首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
魏南  路斌  余德光  谢骏  王广军  陈成勋 《水产学报》2016,40(8):1239-1248
利用Peeper透析装置(dialysis peepers)的沉积物间隙水采集技术结合微量分光光度法,测定高密度杂交鳢养殖围隔中原位上覆水及沉积物间隙水中主要离子的浓度,分析各离子在上覆水–泥水界面–沉积物整个垂直剖面上的分布特征,并估算其在上覆水–沉积物界面处的扩散通量。结果显示,1NH4+-N、NO3–-N、NO2–-N、PO43–-P、SO42–-S和Fe2+都具有较强的垂直分布规律。NH4+-N在沉积物0~18 cm中随深度增加而迅速增加,18 cm后相对稳定;NO2–-N和PO43–-P在沉积物表层2~4 cm出现峰值,而在上覆水和深层沉积物中都相对较低;NO3–-N和SO42–-S在上覆水中远大于沉积物中浓度,并且进入沉积物4 cm内浓度迅速降低。2水样根据不同深度测定的理化性质,分别聚类为3组差异显著的类群:上覆水组、表层沉积物组(上覆水–沉积物界面组)和下层沉积物组。3通过Fick第一定律估算离子在上覆水—沉积物界面的扩散通量得出,NH4+-N、NO2–-N、PO43–-P和Fe2+为沉积物扩散至上覆水中;NO3–-N和SO42–-S为上覆水扩散至沉积物中。NH4+-N和SO42–-S在上覆水–沉积物界面具有相对较大扩散通量,其余离子则相对较小。NH4+-N在3个实验围隔中的扩散通量分别为76.432、111.631和209.835 mg/(m2·d),为主要的沉积物内源释放离子。  相似文献   

2.
为研究高密度养殖系统沉积物微生物群落结构垂直变化规律以及与其对应深度的环境因子的关系,实验选取了华南地区高密度养殖的典型模式——杂交鳢养殖模式,使用PCR-DGGE技术分析了养殖围隔不同深度(0~50 cm)沉积物中的微生物群落结构,同时使用透析装置采集对应沉积物的原位间隙水,并使用微量分光光度法测定间隙水中理化指标,从而探讨高密度养殖系统微生物群落结构垂直变化规律及其与沉积物间隙水理化因子的关系。结果显示,①不同深度的养殖围隔沉积物微生物群落结构通过聚类分析可分3个差异显著的类群:上层(0~6 cm)、中层(7~38 cm)和深层(39~50 cm),其中中层微生物多样性最为丰富。②DGGE电泳共获得46个条带,其中中层条带最多,深层沉积物条带最少。主要微生物类群归属于拟杆菌门、变形菌门、厚壁菌门、疣微菌门和浮霉菌门。③测定的沉积物间隙水中离子,NO_3~--N、SO_4~(2-)-S和Fe~(2+)在沉积物中垂直分布均匀,无明显梯度变化;而NH_4~+-N、NO_2~--N和PO_4~(3-)-P浓度变化较大。NH_4~+-N浓度随深度增加而逐渐增加,在15~18 cm后趋于稳定,为10.98~77.87 mg/L,PO_4~(3-)-P浓度随深度增加而减少,在9~10 cm后趋于稳定,为0.01~0.14 mg/L。④微生物群落结构与理化因子的相关性分析结果表明,NH_4~+-N和PO_4~(3-)-P为影响微生物群落结构垂直分布最大的理化因子组合,其中NH_4~+-N对微生物群落结构垂直分布的影响稍大于PO_4~(3-)-P。NH_4~+-N、PO_4~(3-)-P为影响微生物群落结构的主要理化因子,是杂交鳢养殖系统环境调控的主要控制指标。  相似文献   

3.
利用Peeper(pore water equilibriums)技术采集上覆水-沉积物间隙水整个垂直剖面的原位水样,然后使用微量分光光度法测定样品中主要营养盐NH4+-N、NO3--N、NO2--N、PO43--P和SO42--S的浓度,从而分析吉富罗非鱼(GIFT,Oreochromis niloticus)温棚养殖池塘各营养盐的垂直分布特征,并估算其在上覆水-沉积物界面处的交换通量。结果表明:(1)两罗非鱼温棚养殖池塘,4个Peeper实验组在上覆水-沉积物间隙水中各营养盐组间重复性都较好,且各营养盐都有较强的垂直分布规律。NH4+-N主要存在于沉积物间隙水中,从其表面深度0至6 cm间隙水中NH4+-N浓度迅速增高,8 cm后趋于相对稳定;NO3--N主要存在于上覆水中,沉积物0至4 cm间隙水中3NO--N浓度迅速降低;NO2--N浓度在沉积物表层2 cm处出现峰值;PO43--P浓度在沉积物0至4 cm间隙水中浓度迅速增加至最大值,深度超过4 cm浓度有降低趋势;SO42--S主要存在于上覆水中,沉积物0至8 cm间隙水中SO42--S浓度迅速降低。(2)不同深度的水样根据营养盐浓度,各实验组都可聚类为3组差异显著的类群:上覆水组、表层沉积物组(上覆水-沉积物交界面组)和深层沉积物组。(3)通过Fick第一定律估算营养盐在上覆水-沉积物界面的扩散通量得出:NH4+-N和PO43--P为从沉积物间隙水扩散至上覆水中;NO3--N和SO42--S为从上覆水扩散至沉积物中。4个Peeper实验组NH4+-N的扩散通量分别为22.44 mg/(m2·d)、22.93 mg/(m2·d)、50.84 mg/(m2·d)和16.74 mg/(m2·d),为两罗非鱼温棚养殖池塘主要的沉积物内源释放营养盐。与类似研究比较,本研究通量相对较高,表明养殖池塘沉积物有机质含量相对较高。SO42--S的扩散通量分别为–87.05 mg/(m2·d)、–164.87 mg/(m2·d)、–77.37 mg/(m2·d)和–91.30 mg/(m2·d),为两养殖池塘沉积物最大的吸收营养盐,表明SO42--S还原可能为罗非鱼养殖池塘沉积物中有机质降解的主要途径之一。  相似文献   

4.
将体长3~5 cm的极北海带幼苗充气饲养在过滤灭菌海水中,以NaNO_3和KH_2PO_4为氮源和磷源,氮、磷质量浓度[ρ(N)∶ρ(P)=10∶1]:NO_3~--N为0、0.5、2、4、6、8、10 mg/L,温度9℃,光周期为12L∶12D,12、24、36、48、60 h后,测定其叶绿素荧光参数(光系统Ⅱ最大荧光产量,F_v/F_m)及培养12、24、48 h后幼苗的表观光合速率,以研究极北海带幼苗生长的适宜营养盐质量浓度范围。另一试验中,以NaNO_3和NH_4Cl为氮源,KH_2PO_4为磷源,FeCl_3为铁源。NH_4~+-N(3 mg/L)组中Fe~(3+)质量浓度为0、1 mg/L。NO_3~--N(3 mg/L)组Fe~(3+)质量浓度为0、0.2、1、5 mg/L,0、4、10、24、48 h后测定幼苗培养液中的PO_4~(3-)-P、NO_3~--N、NH_4~+-N和Fe~(3+)质量浓度以及处理3 d后的极北海带幼苗的相对生长速率以探讨极北海带幼苗生长对铁与氮、磷的需求。试验结果显示,NO_3~--N:2~8 mg/L,PO_4~(3-)-P:0.2~0.8 mg/L[ρ(N)∶ρ(P)=10∶1,下同]内,极北海带幼苗的相对生长速率较高,表明该NO_3~--N、PO_4~(3-)-P质量浓度范围对其生长有利;NO_3~--N:2~4 mg/L,PO_4~(3-)-P:0.2~0.4 mg/L时,极北海带幼苗的F_v/F_m值和表观光合速率均较大,表明该NO_3~--N、PO_4~(3-)-P质量浓度范围对其光合作用较有利;铁(Fe~(3+),下同)质量浓度为0.2~1.0 mg/L时较有利于极北海带幼苗的生长,在铁质量浓度为1 mg/L时幼苗的相对生长速率最大;添加适宜质量浓度的铁营养盐后,10 h内显著促进极北海带幼苗对NO_3~--N和PO_4~(3-)-P的吸收,24 h后促进效果不明显,同时幼苗对铁的吸收也在10 h内基本达到饱和;5 mg/L的高铁质量浓度对幼苗吸收NO_3~--N和PO_4~(3-)-P有抑制作用,添加铁与否对幼苗吸收NH_4~+-N无显著影响(P0.05)。  相似文献   

5.
海州湾海洋牧场表层沉积物中磷形态及释放通量   总被引:1,自引:0,他引:1  
黄宏  罗娜  张硕 《水产学报》2020,44(6):959-968
为了解海州湾海洋牧场建设对沉积物-水界面磷酸盐交换的影响,于2017年5月采集了海州湾海洋牧场区表层沉积物及对应站点上覆水、间隙水等样品。采用SMT法(standard measurement test)分级提取磷的不同形态,包括可交换态磷(Ex-P)、铁铝态结合磷(Fe/Al-P)、钙结合态磷(Ca-P)并测定其浓度,结合室内磷通量模拟实验,尝试探索沉积物-水界面磷交换通量。结果显示,海州湾海洋牧场区表层沉积物中总磷(TP)浓度为392.44~463.46μg/g,IP浓度为219.21~282μg/g,Ca-P浓度为117.73~130.07μg/g。无机磷(IP)是磷的主要赋存形态;分级提取的磷形态浓度顺序为Ca-P Ex-P Fe/Al-P,对照区各种磷形态浓度大于鱼礁区,上覆水中的各种形态磷浓度均高于间隙水。室内模拟实验显示,沉积物中各种形态磷的浓度增加,IP仍为磷的主要赋存形态;沉积物-水界面TP、TDP(可溶性总磷酸盐)、PO_4~(3-)(可溶性正磷酸盐)的交换通量分别为-0.53~-0.05、-0.15~-0.01、-0.03~-0.29 mmol/(m~2·d)。实验初期交换速率较快,然后趋于平缓,与对照区相比,海洋牧场区磷的交换通量稍大,但都表现为从上覆水体向沉积物中迁移,即沉积物中的磷表现为上覆水的汇。  相似文献   

6.
采用陆基围隔实验法,于2009年6~10月调查并分析了草鱼复合养殖系统上覆水和沉积物间隙水营养盐(NH4-N,NO3-N,NO2-N,PO4-P)的时空分布及沉积物总氮(TN)、总磷(TP)和总碳(TC)含量的变化.结果显示,(1)草鱼复合养殖系统上覆水中NH4-N,NO3-N,NOz-N和PO4-P的 含量波动范围分别为0.056~1.499、0.022~0.228、0.049~3.903、0.003~1.882 mg/L,间隙水中营养盐的平面分布中,NH4-N在总无机氮(DIN)中所占比例随着养殖时间的增加而增加,不同复合养殖系统的营养盐垂直分布特征不同,规律也不明显.(2)实验结束与实验开始时相比,沉积物中TN和TP含量无明显变化,但TC含量显著降低,以混养模式(GSC)的减少幅度最大.结果表明,在本实验条件下,草鱼、鲢鱼与鲤鱼复合养殖系统可有效降低养殖过程中有机物的积累,降低底层中潜在释放的NH4-N含量,是一种较为合理的草鱼复合养殖模式.  相似文献   

7.
为比较光合细菌菌剂与沼泽红假单胞菌(Rhodopseudomonas palustris)的生理生态特性,分析了不同初始菌量的菌剂PG和菌株PSB-1对实验水体氨氮(NH_4~+-N)、亚硝氮(NO_2~--N)、硝氮(NO_3~--N)和活性磷(PO_4~(3-)-P)的降解效果,通过高通量测序分析了菌剂PG的优势菌组成及实验结束时水体细菌数量和微生物群落组成。结果显示,菌剂PG组对实验水体的PO_4~(3-)-P、NO_3~--N和NO_2~--N有一定的降解作用,其最大降解率分别为40.98%、28.28%和20.12%。菌株PSB-1组仅对实验水体的NO_2~--N和PO_4~(3-)-P有一定的降解效果,其最大降解率分别为14.19%和9.88%。菌剂PG的主要优势菌为红假单胞菌属(Rhodopseudomonas sp.)。实验7 d后实验组水体细菌数量和微生物群落结构发生变化,水体细菌数量增长,形成以异养细菌为优势菌的菌群结构。结果表明光合细菌菌剂PG对水质因子的降解效果优于沼泽红假单胞菌PSB-1,但与报道的高效光合细菌菌株的降解能力存在一定差距。  相似文献   

8.
为探讨HACH速测法检测对虾养殖水体氮磷含量的可行性,应用HACH速测法和国标法(GB 17378.4-2007)检测对虾池塘水体NH_3-N、NO_2~--N和PO_4~(3-)含量,分析两种方法测定结果及其相互关系;并研究了对虾养殖池塘水样直接过滤测定、过滤低温冻存和低温冻存过滤三种处理方法对NH_3-N、NO_2~--N和PO_4~(3-)检测结果的影响。结果显示,HACH速测法检测NH_3-N、NO_2~--N和PO_4~(3-)的标准曲线线性良好,检测结果与国标法检测结果差异显著(P0.05),但两者之间有显著的线性关系,线性方程分别为Y(NH_3~-N)=0.891X(NH_3~-N)-0.006;Y(NO_2--N)=1.657X(NO_2~--N)+0.004;Y(PO_4~(3-))=0.901X(PO_4~(3-))-0.018(Y为国标法检测值,X为HACH速测法检测值);HACH速测法检测养殖水体的结果利用建立的函数方程进行换算,获得的计算值与国标法检测值无显著性差异;经三种方法处理后的对虾池塘水体NH_3~-N、NO_2~--N检测值之间无显著差异,但经冻存处理两组水样的PO_4~(3-)含量显著低于直接过滤检测组PO_4~(3-)含量,冻存处理组之间PO_4~(3-)含量无明显差异。结果表明,HACH速测法可用于检测养殖水体NH_3-N、NO_2~--N和PO_4~(3-)含量,但检测结果需要经函数转化;为保证水样检测结果的准确性,待检水样需要采取合适的保存方式或者立即进行测定。  相似文献   

9.
2006年9月,通过营养水平和水草的差异设计了4个浅水湖泊模拟系统,对草、藻型湖泊间隙水营养盐特性的差异进行研究。2007年9月,采用平衡浓度法测定了各系统间隙水的营养盐浓度,经分析得出以下结论或认识:(1)上覆水中,各系统营养盐浓度比较均一,垂向上梯度变化不明显;与藻型系统相比,草型系统上覆水PO43--P浓度较高,NH4+-N浓度较低;(2)在泥水界面处,各系统PO43--P和NH4+-N浓度均存在极陡的浓度梯度,随泥深增加浓度迅速升高;(3)由于底泥营养负荷高等原因,间隙水中的PO43--P和NH4+-N浓度明显高于上覆水;(4)水生植物生长对间隙水中的营养盐具有“低促高抑”的特性,即降低重污染沉积物间隙水中PO43--P和NH4+-N的浓度,增加微污染沉积物间隙水中的营养盐浓度;(5)藻型系统中,NH4+-N和PO43--P浓度之间存在非常明显的线性相关关系,说明这两种成分均主要来源于有机质的厌氧分解。  相似文献   

10.
皮坤  张敏  李保民  李庚辰 《水产学报》2018,42(2):246-256
为了探讨不同主养模式池塘养殖期间沉积物—水界面氮磷营养盐通量变化特征以及与环境因子之间的相互关系,利用沉积物—水界面营养盐扩散通量的原位观测装置,分析了2013年4—10月主养草鱼和主养黄颡鱼池塘沉积物—水界面营养盐交换通量,并探讨了影响营养盐交换通量的因素。结果发现:(1)在养殖初期,各种形态氮磷在养殖池塘沉积物—水界面主要表现为从上覆水向沉积物的沉积,养殖中后期,由于温度升高以及池塘沉积物中营养物质的大量累积,各种形态氮磷表现为以沉积物向上覆水扩散为主,表明池塘沉积物是氮磷营养盐的源与汇;(2)两种不同主养模式池塘氮磷通量的统计结果表明,沉积物—水界面-N、-N和-P通量变化无显著差异,而-N、TN和TP通量有显著差异;(3)上覆水中DO含量的升高显著促进界面间-N和-N释放通量,而-N和-P释放通量与上覆水DO浓度成显著负相关;温度的升高对各种无机形态的氮磷通量有显著的促进作用。  相似文献   

11.
大口黑鲈投喂两种不同饲料对水质指标的影响   总被引:3,自引:0,他引:3  
为了研究投喂两种不同饲料(冰鲜下杂鱼与配合饲料)对大口黑鲈养殖水质指标的影响,在室内水泥池进行了28d的饲养试验.对水体中的COD、PO4--P、TP、TN、NH3-N、NO3--N、NO2-N等指标进行了测定.结果表明,投喂两种饲料各指标均有不同程度的增加,但养殖一个月后冰鲜组比饲料组要高许多:杂鱼组COD、PO4--P、TP、TN、NH3-N、NO3--N、NO2--N分别为25.3mg/L、2.4mg/L、2.28mg/L、3.44mg/L、2.91mg/L、0.52mg/L、0.075mg/L,而配合饲料组分别为10.2mg/L、0.58mg/L、0.855mg/L、2.17mg/L、0.29mg/L、0.048mg/L、0.03mg/L.特别是PO4--P、TP,冰鲜组分别为饲料组的4.2倍和2.7倍.这说明投喂人工饲料可以减轻有机污染程度,特别是在控制PO4--P、TP的增加方面效果显著.试验结果对于控制水体的富营养化具有重要的指导意义.  相似文献   

12.
根据2006-2007年威海湾4个航次营养盐的调查资料,分析该海域海水中无机氮(DIN)、磷酸盐(PO43--P)和硅酸盐(SiO32--Si)的季节变化规律及其与环境因子的典型相关性。结果表明,NO3--N是DIN的主要存在形式,比例达50%以上。营养盐季节性变化明显,秋冬季DIN和PO43--P浓度较高,春夏季较低,SiO32--Si的变化则相反。四季DIN和PO43--P浓度均大于浮游植物生长阈值,仅冬季SiO23--Si浓度低于浮游植物生长阈值。冬季浮游植物生长的限制因子是Si,其他季节具有P限制的潜在性。营养盐和环境因子具有较大的典型相关性,其中,盐度、pH和NO3--N、PO43--P、SiO23--Si相关性最大,典型相关系数达到0.979。  相似文献   

13.
为研究卫河新乡市区河段底泥-间隙水-上覆水中营养盐的时空分布特征,分别于2013年1、4、7、10月对卫河新乡段上游(S1)、人口密集区(S2)、人工拓宽河道形成的牧野湖入湖水口(S3)、湖岸静水区(S4)、湖心处(S5)和湖区下游(S6)共计6个样点进行采样分析。结果表明:(1)S1和S2底泥中总氮(TN)、氨氮(NH4+-N)含量呈现随深度增加而上升的趋势,除S3外,各样点底泥中总磷(TP)含量的垂向分布在15~20 cm处比表层含量低,但并无明显规律性;(2)S2、S3、S4样点在4月时底泥(干重)中的TN含量达到最大值,分别为5.8、2.2、1.7 g/kg,10月时TP含量达到最大值,分别为0.88、0.22、0.21 g/kg,除S3号样点外,其余各样点底泥NH4+-N的含量均在7月出现最大值,按样点号依次为25.42、37.19、14.23、12.28、34.11 mg/kg;(3)间隙水中TN和NH4+-N含量的垂向分布与底泥中的分布相似,间隙水和底泥中的TN、NH4+-N之间呈显著的正相关,TP之间无明显相关性;(4)间隙水和上覆水中的各营养盐之间均无明显相关性。  相似文献   

14.
夏季莱州湾及附近水域理化环境及营养现状评价   总被引:8,自引:1,他引:7       下载免费PDF全文
根据2007年8月对莱州湾及附近水域的调查资料,讨论了温度、盐度、pH、溶解氧(DO)、溶解无机氮(DIN)和活性磷酸盐(PO4^3--P)等理化因子的分布特征,并对该水域的营养水平和有机污染状况进行了评价。结果表明,莱州湾西部和西南部水域表层和底层的DIN含量较高,均呈向东北方向递减的趋势;表层PO4^3--P含量分布较为均匀,在湾口中部水域有一小范围的高值区,并呈向四周逐渐递减分布。底层水平基本与表层一致,但其高值区范围较大,等值线较为密集。营养盐与盐度的相关分析表明,DIN与盐度呈显著负相关,表明DIN主要来自河流径流的输送;而PO4^3--P与盐度相关性不十分显著,这表明莱州湾PO4^3--P的补充并非主要来自河流径流输入,而是以有机物的分解矿化再生为主,同时,浮游植物的大量繁殖也是一个重要的影响因素。由水域环境质量评价结果看,N/P值均大于Redfield比值16,P显得相对缺乏。根据营养化评价模式和有机污染指数计算结果,2007年夏季莱州湾水域营养水平基本属于磷中等限制潜在性富营养,有机污染程度属3级,表明该调查水域受到轻度有机污染。  相似文献   

15.
研究了采用蓝网、白纱、绿纱、编布、瓦片、石头制成的各种人工参礁对刺参池塘生态系统中底栖藻类种类组成及生物量、底层溶氧和营养盐等生态因子的影响。结果表明,颜色较深的蓝网与绿纱附着底栖藻类的生物量较大;水深小于150cm时附着生物量较大;小型底栖藻类在编布、瓦片上的生物量较大;大型底栖硅藻在蓝网、绿纱、白纱等有孔网片上的生物量较大。NO3--N远远大于NH4+-N并与底栖藻类生物量的相关系数极小;而底层NH4+-N与底栖藻类生物量的相关系数较大,为0.7176;PO43--P与底栖藻类生物量的相关系数介于二者之间。人工参礁的材料、设置方式与水深是刺参池塘养殖生态系统的关键技术和条件,并具有显著的生态效应。  相似文献   

16.
池塘养殖增氧方式效果比较   总被引:2,自引:0,他引:2  
为了解微孔增氧对池塘水体能量流动、水质及养殖效益的影响,对2种不同增氧方式下3个河蟹养殖池塘的养殖周期(4—9月份)进行了水质测定,获得了池塘不同水层的水温、溶氧、氨氮、亚硝酸盐及高锰酸钾盐指数数据。结果表明,夏季高温时采用微孔管道增氧能有效降低表层、底层的温差,一定程度上降低底层水温。微孔管道增氧能有效增加水体溶氧,开机90min水体底层溶氧增加速率是普通增氧机的5倍;6—9月份采用微孔增氧的池塘水体较普通增氧,NO2-N低70﹪以上,NH3-N低22.9﹪以上,高锰酸钾盐指数低20﹪以上,取得了较高的经济效益。  相似文献   

17.
为研究藤壶壳作为生物滤料应用于对虾养殖尾水处理的可行性,通过比较陶瓷环组、聚乙烯(PE)组、藤壶壳组和藤壶壳+PE组4个不同滤料组合的生物挂膜效果,初步评价藤壶壳作为生物滤料的应用价值;通过设定藤壶壳的不同填充率(滤料体积∶尾水体积),研究填充率对对虾塘养殖尾水处理效果的影响。结果显示:藤壶壳组挂膜成功时间较早,水处理效果好;藤壶壳不同填充率对水处理中悬浮物、氨氮(NH_4~+-N)、亚硝酸盐氮(NO_2~--N)的处理效果有显著影响,A、B、C、D各组悬浮物在6 h时的去除率分别达(68.7±4.3)%、(74.5±7.0)%、(80.9±4.2)%和(82.1±3.8)%,其中B、C、D组去除率显著高于A组(P0.05);4组的氨氮最终去除率都在92.1%以上,以0.1 mg/L为基准,A组氨氮降至此质量浓度以下需要时间5 d,B、C组4 d,D组3 d,降解速率为D组C组B组A组;4组的亚硝酸盐氮最终去除率都在98.0%以上,以0.1 mg/L为基准,A组的亚硝酸盐氮降至此质量浓度以下需要时间为6 d,B、C、D组需要5 d,降解速率为D组C组B组A组。研究表明:藤虎壳作为生物滤料应用于对虾养殖尾水处理,效果良好,且随着填充率的增大,处理效率增强;但考虑到经济成本和应用实际,建议藤壶壳填充率为2∶9。  相似文献   

18.
采用上流式和下流式曝气生物滤池处理凡纳滨对虾(Litopenaeus vannamei)养殖污水,连续进行30 d,分析出水水质,并观察系统运行情况和装置污染状况。研究了养殖污水中化学需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、无机氮及活性磷酸盐6项指标的去除效果。实验结果表明:从养殖污水主要污染物指标的去除效果和稳定性上看,上流式优于下流式曝气生物滤池。在系统进水化学需氧量质量浓度为7.62~8.20 mg/L、氨氮质量浓度为0.62~0.65 mg/L、硝酸盐氮质量浓度为0.54~0.59 mg/L、亚硝酸盐氮质量浓度为0.23~0.27 mg/L、无机氮质量浓度为1.40~1.47 mg/L、活性磷酸盐质量浓度为0.24~0.29 mg/L,水温为25℃~30℃时,上流式曝气生物滤池对养殖污水中6项指标的去除率分别为:45.2%、88.9%、58.5%、78.8%、75.3%和25.1%。可见,对氨氮的去除效果最佳,亚硝酸盐氮和无机氮次之,化学需氧量和硝酸盐氮的去除效果较差,活性磷酸盐去除率最低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号