首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Fish surviving infection with the pathogenic ciliated protozoan, Ichthyophthirius multifiliis (Fouquet, 1876), become resistant to subsequent infection by the parasite. The acquired immunity suggests that development of a vaccine against the parasite may be possible. Because of the advantages of immunoprophylaxis for treatment of the disease, an effort has been made to determine whether fish exposed to killed parasite preparations can resist subsequent lethal challenge. Both the route of administration and the effects of stage specific antigens have been examined. Channel catfish vaccinated by intraperitoneal (i.p.) injection or bath immersion with killed I multifiliis tomites show 100% mortality following a standard challenge protocol. Similarly, 100% mortality was observed in test groups injected with tomite cilia. In both cases, a consistent difference in days to death between control and test group animals was observed. Although complete mortality was seen with fish injected with tomite preparations, fish vaccinated with killed trophonts (the feeding stage of the parasite) had a much greater degree of protection with approximately 50% of fish surviving an otherwise lethal challenge. Finally, animals injected intraperitoneally with live tomites showed nearly complete immunity and were identical in their response to fish which survive natural infection. The response of fish vaccinated with live parasites indicates that animals injected intraperitoneally can develop surface immunity and that i.p. injection is a suitable route of administration for potential I. multifiliis vaccines.  相似文献   

2.
There is a rapidly increasing literature pointing to the success of probiotics, immunostimulants, plant products and oral vaccines in immunomodulation, namely stimulation of the innate, cellular and/or humoral immune response, and the control of bacterial fish diseases. Probiotics are regarded as live micro‐organisms administered orally and leading to health benefits. However, in contrast with the use in terrestrial animals, a diverse range of micro‐organisms have been evaluated in aquaculture with the mode of action often reflecting immunomodulation. Moreover, the need for living cells has been questioned. Also, key subcellular components, including lipopolysaccharides, have been attributed to the beneficial effect in fish. Here, there is a link with immunostimulants, which may also be administered orally. Furthermore, numerous plant products have been reported to have health benefits, namely protection against disease for which stimulation of some immune parameters has been reported. Oral vaccines confer protection against some diseases, although the mode of action is usually linked to humoral rather than the innate and cellular immune responses. This review explores the relationship between probiotics, immunostimulants, plant products and oral vaccines.  相似文献   

3.
Vaccination strategies have traditionally been used as preventative or prophylactic measures against disease (prophylactic immunization) in uninfected fish. Alternatively, therapeutic or remedial measures, such as antibiotic administration, are commonly employed to treat disease in infected fish. Vaccination as a therapeutic measure (therapeutic immunization), however, has not been adequately explored in sub‐clinically infected fish. Therapeutic and prophylactic immunization with three Streptococcus iniae vaccines, formalin‐killed whole S. iniae cells (FKC vaccine), concentrated S. iniae extracellular products (greater than 2 kDa) (ECP vaccine) and a combination of killed cells and extracellular products (FKC+ECP vaccine), were tested in hybrid striped bass, Morone chrysops×Morone saxatilis, previously naturally infected with S. iniae. Fish (mean weight 10.0 g) were injected intraperitoneally (IP) or intramuscularly (IM) with one of each of the vaccines, tryptic soy broth (TSB‐control) or non‐injected (non‐injected control) to evaluate therapeutic effects (Trial 1). Survivors of the natural infection and ECP and FKC+ECP vaccine immunization and another lot of non‐injected control fish were immersion challenged with 1.47 × 106 CFU of S. iniae mL?1 at 44 days post‐immunization to evaluate vaccine efficacy (Trial 2). Hybrid striped bass (1.0 g) were also IM injected with S. iniae ECP vaccine at an aquaculture facility and immersion challenged with 1.47 × 106 CFU of S. iniae mL?1 12 weeks post‐immunization (Trial 3). The ECP and FKC+ECP vaccines, regardless of injection route, significantly (P<0.001) increased survival in asymptomatic, sub‐clinically infected fish thereby providing therapeutic merit. Hybrid bass immunized IP or IM had mean per cent survival values ranging from 78 to 96 at 44 days post‐immunization (Trial 1) and 69–97 post challenge (Trial 2). Survival of fish injected with TSB or immunized with FKC vaccine was significantly lowered and ranged from 12 to 13 by IP injection and 40 to 50 by IM injection and thus, the FKC vaccine had no therapeutic effect. The survival of hybrid striped bass IM immunized with S. iniae ECP vaccine in field Trial 3 was 91 and the RPS was 83. These results demonstrate that therapeutic immunization using S. iniae ECP and FKC+ECP vaccines can control a natural S. iniae infection. Furthermore, S. iniae ECP or FKC+ECP vaccines can also be used prophylacticly to protect hybrid striped bass against subsequent pathogen challenge.  相似文献   

4.
The Chilean aquaculture has been challenged for years by piscirickettsiosis. A common prophylactic measurement to try to reduce the impact from this disease is vaccination, but the development of vaccines that induce satisfactory protection of the fish in the field has so far not been successful. Experimental challenge models are used to test vaccine efficacy. The aim of this study was to evaluate the performance of experimental vaccines after challenge by the two most widely used challenge routes, intraperitoneal injection and cohabitation. A total of 1,120 Atlantic salmon were vaccinated with non‐commercial experimental vaccines with increasing amounts of an inactivated Piscirickettsia salmonis EM90‐like isolate. Differences in mortality, macroscopic and microscopic pathological changes, bacterial load and immune gene expression were compared after challenge by different routes. The results revealed a similar progression of the diseases after challenge by both routes and no gross differences reflecting the efficacy of the vaccines could be identified. The analysis of the immune genes suggests a possible suppression of the cellular immunity by CD8 T cell and with this stimulation of bacterial survival and replication. Comparative studies of experimental challenge models are valuable with regard to identifying the best model to mimic real‐life conditions and vaccines’ performance.  相似文献   

5.
Abstract. In order to reduce digestive degradation of vaccines against vibriosis when administered orally to fish, two methods of protecting the antigens were tested. Lyophilized vaccine was either incorporated into a slow-release pellet or coated by an acid-resistant film. These vaccines were compared to both oral vaccination by an unprotected vaccine as well as to standard vaccination methods of immersion and injection. However, mortalities after an artificial challenge showed that the efficacy of the protected vaccines was lower than that of the unprotected vaccine given orally and the standard vaccination procedures. The reason for this is probably that the important antigens of vibriosis vaccines are lipopolysaccharides which are little affected by gastric digestion, and the coating of the vaccine or incorporation into slow-release pellets resulted only in reduced absorption of the antigens.  相似文献   

6.
The humoral immune responses and host protection of channel catfish, Ictalurus punctatus (Rafinesque), against Ichthyophthirius multifiliis (Ich) were determined after immunization with live theronts and sonicated trophonts. Immunizations with live theronts or sonicated trophonts were carried out by both bath immersion and intraperitoneal (i.p.) injection. Cutaneous and serum immunoglobulin (Ig) levels and anti-Ich antibodies were measured 12 and 21 days post-immunization. The level of Ich infection and survival of catfish were determined after theront challenge. Cutaneous and serum anti-Ich antibodies were significantly higher (P < 0.05) in fish immunized with live theronts by immersion or i.p. injection, or with sonicated trophonts administered by i.p. injection, than in fish immunized with sonicated trophonts by immersion, with bovine serum albumin by i.p. injection, or non-immunized controls. Host protection was noted only in fish immunized with live theronts by immersion or i.p. injection or with sonicated trophonts by i.p. injection. There was a positive correlation between higher levels of anti-Ich antibodies and host survival in the immunized fish.  相似文献   

7.
Rainbow trout, Oncorhynchus mykiss (Walbaum), are able to raise a protective immune response against Aeromonas salmonicida subsp. salmonicida (AS) following injection vaccination with commercial vaccines containing formalin‐killed bacteria, but the protection is often suboptimal under Danish mariculture conditions. We elucidated whether protection can be improved by increasing the concentration of antigen (formalin‐killed bacteria) in the vaccine. Rainbow trout juveniles were vaccinated by intraperitoneal (i.p.) injection with a bacterin of Aeromonas salmonicida subsp. salmonicida strain 090710‐1/23 in combination with Vibrio anguillarum serotypes O1 and O2a supplemented with an oil adjuvant. Three concentrations of AS antigens were applied. Fish were subsequently challenged with the homologous bacterial strain administered by perforation of the tail fin epidermis and 60‐s contact with live A. salmonicida bacteria. The infection method proved to be efficient and could differentiate efficacies of different vaccines. It was shown that protection and antibody production in exposed fish were positively correlated to the AS antigen concentration in the vaccine.  相似文献   

8.
Ichthyophthirius multifiliis, commonly called “Ich,” is a protozoan parasite that infects the epidermis and gills of freshwater fish. Here, we used goldfish (Carassius auratus) to determine whether the four vaccine preparations (live trophonts, formalin‐fixed trophonts, freeze‐thawed trophont lysates, and trophont cilial and cell cortical fractions) of I. multifiliis (Fouquet) can elicit resistance of immunized fish against subsequent theront challenge, and whether a relationship exists between in vitro immobilization of theronts in sera or mucus from immunized fish and host protective immunity against the parasite. Experimental goldfish were randomly divided into five groups with five parallel controls, with each group or subgroup consisting of 20 individuals. Each test goldfish was immunized with one of the four Ich vaccine preparations administered by one of the three routes: live trophonts by gavage (Group 1), formalin‐fixed trophonts by injection (Group 2) or by immersion (Group 3), freeze‐thawed trophont lysates by injection (Group 4), and trophont cilial and cell cortical fractions by injection (Group 5). The fish were then challenged by a standard Ich theront challenge on Day 21 postimmunization. For every 10 d following immunization, we tested the in vitro immobilization of Ich theronts by sera or mucus from immunized and control fish. We found that although all control (nonimmunized) and Group 3‐immunized goldfish died following theront challenge, more than half (55–65%) of the immunized fish from Groups 1, 2, 4, and 5 survived. Furthermore, except for the fish from Groups 3 and 4, the number of mean days to death in each test group was significantly higher than that in the respective control. These results indicate that goldfish immunized by injection or by gavage with any of the four vaccine preparations gained resistance to Ich infection. Further analysis indicated that this protective immunity was closely associated with the in vitro immobilization of Ich theronts by fish sera or mucus.  相似文献   

9.
Abstract. Mutants of Aeromonas salmonicida strains lacking either the A-protein, O-antigen or both of these major surface antigens were tested in rainbow trout, Oncorhynchus mykiss (Walbaum), for their suitability as live vaccines (LV). All of these mutants were shown to be attenuated, as fish receiving ∼5 × 107 of the respective strains showed no clinical signs of furunculosis. Immersion vaccination of fish in 5 × 107 cfu ml-1 of these strains with an identical immersion dose 14 days later resulted in significant protection by all strains from challenge with a heterologous virulent strain of A. salmonicida 5 weeks later. The levels of protection conferred were all greater than or equal to that provided by an injected bacterin using the same vaccination schedule. With one exception, all LV strains that still possessed a functional O-antigen provided protective indices (PI) four- to seven-fold greater than the PI for the fish injected with bacterin. When antibody responses of vaccinated fish were compared, it was found that only vaccination by bacterin gave rise to a measurable agglutinating litre. Western immunoblots using the immune fish sera failed to reveal any major differences in antigen recognition in fish that received any of the vaccines tested. These data suggest that the immune response generated by the use of live vaccine strains is different from that generated by a bacterin, and that these useful mutations may be incorporated into existing furunculosis LVs for further attenuation.  相似文献   

10.
Abstract Channel catfish, Ictalurus punctatus (Rafinesque), were immunized with Ichthyophthirius multifiliis (Ich) theronts and trophonts, and the immune response and host protection against both homologous and heterologous serotypes of Ich were evaluated. Immunizations were done with two immobilization serotypes (ARS4 and ARS6) of live theronts by bath immersion (trial I) and with sonicated trophonts by intraperitoneal (i.p.) injection (trial II). Cutaneous and serum antibody titres against Ich following immunization were measured and survival of catfish was determined after theront challenge. Theronts were immobilized by the antiserum from fish immunized with homologous theronts or trophonts, but not by the serum of fish immunized with the heterologous serotype. Serum from fish immunized by immersion with live theronts showed higher enzyme-linked immunosorbent assay titres against both homologous and heterologous serotypes than fish immunized by i.p. injection of trophonts. Channel catfish immunized by immersion with live theronts or by i.p. injection with sonicated trophonts developed an immune response against Ich and provided cross-protection against challenge from both serotypes (ARS4 and ARS6) of the parasite. Sonicated trophont antigens in aqueous solution by i.p. injection could stimulate an immune response in fish, but the immunity was of short duration.  相似文献   

11.
Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30‐s immersion into a bacterin consisting of formalin‐inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over a 3‐month period. The densities of IgM‐positive lymphocytes in spleen of fish immunized three times were increased compared to control fish, but no general trend for an increase with the number of immunizations was noted. The lack of a classical secondary response following repeated immersion vaccination may partly be explained by limited uptake of antigen by immersion compared to injection.  相似文献   

12.
Wild sablefish, Anoplopoma fimbria, are a valuable commercial species whose populations are declining. Fortunately, sablefish are excellent species for commercial aquaculture. Sablefish raised under high‐density conditions in the marine environment require the use of efficacious vaccines to control disease. Sablefish impacted by disease in net pens may have poor flesh quality and high mortality during grow‐out. As a result, disease can cause financial hardship for sablefish aquaculture operators. The efficacy of a multivalent vaccine preparation for sablefish, administered either by intraperitoneal (i.p.) injection or by immersion, against atypical and typical Aeromonas salmonicida, the causative agents of atypical and typical furunculosis, respectively, was examined. A. salmonicida can affect sablefish at any age and size. Consequently, an efficacious vaccine that can be appropriately and optimally administered to all life stages is desirable. Sablefish vaccinated by immersion at ~1.5 or ~4.5 g with a whole‐cell multivalent vaccine were not protected against either typical or atypical A. salmonicida. Factors that may have contributed to the ineffectiveness of the immersion vaccine are discussed. By contrast, the relative per cent survival (RPS) or potency of the whole‐cell multivalent vaccine injected i.p. in juvenile sablefish at ~50 g against typical and atypical A. salmonicida was 94.3% and 81.7% respectively. The high RPS values indicated that the vaccine successfully initiated an immune response in sablefish upon a second encounter with the pathogen.  相似文献   

13.
Vertebrates mount a series of immune reactions when invaded by helminths but antihelmintic immune strategies allow, in many cases, the first invaders of the non-immune host to survive for prolonged periods, whereas subsequent larval invaders of the same parasite species face increased host resistance and thereby decreased colonization success. This concomitant immunity may represent a trade-off between adverse side effects (associated with killing of large helminths in the host tissue) and the need for future protection against invasion. Encapsulation and isolation of large live endoparasitic larvae may be associated with less pathology compared to coping with excess dead parasite tissue in host organs. Likewise, live adult nematodes may be accepted in tissues at a certain activity level for the same reasons. Various host cell receptors bind helminth molecules after which signal-transducing events lead to mobilization of specific reaction patterns depending on the combination of receptors and ligands involved. Both innate and adaptive responses (humoral and cellular) are prominent actors, but skewing of the Th1 lymphocyte response towards a Th2 type is a characteristic element of antihelminthic responses in mammalian hosts. Similar patterns may be expected also to occur in at least some fish species, such as salmonids, producing relevant cytokines, MHCII and CD4+ cells required for these lymphocyte subpopulations. Atlantic cod, Gadus morhua L., is without these immunological elements that indicate that alternative reaction pathways exist in at least some fish groups. Recent achievements within teleost immunology have made it possible to track these host responses in fish and the present work outlines the main immune reactions in fish against helminths and suggests three experimental fish models for exploration of these immune pathways in fish infected with nematodes.  相似文献   

14.
Atlantic salmon were vaccinated against Aeromonas salmonicida ssp. achromogenes (Asa) by injection with three vaccines developed in our laboratory and an autogenous bacterin (IcelandBiojec.OO, IBOO) produced by a commercial vaccine producer. The humoral antibody responses to bacterial antigens were monitored by ELISA and Western blotting. The fish were challenged by infection with Asa 6 and 12 weeks post-vaccination. Protection was induced in all groups of vaccinated fish. The protection achieved was time-dependent. The autogenous bacterin, IBOO, induced a protective immune response later than our experimental vaccines. All the vaccines tested induced specific antibody response that increased between 6 and 12 weeks after vaccination. The antibody response was mainly directed against the A-layer protein, but antibodies to other bacterial components were also detected. Significant correlation was obtained between the antibody titre to extracellular Asa antigens, induced by the different vaccine preparations, and survival of vaccinated fish challenged by a virulent Asa strain. Furthermore, the detection of antibodies directed against an extracellular toxic metallo-caseinase, AsaP1, in fish sera correlated with protection.  相似文献   

15.
Vibrio harveyi causes vibriosis in various marine aquaculture fish species, especially when they are young. The infection subsequently leads to significant economic losses for aquaculture farms. Vaccination is recommended to control this disease. This study describes the efficacy of a live attenuated V. harveyi strain MVh_vhs (LAVh) as a vaccine candidate in controlling infection by wild‐type V. harveyi (WTVh) in Lates calcarifer. A total of 240 fingerlings were divided into four groups. Group 1 was not vaccinated and was not challenged, Group 2 was vaccinated with a formalin‐killed V. harveyi (FKVh), Group 3 was vaccinated with the LAVh before challenge and Group 4 was not vaccinated and was challenged. Bath vaccination was employed for one hour before the LAVh distribution was determined in the fish mucus, gill, liver, gut, kidney and spleen. The gills, livers, kidneys and skins were also sampled for gene expression analysis. To challenge the fish, skin abrasion was conducted before the fish were challenged by immersion with WTVh. The results revealed an extensive distribution of the LAVh in the liver and kidneys of the fish in Group 3 for the first 12 hr, resulting in mild lesions compared with Group 1. Similarly, there were significantly (p < .05) higher expressions of the Chemokine ligand 4 and major histocompatibility complex I genes in the skin and liver of the fish in Group 3 in comparison with other groups. Vaccination with LAVh resulted in a significantly high rate of survival (68%) of the fingerlings after being challenged with WTVh.  相似文献   

16.
Freshwater fish are able to mount a protective immune response against the parasite Ichthyophthirius multifiliis (Ich) following a non‐lethal exposure. Factors involved in immunity comprise cellular and humoral factors, but antibodies have been suggested to play a prominent role in protection. However, host antibodies have not yet been demonstrated to bind to the parasite in situ. By the use of immunohistochemical techniques, this study demonstrated that IgT and IgM bind to surface structures, including cilia, on the early feeding stage of the parasite in the gills of immune rainbow trout, Oncorhynchus mykiss, shortly (2 h) after invasion. No binding of IgT and no or only a weak binding of IgM was observed on the parasites in the gills of similarly exposed but naïve rainbow trout. This study indicates that antibodies play an important part in the protection of immune fish against Ich although additional humoral and cellular factors may contribute to this reaction.  相似文献   

17.
Bacterial coldwater disease, caused by Flavobacterium psychrophilum, remains one of the most significant bacterial diseases of salmonids worldwide. A previously developed and reported live‐attenuated immersion vaccine (F. psychrophilum; B.17‐ILM) has been shown to confer significant protection to salmonids. To further characterize this vaccine, a series of experiments were carried out to determine the cross‐protective efficacy of this B.17‐ILM vaccine against 9 F. psychrophilum isolates (representing seven sequence types/three clonal complexes as determined by multilocus sequence typing) in comparison with a wild‐type virulent strain, CSF‐259‐93. To assess protection, 28‐day experimental challenges of rainbow trout (Oncorhynchus mykiss) fry were conducted following immersion vaccinations with the B.17‐ILM vaccine. F. psychrophilum strains used in challenge trials were isolated from several fish species across the globe; however, all were found to be virulent in rainbow trout. The B.17‐ILM vaccine provided significant protection against all strains, with relative percent survival values ranging from 51% to 72%. All vaccinated fish developed an adaptive immune response (as measured by F. psychrophilum‐specific antibodies) that increased out to the time of challenge (8 weeks postimmunization). Previous studies have confirmed that antibody plays an important role in protection against F. psychrophilum challenge; therefore, specific antibodies to the B.17‐ILM vaccine strain appear to contribute to the cross‐protection observed to heterologous strain. The ability of such antibodies to bind to similar antigenic regions for all strains was confirmed by western blot analyses. Results presented here support the practical application of this live‐attenuated vaccine, and suggest that it will be efficacious even in aquaculture operations affected by diverse strains of F. psychrophilum.  相似文献   

18.
Atlantic lumpfish (Cyclopterus lumpus L.) is used as a biological delousing agent for sea lice (Lepeophtheirus salmonis K.) infestations in Norwegian aquaculture. Here, we present a study on the antibody response and vaccine side effects after intramuscular and intraperitoneal injection of lumpfish with two vaccines. Both vaccines contained bacterial antigens from atypical Aeromonas salmonicida A‐layer types V and VI, Vibrio anguillarum serotype O1 and Moritella viscosa sp., but one vaccine contained a vegetable oil‐based adjuvant, while the other contained a mineral oil‐based adjuvant. Intramuscular injection of the mineral oil‐based vaccine caused a high acute mortality of fish within 48 hr after immunization. Intraperitoneal injection of the mineral oil‐based vaccine resulted in a lower severity of intra‐abdominal side effects than the vegetable oil‐based vaccine. Intramuscular injection of the mineral oil‐based vaccine resulted in a significantly higher antibody response against A. salmonicida when compared to controls and the vegetable oil‐based vaccine group. The antibody response was poor against V. anguillarum and M. viscosa for all groups. Our results indicate that intramuscular injection of oil‐based vaccines might be feasible for providing immunological protection for Atlantic lumpfish against bacterial diseases, especially atypical A. salmonicida, but more work is required to identity optimal adjuvants.  相似文献   

19.
Precise deletion of genes related to virulence can be used as a strategy to produce attenuated bacterial vaccines. Here, we study the deletion of the cyclic‐3′,5′‐adenosine monophosphate (cAMP) receptor protein (Crp) in Aeromonas salmonicida, the aetiologic agent of furunculosis in marine and freshwater fish. The Crp protein is a conserved global regulator, controlling physiology processes, like sugar utilization. Deletion of the crp gene has been utilized in live attenuated vaccines for mammals, birds and warm water fish. Here, we characterized the crp gene and reported the effect of a crp deletion in A. salmonicida virulent and non‐virulent isolates. We found that A. salmonicida Δcrp was not able to utilize maltose and other sugars, and its generation time was similar to the wild type. A. salmonicida ?crp showed a higher ability of cell invasion compared to the wild type. Fish challenges showed that A. salmonicida ?crp is ~6 times attenuated in Oncorhynchus mykiss and conferred protective immunity against the intraperitoneal challenge with A. salmonicida wild type. We concluded that deletion of A. salmonicida crp influences sugar utilization, cell invasion and virulence. Deletion of crp in A. salmonicida could be considered as part of an effective strategy to develop immersion live attenuated vaccines against furunculosis.  相似文献   

20.
Abstract. Vaccination with crude lipopolysaccharide (LPS) induced better protection against infection with Aeromonas hydrophila in carp than vaccination with formalin killed vaccine. Dipping fish in vaccine for 2 h at 25°C was more effective than intraperitoneal injection of the vaccine in procedural simplicity, lower stress loading and the degree of protection acquired. In carp immunized with crude LPS by the dip method, antibodies were not detected by bacteriai agglutination, passive haemagglutination and the agar diffusion tests. The results indicate that the protection against A. hydrophila infection in carp is not dependent on humoral immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号