首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Four extruded diets, differing in grain supplementation, were fed to triplicate groups of Atlantic salmon ( Salmo salar , L.) with a mean weight of 0.5 kg in a digestibility trial. The diets contained 100 or 150 g kg−1 of precooked rye or wheat, replacing fish meal. There were no significant differences in apparent digestibility coefficients (ADC) of protein, fat or starch which could be related to dietary carbohydrate source or inclusion level. The ADC of dry matter and energy were higher for the diets with wheat than for those with rye, and higher for the diets with wheat than for those with rye, and higher for the diets with 100 g precooked grain kg−1 than for those with 150 g kg−1. The mean ADC of starch was 52% for rye, and 53% for wheat.  相似文献   

2.
The study was conducted to investigate the effect of dietary protein on nitrogenous excretion in the form of ammonia in Indian major carp, Labeo rohita (Ham.), fingerlings (3.0 ± 0.25 g). Fish were fed to satiation in a metabolism chamber. Approximately isoenergetic diets containing 230, 280, 330 and 380 g kg−1 protein were used at 28°C. Ammonia-N excretory energy ( U ) as a percentage of ingested food energy ( C ) increased with an increase in dietary protein level: from 4.3% in fish fed 230 g kg−1 to 6.0% in fish fed 380 g kg−1 dietary protein. The relationship between excretory energy and dietary protein level is modelled.  相似文献   

3.
Atlantic salmon, Salmo salar L., fingerlings with a mean weight of 1.5 g were fed one of four casein-gelatine-based purified diets supplemented with soya lecithin (LC) and choline chloride (CH) for 84 days. The diets were supplemented with either: 0 g kg−1 CH and 0 g kg−1 LC, 0 g kg−1 CH and 30 g kg−1 LC, or 5 g kg−1 CH and 0 g kg−1 LC, or 5 g kg−1 CH and 30 g kg−1 LC. The same diets were also fed to 100-g salmon to assess the effects of LC and CH supplementation on digestibility. Fingerlings fed the diet with neither LC nor CH (0 g kg−1 LC and 0 g kg−1 CH) grew at a significantly slower rate than fish fed the supplemented diets. There were significant effects on growth of supplementation of both LC and CH. The results indicate that the choline requirement of Atlantic salmon fingerlings is satisfied by 4 g kg−1 inclusion in a gelatine-casein-based diet, and that dietary soya lecithin can fully replace choline chloride. The digestibility study with the larger fish indicated a beneficial effect of lecithin on the digestibility of both protein and energy.  相似文献   

4.
Dietary phosphorus requirement of juvenile Atlantic salmon, Salmo salar L.   总被引:5,自引:0,他引:5  
The objective of this study was to determine the dietary phosphorus (P) requirement of juvenile Atlantic salmon, Salmon salar L. Triplicate groups of fish (mean initial weight 1.4 g) were fed semipurified, casein-gelatine-based diets containing one of five levels of P (4, 8, 10, 15 and 25 g kg−1) from Ca(H2PO4)2·H2O, or a commercial feed (17 g kg−1 P) for 9 weeks. Weight gains did not differ significantly among treatment groups fed the experimental diets but were slightly less than gains in fish fed the commercial feed. Feed efficiency (wet weight gain/dry feed consumed) was similar in all groups, averaging 1.45. Availability of dietary P, estimated from apparent retention and apparent digestibility, was 86%. Whole-body P concentrations declined in fish fed diets containing less than 10 g kg−1 P. Fitting a logistic curve to dietary P vs. whole-body P concentrations indicated that a minimum of 11 g kg−1 dietary P (9 g kg−1 digestible P) was required by juvenile Atlantic salmon to maintain whole-body P concentrations at initial levels. Calculation of a dietary requirement using a simple factorial model which incorporated measurements of P availability, feed efficiency and normal whole-body P concentration indicated that the dietary requirement was approximately 10 g kg−1. The dietary requirement established in this study (10–11 g kg−1) is higher than previously reported for Atlantic salmon or other fishes. Possible reasons for the wide range of reported dietary P requirements in fishes are discussed.  相似文献   

5.
The present experiment was conducted to study growth and tissue responses in Atlantic salmon, Salmo salar L., fed a fish meal based diet supplemented with copper (Cu). The findings of the experiment were used to evaluate the need for dietary Cu supplementation. Atlantic salmon parr, initially weighing ≊ 7.5 g, were randomly distributed among 10 tanks, with 300 fish in each tank. Duplicate groups of fish were fed a fish meal based diet containing 3.5 mg Cu kg−1, or this diet supplemented with 5, 10, 50 or 100 mg Cu kg−1 (as CuSO4*5 H2O) for 12 weeks. Growth was recorded and blood haemoglobin measured. The Cu concentrations in whole body, liver, serum and selected muscle samples were measured, as was liver selenium (Se) concentration.
There were no difference in growth among the dietary treatments. There were, however, significant differences among the dietary groups in liver Cu and Se concentrations. The fish fed the diet supplemented with 5 mg Cu kg−1 had increased liver Cu concentration compared with the other groups. Similar trends were found for serum Cu concentration and whole-body Cu concentration, but these effects were not significant. Liver Cu and Se concentrations were positively correlated and liver Se concentrations were inversely correlated to dietary Cu concentration, confirming an interaction between these two elements in salmon.
There may be a positive effect of a modest Cu supplementation level, and we suggest that a small amount of Cu (5–10 mg kg−1) should be added to fish meal based diets.  相似文献   

6.
Six isonitrogenous (350 g kg−1 crude protein) and isoenergetic (17573 kJ kg−1) experimental diets incorporating raw and fermented sesame ( Seasamum indicum ) seed meal at 200, 300, and 400 g kg−1 into a fishmeal based diet were fed to rohu Labeo rohita fingerlings for 60 days and the growth performance and feed utilization efficiency of the fish was studied. The antinutritional factor phytic acid, from raw sesame seed meal, could be reduced below detection limit by fermentation with lactic acid bacteria ( Lactobacillus acidophilus ). Fermentation of the oilseed meal resulted in reduction of the tannin content from 20 to 10 g kg−1. In terms of growth response, feed conversion ratio and protein efficiency ratio, a diet containing 400 g kg−1 fermented sesame seed meal resulted in a significantly ( P  < 0.01) best fish performance. In general, growth and feed utilization efficiencies of fish fed fermented sesame seed meal diets were superior to those fed raw oilseed meal diets. Apparent protein digestibility (APD) values decreased with increasing levels of raw oilseed meal. APD was, however, significantly ( P  < 0.01) higher at all levels of incorporation of fermented sesame seed meal, while diets containing raw oilseed meal resulted in poor protein and lipid digestibility. Carcass protein and lipid contents of fish fed fermented sesame seed meal diets increased with increasing level of incorporation, being highest with 400 g kg−1 fermented oilseed meal-containing diet. The results showed that sesame seed meal may be incorporated in carp diets up to 200 g kg−1 and 400 g kg−1 in raw and treated (fermented) forms respectively.  相似文献   

7.
The dietary methionine requirement of juvenile Arctic charr Salvelinus alpinus (L.) was assessed by feeding diets supplemented with graded levels of DL-methionine (9, 12, 15, 18, 21, and 24 g kg−1dietary protein) for 16 weeks at 12°C. All diets contained 400 g kg−1 protein, 170 g kg−1 lipid, 66 g kg−1 ash and an estimated 17.5 MJ digestible energy (DE) kg−1. When live-weight gain was examined using quadratic regression, the estimate of methionine requirement for optimal growth was 17.6 g kg−1 of dietary protein (DP) or 7 g kg−1 of the diet. Requirements estimated on the basis of carcass protein and energy gains were 18.8 and 17.9 g kg−1 DP, respectively. Plasma methionine concentrations and ocular focal length variability measurements did not provide a sensitive measure of requirement, because each responded in a linear fashion to increasing dietary methionine levels. Based on the prevalence of cataracts, the methionine level required to prevent lens pathology (26.7 g kg−1 DP) appears to be higher than that required for maximum growth.  相似文献   

8.
An 8-week feeding experiment was conducted to determine the effect of dietary methionine supplementation on intestinal microflora and humoral immune of juvenile Jian carp (initial weight of 9.9 ± 0.0 g) reared in indoor flow-through and aerated aquaria. Eight amino acid test diets (350 g kg−1 crude protein, CP), using fish meal, soybean-condensed protein and gelatin as intact protein sources supplemented with crystalline amino acids, were formulated to contain graded levels of methionine (0.6–22.0%) at a constant dietary cystine level of 3 g kg−1. Each diet was randomly assigned to three aquaria. Growth performance and feed utilization were significantly influenced by the dietary methionine levels ( P  < 0.05). Maximum weight gain, feed intake occurred at 12 g kg−1 dietary methionine ( P  < 0.05). Methionine supplementation improved hepatopancreas and intestine weight, hepatosomatic and intestine index, intestinal γ-glutamyltransferase and creatine kinase activity, Lactobacillus count, Bacillus count, lysozyme activities, lectin potency, sim-immunoglobulin M content, addiment C3,C4 contents and serum total iron-binding capacity and declined Escherichia coli and Aeromonas counts. Quadratic regression analysis of weight gain against dietary methionine levels indicated that the optimal dietary methionine requirement for maximum growth of juvenile Jian carp is 12 g kg−1 of the dry diet in the presence of 3 g kg−1 cystine.  相似文献   

9.
An 8-week feeding trial was conducted to determine the threonine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low-salinity water (0.50–1.50 g L−1). Diets 1–6 were formulated to contain 360 g kg−1 crude protein with fish meal, wheat gluten and pre-coated crystalline amino acids with six graded levels of l -threonine (9.9–19.0 g kg−1 dry diet). Diet 7, which was served as a reference, contained only intact proteins (fish meal and wheat gluten). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.48±0.01 g), each four times daily. Shrimps fed the reference diet had similar growth performance and feed utilization efficiency compared with shrimps fed the diets containing 13.3 g kg−1 or higher threonine. Maximum specific growth rate (SGR) and protein efficiency ratio were obtained at 14.6 g kg−1 dietary threonine, and increasing threonine beyond this level did not result in a better performance. Body compositions, triacyglycerol and total protein concentrations in haemolymph were significantly affected by the threonine level; however, the threonine contents in muscle, aspartate aminotransferase and alanine aminotransferase activities in haemolymph were not influenced by the dietary threonine levels. Broken-line regression analysis on SGR indicated that optimal dietary threonine requirement for L. vannamei was 13.6 g kg−1 dry diet (37.8 g kg−1 dietary protein).  相似文献   

10.
The shrimp Penaeus stylirostris is currently produced on a commercial scale in Tahiti and New Caledonia. Both super-intensive (80 animals m−2) and semi intensive (25 m−2) systems are promoted. Locally produced commercial feed contains 380–400 g kg−1 crude protein (CP) without special consideration for environmental impact. The need for a 'low pollution' diet implies reconsideration of the optimum dietary protein level for this species. Under experimental conditions, six isoenergetic practical diets ranging from 270 g kg−1 to 440 g kg−1 CP were formulated and fed to satiation for 30 days to juvenile P. stylirostris ; average growth rates were between 5.5 and 7.5 g per month with survival rates > 90%.
The lowest protein levels 270–310 g kg−1, gave significantly ( P < 0.05) poorer growth (5.5 g per 30 days) than was observed with 330–430 g kg−1 CP; 330 g kg−1 CP may be recommended, and as it is lower than levels in diets used currently, there is a possibility of reducing nitrogenous waste. In addition to growth response, protein efficiency ratio, protein productive value and food conversion (feed/gain) all supported a recommended dietary protein level of 330 g kg−1. Future prospects for practical feeds with even lower CP levels are considered.  相似文献   

11.
Mature winged bean Psophocarpus tetragonolobus seeds were quick-cooked and the full-fat meal derived was used to completely replace menhaden fish meal as a dietary protein source for the African catfish Clarias gariepinus . Five dry practical diets (400 g crude protein kg−1 and 17.5 kJ gross energy g−1 dry diet) containing menhaden fish meal (diet 1) or winged bean meal with or without graded levels of supplemental L -methionine (diets 2, 3, 4 and 5; 0, 5, 10 and 15 g kg−1, respectively) were fed to catfish fingerlings (5.8  +  1.2 g) for 70 days. Weight gain, growth rate, feed conversion and protein utilization by catfish fed a winged bean meal diet without L -methionine supplementation (diet 2) was inferior ( P  > 0.05) to that in catfish fed the other diets, where performance differed nonsignificantly. Carcass protein of catfish was lower ( P  < 0.05) while liver protein was higher ( P  < 0.05) in catfish fed the winged bean meal diet without methionine supplementation. Results suggest that winged bean meal cannot replace fish meal as a protein source in catfish diets except with a minimum supplementation with 5 g L -methionine kg−1 diet.  相似文献   

12.
The quantitative dietary sulphur amino acid requirement of the Indian major carp, Labeo rohita (Hamilton), was determined by conducting a growth study. The experimental diets contained 400 g crude protein kg−1 from casein, gelatine and supplemental crystalline amino acids. Diets containing six graded levels of methionine (3.2, 6.5, 9.0, 11.5, 14 and 16.5 g kg−1) with a constant level of cystine (1.4 g kg−1) were formulated and fed to triplicate groups of Labeo rohita fingerlings twice a day to satiation for 60 days. The optimum dietary requirement for methionine was estimated using the break-point regression analysis at 11.5 g kg−1 of diet or 28.8 g kg−1 of dietary protein. Thus the total sulphur amino acid (Met + Cys) requirement was determined to be 12.9 g kg−1 of diet or 32.3 g kg−1 of protein. Higher survival, specific growth rate and food conversion efficiency values were observed for fish fed the diet containing optimum levels of sulphur amino acids.  相似文献   

13.
Two growth studies were conducted to determine the dietary threonine requirement of reciprocal cross hybrid striped (sunshine) bass. Semipurified diets were prepared with crystalline amino acids and lyophilized fish muscle to supply 350 g crude protein kg−1 diet. The basal diet contained 4.9 g threonine kg−1 from fish muscle, and test diets were supplemented with graded levels of L-threonine. In the first experiment, fish initially averaging ≊ 9.8 g each were fed diets containing threonine levels of 4.9, 7.5, 10.0, 12.5, 15.0 and 17.5 g kg−1 dry diet for 7 weeks. Weight gain, feed efficiency and protein efficiency ratio (PER) were significantly ( P < 0.01) influenced by dietary threonine level. Based on weight-gain responses, a threonine requirement (± SE) of 8.4 (± 0.8) g kg−1 dry diet was determined, and dietary threonine levels of 10.0 g kg−1 diet or greater resulted in the highest levels of free threonine in plasma.
Based on the results of the first experiment, a second feeding trial was conducted with diets containing threonine levels of 4.9, 6.5, 8.0, 9.5, 11.0 and 12.5 g kg−1 dry diet. Fish initially averaging ≊ 3.0 g each were fed each diet for 8 weeks. Weight gain, feed efficiency and PER values of fish were markedly improved, with increases in dietary threonine up to 8.0 g kg−1 dry diet. Regression analysis of weight gain, feed efficiency and PER data using the broken-line model resulted in threonine requirement estimates of 9.7, 8.5 and 8.6 g kg−1 dry diet, respectively. Based on these data, the threonine requirement of juvenile sunshine bass was determined to be ≊ 9.0 g kg−1 dry diet or 26 g kg−1 of dietary protein.  相似文献   

14.
This study was conducted to determine the effects of feeding increasing lipid concentrations (310, 380 and 470 g kg–1 lipid on dry weight) in diets based mainly on herring byproducts to Atlantic salmon Salmo salar . The diets were isonitrogenous, varying in dietary lipid content at the expense dietary starch. Average fish weight increased from 1.2 kg in April to 2.2–2.7 kg at the end of the feeding trial in September. Significantly greater growth was found in fish fed either the 380 g kg−1 or the 470 g kg−1 lipid diets compared with the 310 g kg−1 lipid diet. Muscle lipid content increased in all dietary groups on a wet weight basis from 7.7 ± 1.4% to 12 ± 3% in salmon fed the 310 g kg−1 lipid diet, and to 16 ± 2% in salmon fed the 380 g kg−1 and 470 g kg−1 lipid diets. In fish of similar weight there was a positive correlation between dietary lipid and muscle lipid concentrations. Low concentrations of muscle glycogen were detected in fish fed each of the diets, while muscle vitamin E concentrations slowly decreased as muscle lipid increased. Muscle fatty acid composition reflected dietary fatty acid profiles, containing similar percentages of total saturated, monoenic and n-3 fatty acids (20:5n-3 and 22:6n-3) in fish from all dietary treatment groups. However, a higher ratio of n-3/n-6 was found in muscle from fish fed the 470 g kg−1 lipid diet compared with the other two groups. Blood chemistry values varied somewhat, but all values were within normal ranges for Atlantic salmon of these sizes.  相似文献   

15.
The objective of the present study was to investigate the effect of dietary phospholipid (PL) level on growth and feed intake of juvenile amberjack ( Seriola dumerili ) fed non-fishmeal (non-FM) diet containing alternative protein sources; soybean protein isolate, tuna muscle by-product powder and krill meal. Three non-FM diets were prepared to contain three levels (14, 37 and 54 g kg−1 dry diet) of PL (soybean lecithin acetone insoluble, 886 g kg−1) and growth performance was monitored in a 30-day growth trial by using 2.6 g of fish. The results indicated that final body weight, weight gain and feed intake significantly increased with increasing dietary PL level. At the highest dietary PL level (54 g kg−1 dry diet), the fish consumed 14.8% and 10.2% as much feed as those fish fed diets containing 14 g kg−1 dry diet and 37 g kg−1 dry diet PL, respectively. An increasing tendency with increasing dietary PL level on feed efficiency was observed. In conclusion, the present study demonstrated that dietary PL supplementation could increase feed intake, and improve the growth of juvenile S. dumerili fed non-FM diets. Therefore, purified PL might be a good candidate to stimulate the growth of fish through enhancing the feed intake when they are fed diets containing alternative protein sources.  相似文献   

16.
A study was undertaken to estimate the effects of isonitrogenous diets (ca. 604 g kg−1 crude protein) containing formaldehyde-treated (FT) fish meal and graded levels of digestible protein (DP) (541, 491, 372, 347 and 247 g kg−1) on growth performance and tissue composition of juveniles white seabass. Five diets were formulated to contain increasing levels of FT fish meal (from 0 to 384 g kg−1) and decreasing levels of non-treated fish meal (from 480 to 96 g kg−1). Each dietary treatment was fed in triplicate to apparent satiation to groups of 25 fish for 50 days. Significantly higher growth performance and feed conversion ratio were obtained in fish-fed diets containing 491 or 541 g kg−1 DP, compared with all other treatments. Apparent digestibility coefficient of protein in the diets was not significantly affected by the inclusion of treated fish meal in the diets. Estimation of protein requirements using a broken-line regression analysis indicated that maximum weight gain would be obtained with a diet containing 503 ± 23 g kg−1 DP. The results from this study suggest that a single-diet formulation using protein treated with formaldehyde as filler might be useful to estimate the requirement of DP for fish.  相似文献   

17.
Four diets (1, 2, 3 and 4) were formulated to contain different potato protein concentrate (PPC) levels (0, 22, 56, and 111 g kg−1). Diet 5 contained 56 g kg−1 PPC and 17 g kg−1 methionine. A growth trial was conducted to investigate the effect on growth and feed utilization of incorporation of PPC and supplementation of methionine in the diet of rainbow trout. When the proportion of PPC exceeded 56 g kg−1 the growth of fish decreased while both growth and feed utilization decreased when the dietary PPC was 111 g kg−1. Protein productive value and condition factor of the fish decreased and mortality increased with the increase in the proportion of dietary PPC.  相似文献   

18.
Six isonitrogenous [450 g kg−1 crude protein (CP)] and isoenergetic diets (23 kJ g−1) with six levels of defatted soybean meal inclusion (0, 132, 263, 395, 526 and 658 g kg−1) in substitution of fish meal were evaluated in gilthead sea bream of 242 g initial weight for 134 days. Fish fed diets S0, S13, S26 and S39 had a similar live weight (422, 422, 438 and 422 g, respectively) but fish fed diets S53 and S66 obtained the lowest final weight (385 and 333g, respectively), and similar results were presented in specific growth rate (SGR). Fish fed diets S53 and S66 also obtained the highest feed conversion ratio (FCR). Quadratic multiple regression equations were developed for SGR and FCR which were closely related to dietary soybean level. The optimum dietary soybean levels were 205 g kg−1 for maximum SGR and 10 g kg−1 for minimum FCR. Sensorial differences were appreciated by judges between fish fed S0 and S39 soybean level, but after a re-feeding period of 28 days with diet S0, these differences disappeared.  相似文献   

19.
High-energy diets for white sturgeon, Acipenser transmontanus Richardson   总被引:1,自引:0,他引:1  
Four diets formulated for salmon were fed to 0.11 kg white sturgeon, Acipenser transmontanus Richardson, for 8 weeks. Dietary compositions ranged from 258 to 402 g lipid kg−1, 535–378 g protein kg−1 and 22.7–14.4 g protein MJ−1 gross energy.
Fish in all treatments grew rapidly, utilized the diets efficiently and had body compositions similar to what has been found in previous studies, but there were some dietary effects. Sturgeon fed the diet with the highest lipid content and lowest protein/energy ratio had lower ( P < 0.05) specific growth rate, feed efficiency, and liver moisture and protein contents, and 6-phosphogluconate dehydrogenase activity, but higher liver lipid contents than fish fed the other three diets. Condition factor, organ to body weight ratios, whole-body and plasma concentrations of protein, glucose and triglyceride, and liver glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme activities did not differ significantly among dietary treatments. This suggests that white sturgeon subyearlings can utilize diets with high lipid contents (258–357 g kg−1) to display good growth without major adverse effects on body composition and liver lipogenic enzyme activities.  相似文献   

20.
This study assessed refined canola oil (CO) as a supplemental dietary lipid source for juvenile fall chinook salmon, Oncorhynchus tshawytscha, parr with respect to possible effects on their growth and osmoregulatory performance and body composition. Diets with equal protein ( 57%) and lipid ( 19%) content (dry weight basis) were supplemented with lipid from either anchovy oil (AO) or CO with AO so that CO comprised 0 (0CO), 11% (11CO), 22% (22CO), 33% (33CO), 43% (43CO) or 54% (54CO) of the dietary lipid content. Triplicate groups of juvenile chinook salmon were fed their prescribed diets for 104 days in freshwater (FW) and 31 days in seawater (SW) after a 4-day transition period. Dietary fatty acid compositions reflected the different proportions of AO and CO in the supplemental lipid. Diet treatment had no effect on fish growth, feed intake, feed efficiency, protein utilization, fish mortality or terminal whole body water and ash percentages. Whole body lipid percentages were higher in 11CO and 43CO fish than in 33CO fish and in 11CO fish versus 22CO fish. Whole body protein percentages were highest in 33CO, 43CO and 54CO fish and lowest in 0CO and 22CO fish. Terminal whole body fatty acid compositions were influenced strongly by the dietary fatty acid compositions. Haematocrit and muscle water percentages were not affected consistently and plasma Na+ and Cl concentrations were unaffected by diet treatment in FW or 24-h seawater challenges during FW residency. Also, diet treatment had no effect on the physiological parameters after SW residency. We conclude that dietary treatment had no effect on fish growth performance under our experimental conditions. Also, the dietary inclusion of CO neither facilitated nor impaired the transfer of chinook salmon parr to seawater. Thus, CO was found to be an excellent and cost-effective source of supplemental dietary lipid for culture of juvenile fall chinook salmon during freshwater residency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号