems but are typically assessed using single‐species models. It is often lamented that stock assessments rarely account for other ecosystem components explicitly, but in most fisheries there are clear difficulties in implementing data‐intensive ecosystem‐based assessment approaches. Addressing these competing challenges requires prioritizing investments in expanded assessment frameworks. To provide high‐level conceptual guidance to such prioritization, here we use general analytical theory to identify (i) characteristics of fish stocks that tend to facilitate or inhibit the precision and accuracy of reference points from single‐species assessments, (ii) characteristics of ecosystem components that introduce the greatest bias/imprecision into single‐species reference points and (iii) warning signs within single‐species frameworks that important ecosystem components may not be adequately accounted for. We synthesize and expand on theories from various branches of applied mathematics addressing analogous questions. Our theory suggests that (i) slow population dynamics (relative to the dynamics of other ecosystem components) and a wide range of abundance observations promote precision and accuracy of single‐species reference points; (ii) ecosystem components that strongly influence the focal stock's growth, and change on similar timescales as the focal stock's abundance, introduce the greatest bias/imprecision to single‐species reference points; and (iii) signs of potential challenges for single‐species assessment include fast population dynamics, ‘hydra effects’ (i.e. abundance and fishing pressure simultaneously increase), and recently detected extinctions, invasions or regime shifts in closely connected ecosystem components. Our results generalize to other levels of abstraction and provide strategic insights complementing tactical simulation approaches such as management strategy evaluation.  相似文献   

7.
The impacts of climate change have been demonstrated to influence fisheries resources. One way climate has affected fish stocks is via persistent shifts in spatio‐temporal distribution. Although examples of climate‐forced distribution shifts abound, it is unclear how these shifts are practically accounted for in the management of fish stocks. In particular, how can we take into account shifting stock distribution in the context of stock assessments and their management outputs? Here, we discuss examples of the types of fish stock distribution shifts that can occur. We then propose a decision tree framework of how shifting stock distributions can be addressed. Generally, the approaches for addressing such shifts fall into one of three main alternatives: re‐evaluate stock identification, re‐evaluate a stock unit area, or implement spatially explicit modelling. We conclude by asserting that the approach recommended here is feasible with existing information and as such fisheries managers should be able to begin addressing the role of changes in stock distribution in these fish stocks. The implications of not doing so could be notably undesirable.  相似文献   

8.
We review the stock assessment strategies and management procedures for walleye pollock Theragra chalcogramma in Japan. In Japan, walleye pollock is classified into 4 stocks. Because biological data, fishing conditions, etc. are different for each stock, the stocks are assessed by different methods. Harvest strategies aiming at stock recovery are proposed for the Northern Japan Sea stock and the Nemuro Strait stock, which are currently in poor condition. For the Japanese Pacific stock and the Southern Okhotsk Sea stock, which are in good condition, harvest strategies for current fishery operations are proposed. In Japan, fisheries co-management has traditionally been carried out, and in recent years a total catch limitation system called the total allowable catch, a resource recovery plan, and a resource management plan have also been implemented. Although a plan is devised that accounts for the stock conditions of walleye pollock, it is also necessary to consider socioeconomic factors, ecosystem factors, and so on. However, we consider that the main focus of stock management for walleye pollock will still be maintaining fishing pressure at an appropriate level, which includes regulating fish size and price during the fishing season.  相似文献   

9.
随着渔业资源评估理论、数理统计方法和计算机技术的进步, 资源评估模型朝着多样化和复杂化不断发展, 其中种群模拟技术是检测模型适用性和局限性的重要手段。该技术由种群仿真理念发展而来, 通过模拟“真实”种群的方式, 对资源评估结果和管理策略进行有效的评价和预测, 并凭借可结合海洋环境因子、鱼类洄游空间分布以及多鱼种渔业进行资源评估的特性, 已成为开发新资源的重要评估方法之一。为此, 本文对种群模拟的结构和发展过程进行了回顾, 对该技术的核心组成部分操作模型和常见的四类误差(过程误差、观测误差、模型结构误差和管理误差)展开分类讨论。此外, 本文还结合近年来迅速发展的数据缺乏和数据适中模型的特点, 根据实际应用案例对种群模拟的作用和使用前景进行梳理, 并就种群模拟技术发展中存在的主要问题和潜在解决办法提出分析和建议。  相似文献   

10.
湖泊生态系统稳态转换驱动因子判定方法研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
湖泊生态系统会在长期的人为胁迫和短期的强扰动下发生稳态转换,灾变性稳态转换将会导致湖泊水环境在短时间内急剧恶化,进而延缓和加大治理的进程及成本。探求浅水湖泊稳态转换驱动因子是科学合理确定湖泊管理策略的关键所在,现有的驱动因子判定方法主要有实验观测、统计分析和模型模拟。实验观测缺乏对生态系统整体的判断,仅采用观测数据并不能得出导致稳态转换确切的原因和效应;统计分析难以对未来作出预警;模型模拟可有效规避上述2种方法存在的问题,特别是机理模型是今后分析稳态转换的主要方法。有必要加强统计分析与模型模拟的结合、生态模型与传统水质水动力模型耦合等方面的研究工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号