首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
研究不同水温(18±1)℃和(28±1)℃下,强力霉素在斑点叉尾(鱼回)体内的残留消除规律.以20 mg/kg鱼体重连续口灌斑点叉尾(鱼回)5 d,于停药后第1、3、5、7、9、12、15、24、30、40天分别将斑点叉尾(鱼回)处死后取肌肉(加皮)、肝脏、肾脏3种组织,采用高效液相色谱紫外检测法测定斑点叉尾(鱼回)组织中强力霉素.结果表明,强力霉素在斑点叉尾(鱼回)体内的消除速度与水温有密切关系,不同水温下相同组织,相同水温下不同组织中强力霉素的消除速率不同(P<0.05).高水温时强力霉素在斑点叉尾(鱼回)体内消除快,表明水温对斑点叉尾(鱼回)体内的药物代谢有明显的影响,强力霉素残留的消除速度随水温降低而减慢;与其他组织相比,强力霉素在肝脏中的消除最慢.因此,若将肝脏作为强力霉素在斑点叉尾(鱼回)体内残留的靶组织计算休药期,在(18±1)℃和(28±1)℃时,按欧盟和中国规定的动物组织中强力霉素在肝脏中最高残留限量300μg/kg计算,从食品安全角度来分析,建议休药期分别为55 d和30 d.若按强力霉素在可食组织肌肉(加皮)中最高残留限量300 μg/kg计算休药期,建议休药期分别为22d和19 d.本研究旨为不同水温条件下制定强力霉素在斑点叉尾(鱼回)体内的残留限量和休药期提供理论依据.  相似文献   

2.
研究不同水温(18 ± 1) ℃和(28 ± 1) ℃下,强力霉素在斑点叉尾鮰体内的残留消除规律。以20 mg/kg鱼体重连续口灌斑点叉尾鮰5 d,于停药后第1、3、5、7、9、12、15、24、30、40 天分别将斑点叉尾鮰处死后取肌肉(加皮)、肝脏、肾脏3种组织,采用高效液相色谱紫外检测法测定斑点叉尾鮰组织中强力霉素。结果表明,强力霉素在斑点叉尾鮰体内的消除速度与水温有密切关系,不同水温下相同组织,相同水温下不同组织中强力霉素的消除速率不同(P<0.05)。高水温时强力霉素在斑点叉尾鮰体内消除快,表明水温对斑点叉尾鮰体内的药物代谢有明显的影响,强力霉素残留的消除速度随水温降低而减慢;与其他组织相比,强力霉素在肝脏中的消除最慢。因此,若将肝脏作为强力霉素在斑点叉尾鮰体内残留的靶组织计算休药期,在(18 ± 1) ℃和(28 ± 1) ℃时,按欧盟和中国规定的动物组织中强力霉素在肝脏中最高残留限量300 μg/kg计算,从食品安全角度来分析,建议休药期分别为55 d和30 d。若按强力霉素在可食组织肌肉(加皮)中最高残留限量300 μg/kg计算休药期,建议休药期分别为22 d和19 d。本研究旨为不同水温条件下制定强力霉素在斑点叉尾鮰体内的残留限量和休药期提供理论依据。  相似文献   

3.
氟苯尼考及氟苯尼考胺在鲤体内的残留   总被引:1,自引:0,他引:1  
在水温(18±1)℃下,采用高效液相色谱串联质谱法研究了氟苯尼考及其主要代谢物氟苯尼考胺在体质量(100±10)g鲤(Cyprinus carpio)体内的代谢及残留规律,以制定休药期。实验鱼间隔24h按15 mg.kg-1体质量的剂量口灌给药,连续给药3次,在给药后0.5h、1 h、2h、4h、8h、12h、24h、2d、3d、5d、7d、10d、15d、20d检测肌肉、皮肤内氟苯尼考和氟苯尼考胺的含量。结果表明:氟苯尼考在鲤体内的代谢速度快,2~4 h出现峰值;肌肉中氟苯尼考和氟苯尼考胺的残留浓度高于皮肤,肌肉和皮肤中氟苯尼考的含量均高于氟苯尼考胺,皮肤中的代谢速度较快。按欧盟标准相应的休药期不少于2d,按日本标准则不少于10 d。  相似文献   

4.
氟苯尼考在牙鲆体内残留的消除规律   总被引:1,自引:0,他引:1       下载免费PDF全文
采用口服给药、不同时间点采样的方法研究了氟苯尼考在牙鲆体内的残留消除规律,采用高效液相色谱法测定了氟苯尼考在牙鲆组织中的含量.结果表明:1)牙鲆连续5d口服剂量为50 mg/kg的氟苯尼考后,药物在各组织中的分布情况为血液>内脏团>肌肉,随后各组织中氟苯尼考的浓度逐渐下降.6d后各个组织药物浓度趋于平稳,而肝肾中的氟苯尼考浓度在10d和14d时有回升现象.2)T1/2为32.09~40.73 h,说明口服氟苯尼考在牙鲆体内消除较快,残留较少,但肾脏和肝脏组织中残留较为明显.3)探讨休药期的制定,如果只考虑可食用组织,且最大残留限量为0.1μg/g,在本试验的养殖环境下推算,牙鲆养殖过程中的平均温度为16~18℃时,休药期≥18 d.用温度与时间乘积表示则不低于324度·日.  相似文献   

5.
研究了以全池泼洒的投药方式,孔雀石绿(MG)(池塘中MG的理论浓度为1 mg/L)及其主要代谢物隐性孔雀石绿(LMG)在斑点叉尾(Ietalurus punetaus)肌肉和皮肤以及养殖水体和底泥中的残留消除规律。采用高效液相色谱串联质谱法(HPLC-MS/MS)分析MG及其代谢物LMG在斑点叉尾体内及环境中的浓度水平。结果显示:肌肉、皮肤中MG于用药后第1天最高浓度分别为:(42.77±5.26)μg/kg和(6.36±0.11)μg/kg,消除半衰期T1/2分别为57.76 d、31.51 d;皮肤和肌肉中LMG分别在用药后第3天和第1天达到最高(502.27±20.43)μg/kg和(125.26±12.76)μg/kg,消除半衰期T1/2分别为33.01 d、38.51 d。这表明MG在斑点叉尾体内会迅速转化为LMG,且LMG残留在皮肤中的浓度大于肌肉中的浓度。养殖环境底泥中同时存在MG和LMG,以LMG为主,并且LMG呈现蓄积的趋势,在第360天出现最高浓度(5.92±1.23)μg/kg;水体中MG最高浓度出现在第1天,为(46.44±7.39)μg/L,随后急剧降至1μg/L左右,水体中几乎不存在LMG。  相似文献   

6.
在试验水温(25±1)℃时,按20mg/kg剂量给大黄鱼(Pseudosciaena crocea)单次口灌氟苯尼考后,采用高效液相色谱法测定了血浆、肌肉、肝脏和肾脏各组织中的药物浓度,并对其进行了药代动力学及组织分布特征的研究。结果表明,大黄鱼血浆中氟苯尼考的药时数据可用一级吸收一室开放模型来描述,其药动学方程为:C血液=43.365(e-0.047t-e-0.266t),而肌肉、肝脏和肾脏各组织均符合一级吸收二室开放模型,其药动学方程分别为:C肌肉=2.216e?1.732t+0.093e-0.007t-2.309e-2.212t、C肝脏=48.913e?6.334t+0.773e-0.022t-49.686e-30.928t、C肾脏=14.709e?1.558t+0.167e-0.010t-14.876e-1.880t。大黄鱼对氟苯尼考的代谢与分布具有明显的组织特异性,肌肉中的药物浓度低于同期其它组织。肌肉作为鱼类最主要的可食性组织,建议将其作为该药残留监控的靶组织,相应的休药期至少为4d。  相似文献   

7.
氟苯尼考在日本囊对虾体内的药代动力学研究   总被引:1,自引:0,他引:1  
为了给养殖日本囊对虾制定正确的用药方案、确定氟苯尼考的休药期提供科学依据,应用反相高效液相色谱法( RP - HPLC)研究了氟苯尼考在日本囊对虾体内的药物代谢动力学.试验结果表明,在水温23±0.5℃,盐度29.91的条件下,氟苯尼考在肝脏、肌肉和血淋巴的平均回收率为93.37%、91.79%、91.82%;试验数据经药代动力学软件3p97分析表明,日本囊对虾采用氟苯尼考单次腹部肌肉注射,其肌肉药一时数据符合二室模型,肝脏和血淋巴药一时数据符合一室模型.其中,氟苯尼考在肝脏、肌肉和血淋巴中的主要动力学参数分别为:浓度一时间曲线的曲线下面积AUC分别为10.31、50.77、14.33(μg/g)·h;药物的峰值浓度C(max)分别为13.03、10.46、8.031 μg/g;药物浓度处于峰值时的时间Tp分别为0.2044、0.2298、0.6544 h;吸收半衰期分别为0.6771、0.4746、0.4193 h;消除半衰期分别为3.766、16.16、4.917 h.建议在23 ±0.5℃的水温条件下,氟苯尼考对日本囊对虾的休药期不少于7d.  相似文献   

8.
氟苯尼考在大黄鱼体内的药动学及组织分布研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在试验水温(25±1)℃时,按20mg/kg剂量给大黄鱼单次口灌氟苯尼考后,采用高效液相色谱法测定了血浆、肌肉、肝脏和肾脏各组织中的药物浓度,并对其进行了药代动力学及组织分布特征的研究。结果表明,大黄鱼血浆中氟苯尼考的药时数据可用一级吸收一室开放模型来描述,其药动学方程为:C血液=43.365 (e-0.047t-e-0.266t),而肌肉、肝脏和肾脏各组织均符合一级吸收二室开放模型,其药动学方程分别为:C肌肉= 2.216e―1.732t+0.093e-0.007t-2.309e-2.212t、C肝脏= 48.913e―6.334t+0.773e-0.022t-49.686e-30.928t、C肾脏= 14.709e―1.558t+0.167e-0.010t-14.876e-1.880t。大黄鱼对氟苯尼考的代谢与分布具有明显的组织特异性,肌肉中的药物浓度低于同期其他组织。肌肉作为鱼类最主要的可食性组织,建议将其作为该药残留监控的靶组织,相应的休药期至少为4d。  相似文献   

9.
随着抗生素的大量使用,许多国家针对氟苯尼考残留制定了食品安全限量标准,并规定了相应的休药期。设计连续7 d以10 mg/(kg·d)的氟苯尼考投药试验和14 d停药的暴露试验,使用高效液相色谱检测氟苯尼考在循环水养殖系统中的残留规律以及在欧洲舌齿鲈肌肉和肝脏组织中的残留水平。试验结果显示,循环水养殖系统各处理单元中(蛋白分离器、生物滤池、紫外消毒装置)氟苯尼考的质量浓度随着投药时间的增加,呈不同程度积累上升。在投药第7 d时,各处理单元氟苯尼考的残留质量浓度均达到最大值;停药后,氟苯尼考残留质量浓度逐渐下降,停药第14 d各处理单元中的氟苯尼考水平与投药前水平相当。不同处理单元对于氟苯尼考降解率的贡献为紫外消毒装置蛋白分离器生物滤池。此外,氟苯尼考在欧洲舌齿鲈组织样品中的残留水平随停药时间延长而降低,停药7 d后其肝脏和肌肉组织中的残留量均低于国家标准(1000μg/kg)。本试验将为循环水系统中各水处理单元的工艺设计提供理论基础,推动水产养殖业的健康可持续发展。  相似文献   

10.
盐酸诺氟沙星在奥尼罗非鱼体内的残留消除规律   总被引:1,自引:0,他引:1  
用高效液相色谱法(HPLC)研究盐酸诺氟沙星在奥尼罗非鱼(Oreochromis aureus×O.niloticus)体内残留消除规律。结果显示:此方法回收率为73.08%~89.61%,最低检测限为0.2 ng/mL;灌药第5天,4种组织药物含量达到最高,随后迅速下降;药物残留消除速率为:血液>肌肉>肝脏>肾脏。结果表明:在(23±1)℃水温条件下,盐酸诺氟沙星在罗非鱼肌肉中降到50μg/kg的休药期为13 d,在罗非鱼内脏中降到50μg/kg的休药期为22 d。  相似文献   

11.
Asian seabass (Lates calcarifer) is an economically important fish in Asian and Australian markets, but few pharmacokinetic (PK) data of antimicrobial drugs in this species is available. The present study investigated the PK behaviour of florfenicol (FF) through medicated feed in Asian seabass cultured at 25°C. The serum and muscle/skin concentrations of FF and its metabolite florfenicol amine (FFA) were determined by the HPLC-FLD method and analysed by one-compartmental model. The optimal dosages were determined by pharmacokinetic-pharmacodynamic (PK-PD) approach and the linear regression analysis was used to determine the withdrawal time (WDT). The PK study following a single oral administration of 15 mg/kg FF via medicated feed revealed that the absorption half-life (t1/2Ka), elimination half-life (t1/2K), peak concentration (Cmax), area under the concentration-time curve (AUC), volume of distribution (Vd/F) and clearance (CL/F) were 1.47 h, 8.07 h, 8.61 μg/ml, 146.41 h·μg/ml, 1.19 L/kg and 0.102 L/kg/h, respectively. The muscle/skin concentration-time profile was similar to that of the serum, suggesting well distribution but only a small fraction of FF was metabolized to FFA. The optimal dosage for a minimum inhibitory concentration of 2 μg/ml was calculated as 13.38 mg/kg/day. The appropriate WDT after multiple oral medications with 15 mg/kg FF once daily for 7 days was determined as 8 days. Information obtained from the current study can potentially be applied for the treatment of bacterial diseases in farming Asian seabass.  相似文献   

12.
An increase in fish production has consequently brought an increase in infectious diseases in fish farms. The use of chemotherapic drugs is the most effective instrument against common bacterial agents. The number of registered drugs for use in aquaculture is limited and often veterinary practitioners resort to the off‐label use of chemotherapic agents authorized for different food‐producing animal species. Florfenicol is well known for its outstanding effect against various pathogenic bacteria affecting fish, and therefore, it may be a useful drug for off‐label use in aquaculture. The aim of this study was to evaluate the depletion of florfenicol and its major metabolite, florfenicol amine, from the edible tissue of two fish species, rainbow trout and sea bream, following treatment with medicated feed at a dosage of 10 mg kg?1 of bw day?1, for 10 consecutive days. At prefixed time points after the end of administration (0.25, 1, 2, 3, 4, 6, 7, 10, 14 and 21 days after treatment), edible tissues (muscle plus adherent skin) from 15 individuals in each group were collected and analysed by HPLC, to determine concentration of the drug in the tissue. On the basis of the obtained concentrations, withdrawal times of florfenicol in the two species were calculated. The results indicate that a drug withdrawal time of 500 °C‐day, as established by Directive 2004/28/EC, for off‐label drug use is more than satisfactory to guarantee the healthiness of fish products against the risk of drug residues.  相似文献   

13.
Aquaflor® [50% w w?1 florfenicol (FFC)], is approved for use in freshwater‐reared warmwater finfish which include tilapia Oreochromis spp. in the United States to control mortality from Streptococcus iniae. The depletion of florfenicol amine (FFA), the marker residue of FFC, was evaluated after feeding FFC‐medicated feed to deliver a nominal 20 mg FFC kg?1 BW d?1 dose (1.33× the label use of 15 mg FFC kg?1 BW d?1) to Nile tilapia O. niloticus and hybrid tilapia O. niloticus × O. aureus held in a recirculating aquaculture system (RAS) at production‐scale holding densities. Florfenicol amine concentrations were determined in fillets taken from 10 fish before dosing and from 20 fish at nine time points after dosing (from 1 to 240 h post‐dosing). Water samples were assayed for FFC before, during and after the dosing period. Parameters monitored included daily feed consumption and biofilter function (levels of ammonia, nitrite and nitrate). Mean fillet FFA concentration decreased from 13.77 μg g?1 at 1‐h post dosing to 0.39 μg g?1 at 240‐h post dosing. Water FFC concentration decreased from a maximum of 1400 ng mL?1 at 1 day post‐dosing to 847 ng mL?1 at 240 h post‐dosing. There were no adverse effects noted on fish, feed consumption or biofilter function associated with FFC‐medicated feed administration to tilapia.  相似文献   

14.
以尼罗罗非鱼(Oreochromis niloticus)和南美白对虾(Penaeus vannamei)为实验材料,建立了测定水产品中氯霉素、氟甲砜霉素和甲砜霉素残留量的毛细管电子捕获气相色谱(GC-ECD)法。用乙酸乙酯同时提取水产品中的待测物,提取液浓缩至干后溶于甲醇/氯化钠溶液,正己烷脱脂,过C18柱净化,乙腈洗脱,加BSTFA-TMCS在65℃下衍生反应30min,正己烷定容后进样分析,外标法定量。本方法氯霉素在1.0~500.0μg/L,氟甲砜霉素和甲砜霉素在5.0~500.0μg/L浓度范围内呈线性相关,相关系数r≥0.9983,加标水平在0.2~10.0μg/kg时,回收率为83.30%~101.22%,相对标准偏差为1.36%~12.57%。氯霉素、氟甲砜霉素和甲砜霉素的检测限分别为0.1、0.2、0.2μg/kg。  相似文献   

15.
氟苯尼考用于水产养殖的安全性   总被引:22,自引:0,他引:22       下载免费PDF全文
氟苯尼考(florfenicol),又称氟甲砜霉素,是一种新型广谱高效抗菌药物,自20世纪90年代初开始应用于水产养殖。1990年氟苯尼考首次在日本上市用于治疗黄尾蛳(Seriola lalandei)、真鲷(Pagrosomus major)、银大马哈鱼(Oncorhynchus kisutch)、日本竹笑鱼(Trachurus japonicus)、虹鳟(Oncorhynchus mykiss)、香鱼(Plecoglossus altivelis)、罗非鱼和鳗鱼等的假结核性巴氏杆菌病(pasteurellosis)和链球菌病(streptococcosis),随后,韩国、挪威、智利、加拿大、英国等分别上市用于治疗专门疾病。中国1999年批准氟苯考尼为国家二类新兽药,在水产养殖上可用于治疗鳗鲡爱德华氏病和赤鳍病。本研究从氟苯尼考抗菌活性与药效学、药代动力学、毒理学、以及药物残留、耐药性等方面探讨其用于水产养殖病害防治的安全性,旨为该药在中国水产养殖中的科学合理应用提供理论参考。  相似文献   

16.
Pharmacokinetics and elimination of florfenicol and florfenicol amine in grouper held in sea water at 23.3 ± 0.8 °C were studied using HPLC method after they were given a single peroral dose of florfenicol at 24 mg kg?1 body weight. Florfenicol was rapidly absorbed from intestine and distributed extensively to all the tissues examined. The maximum concentrations (Cmax, μg g?1 or μg mL?1) in plasma and tissues were observed at 2–6 h (the time to reach maximum concentration, Tmax) except for bile (Tmax = 24 h) and were in the order of intestine (52.02 ± 25.07) > bile (49.41 ± 28.16) > gill (45.12 ± 11.10) > plasma (28.28 ± 5.43) > liver (21.97 ± 12.08) > muscle (21.63 ± 6.12) > kidney (20.88 ± 11.28) > skin (19.10 ± 5.88). The drug distribution level was higher in plasma than in extravascular tissues except for bile, based on the ratios of the area under concentration–time curve between tissue and plasma (AUCtissue/plasma). The elimination of florfenicol was rapid in fish, and the corresponding half‐lives (T1/2β) in the order of magnitude were bile (13.92 h) > muscle or liver (12.31 h) > skin (11.77 h) > plasma (11.57) > gill (11.04 h) > intestine (10.55 h) > kidney (10.05 h). The delayed Tmax, lower Cmax and longer T1/2β for florfenicol amine compared with florfenicol were measured in grouper.  相似文献   

17.
氟苯尼考在欧洲鳗鲡体内的药物代谢动力学的研究   总被引:11,自引:0,他引:11  
应用反相高效液相色谱法对口灌和肌肉注射氟苯尼考在欧洲鳗鲡(Anguilla anguilla)体内的代谢规律进行了研究.按100 mg·kg-1口灌给药后血浆、肌肉、肝脏、肾脏中氟苯尼考浓度的达峰时间分别为2h、6h、0.5h、1h,以后开始缓慢下降,给药2d后血浆、肌肉、肝脏、肾脏中的氟苯尼考浓度分别为4.209μg·mL-1、0.792μg·g-1、0.493μg·g-1、1.448μg·g-1,给药3d后血浆中的氟苯尼考浓度分别为0.0836μg·mL-1,肌肉、肝脏、肾脏中的氟苯尼考浓度均未检出;按100mg·kg-1肌肉注射给药后血浆中氟苯尼考浓度达峰时间为0.5h,以后开始缓慢下降,给药5d后血浆中的氟苯尼考浓度为0.1151μg·mL-1,给药10d后血浆中的氟苯尼考浓度未检出.口灌氟苯尼考在欧洲鳗鲡体内血浆、肌肉、肝脏、肾脏中分布可用开放性二室模型来描述,口灌给药的血浆、肌肉、肝脏、肾脏中的消除半衰期(T1/2β)分别为27.939h、18.844h、11.83h、36.87h;肌肉注射氟苯尼考在欧洲鳗鲡体内血浆、肌肉、肝脏、肾脏中分布可用开放性一室模型来描述,肌肉注射给药的血浆中的消除半衰期(T1/2β)为37.52h.  相似文献   

18.
本文研究了氟苯尼考对鲁氏耶尔森氏菌(Yersinia ruckeri)体外药效学,测定了最小抑菌浓度(MIC)、最小杀菌浓度(MBC)、生长动力学曲线和杀菌动力学曲线和抗菌后效应(PAE)及四种培养因子对氟苯尼考体外抑制鲁氏菌活性的影响。结果表明:MIC、MBC和MBC/MIC分别为0.5μg.mL-1、1μg.mL-1和2;鲁氏菌在液体培养基中1h后进入对数生长,大约持续7h;在用药4~6 h达到最大药效。由杀菌曲线可知,氟苯尼考的杀菌功效具有浓度依赖性;在2 MIC、4 MIC和8 MIC时,PAE分别为3.71±0.11、4.54±0.27和5.52±0.23;氟苯尼考对鲁氏菌作用最适pH值为6~8,且二价阳离子(Mg2+)、血清含量及细菌数量小于108时对药效无显著影响。因此,保证药物浓度和作用时间,并配合最适培养条件,是氟苯尼考发挥最高药效的前提条件。  相似文献   

19.
氟苯尼考在猪体内混饲给药药动学研究   总被引:1,自引:0,他引:1  
陈进 《畜禽业》2011,(7):32-35
选取保育舍25日龄仔猪6头,一次性混饲给药66mg/kg氟苯尼考后,进行药物代谢动力学研究,所得数据经PKS药动学分析软件进行处理。结果表明:混饲给药氟苯尼考后,血药浓度与时间关系均符合二室开放模型,其主要药代动力学参数如下:T1/2β为(25.54±6.66)h,CL/F为(3.87×10-3±9.98×10-5)L/(kg.h),Vd/f为(1.4206±0.3349)L/kg,AUC为(230.878±5.955)mg/(h.L),LagTime为(0.1777±0.2514)h,Tmax为(1.3828±0.6463)h,Cmax为(7.4419±0.1207)μg/mL。从以上参数可以看出,保育舍仔猪一次性混饲给药后,氟苯尼考仍表现出吸收迅速、广泛和消除较慢的特点,与直接口灌给药方式比较,混饲给药的最高血药浓度较低,但消除半衰期明显延长,二者的生物利用度相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号