首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
在模拟工厂化养殖环境下开展日本囊对虾不同密度的生长与存活试验,实验设置5个密度水平,50、100、150、200、250尾/m~2,每个试验组设2个重复。结果表明,不同密度条件下,日本囊对虾生长性状、存活率与饵料系数存在显著差异(P0.05)。20日龄,不同密度间的生长性状无统计学意义差异(P0.05);40日龄,密度组间的生长性状存在统计学意义差异(P0.05),密度50、100、150尾/m~2显著大于密度250尾/m~2(P0.05);60日龄时,密度100尾/m~2的平均体长、腹长与体质量分别为(7.28±0.74)cm,(4.72±0.43)cm,(3.59±0.98)g,显著大于密度150、200、250(P0.05),为生长最快的密度组。密度对存活率有极显著影响,存活率变化范围为(23.98%±2.25%)~(69.95%±2.38%),密度50和250存活率分别最高和最低,密度50、100的存活率极显著大于密度150、200、250尾/m~2(P0.01)。饵料系数的变化范围为(1.63±0.08)~(3.99±0.31),最低为密度50尾/m~2,饵料系数1.63±0.08。最高为密度250尾/m~2,饵料系数为3.99±0.31。当密度低于100尾/m~2时,日本对虾生长表现最好,该密度下对虾生长速率快、存活率高、饵料系数低。本研究为日本囊对虾的工厂化养殖生产提供理论参考。  相似文献   

2.
在工厂化养殖条件下,研究了养殖密度对2~5龄大鲵(Andrias davidianus)摄食与生长的影响。结果表明:2龄大鲵适宜养殖密度为27尾/m2,该组特定生长率显著高于9尾/m2组、18尾/m2组(P<0.05),且饵料系数最低;当养殖密度为17尾/m2时,3龄大鲵的增重率、特定生长率最大,饵料系数最低且与低密度5尾/m2组差异显著(P<0.05),确定3龄大鲵的适宜养殖密度为17尾/m2;4龄大鲵特定生长率的最大值出现在养殖密度为10尾/m2,显著高于16尾/m2组(P<0.05),且饵料系数最低,4龄大鲵的适宜养殖密度为10尾/m2;5龄大鲵的适宜养殖密度为5尾/m2,特定生长率与高密度组9尾/m2差异显著(P<0.05),饵料系数最低。大鲵适宜养殖密度与体重存在显著的负相关性,关系式为y=-0.016 4x+25.34(r2=0.839 9)。  相似文献   

3.
为了提高稻田养殖的效率,了解不同养殖密度对华南鲤(Cyprinus carpio rubrofuscus)幼鱼生长特性的影响,本研究在室内水族箱中养殖初始体质量约为0. 35 g、孵化三周的华南鲤幼鱼,密度分别为M1 (43. 48尾/m2)、M2 (86. 96尾/m2)、M3 (173. 91尾/m2)、M4(347. 83尾/m2)四个组,进行11周的养殖试验。试验结果表明,养殖密度对存活率无显著影响,但华南鲤幼鱼的体质量、体长、日增重(DWG)、净增重(NY)、肥满系数、变异系数(CV)和特定生长率(SGR)都随着养殖密度的增加而降低; M1组的体质量、体长、日增重、净增重、特定生长率均最大,其中日增重、净增重、特定生长率均与M2组无显著差异,但是M1组的变异系数较M2组要小。研究结果表明,此阶段华南鲤幼鱼最适养殖密度为M1 (43. 48尾/m2)。  相似文献   

4.
为探讨养殖密度和水温对锦鲤幼鱼存活与生长的影响,研究设置了5个养殖密度(10、30、50、70、90尾/m~3)和5个水温(10、15、20、25、30℃)分别组成试验组,试验周期为30 d。结果表明:10尾/m~3和30尾/m~3两个养殖密度组除平均末总重外,其它各项指标均无显著差异(P0.05);当养殖密度大于30尾/m~3,随养殖密度的增大,锦鲤幼鱼的平均存活率、末体重、日增重、特定生长率均显著降低(P0.05),而平均末总重、饵料系数显著升高(P0.05)。随着水温的升高,锦鲤幼鱼的平均末体重、日增重、特定生长率均呈先升高后下降的趋势,25℃时最高且显著高于其他水温组(P0.05);饵料系数呈先下降后升高的趋势,25℃时最低。综合考虑饵料系数及单位水体锦鲤产量,锦鲤适宜的养殖水温在25℃左右,静水池塘的放养密度建议在30尾/m~3左右。  相似文献   

5.
随机选取体质量为10.0~10.7g的黄姑鱼Nibea albiflora幼鱼450尾,设置4个养殖密度,依次为15尾/缸(1.49 kg/m3)、30尾/缸(3.00 kg/m3)、45尾/缸(4.84 kg/m3)、60尾/缸(5.81 kg/m3),研究密度胁迫对黄姑鱼幼鱼生长性能、代谢酶活性及非特异性免疫的影响。结果表明: 1) 养殖密度对黄姑鱼幼鱼的增重率没有显著性影响(P>0.05)。特定生长率具有与增重率相类似的变化规律。饵料系数与养殖密度呈显著的负相关性:FCR=0.02G+0.11(n=15,R2=0.983,F<0.05)。2) G60组乳酸脱氢酶活性最高并显著高于G15组、G30组(P<0.05)。随着养殖密度的增大,谷丙转氨酶活性有逐渐增大的趋势(P>0.05)。谷草转氨酶活性具有与谷丙转氨酶相类似的变化规律。3) 随着养殖密度的增大,血清溶菌酶活性呈现逐渐降低的趋势,G60组血清溶菌酶活性最低并显著低于其他3组(P<0.05)。密度胁迫对血清补体C3、C4含量的影响均不显著(P>0.05)。本研究表明,养殖密度过高会对黄姑鱼幼鱼的代谢及非特异性免疫造成负面影响,而养殖密度过低又会造成水资源的浪费,30尾/缸(3.00kg/m3)为较适宜的养殖密度。  相似文献   

6.
为研究循环水养殖大黄鱼苗的适宜养殖密度、水质变化趋势与病害防控效果,开展了采用循环水养殖系统进行大黄鱼苗培育试验。投苗规格1.82 g/尾,养殖密度分别为350尾/m~3、400尾/m~3和450尾/m~3,每个密度使用3个养殖桶进行平行对比试验,养殖周期180 d。结果表明:400尾/m~3为适宜密度,其养殖存活率、结束均重和尾日增重分别为83.6%、95.4 g和0.52 g,显著高于450尾/m~3密度组11.2%(该组对应值75.2%,下同)、27.5%(74.8 g)和28.1%(0.41 g)(P0.05);饵料系数1.28,显著低于450尾/m~3密度组22.9%(1.66)(P0.05);与350尾/m~3密度组均无显著差异(P0.05)。试验期间,400尾/m~3密度组养殖水体总氨氮和亚硝酸盐氮平均浓度分别为0.115 mg/L和0.037 mg/L,显著低于450尾/m~3密度组25.3%(0.154 mg/L)和41.0%(0.063 mg/L)(P0.05),与350尾/m~3密度组均无显著差异(P0.05);试验期间未爆发寄生虫病及细菌性疾病。研究表明:采用循环水养殖系统培育大黄鱼苗,具有节水减排、养殖存活率高和生长良好的优点,发展前景广阔。  相似文献   

7.
为了解在池塘养殖条件下,养殖密度对图们雅罗鱼(Leuciscuswaleckiitumensis)生长指标和饲料利用率的影响。在水温11.8~27.3℃,将初始体重没有显著差异的图们雅罗鱼幼鱼以3尾/m~2(D1)、6尾/m~2(D2)、9尾/m~2(D3)和12尾/m~2(D4)的密度放养。经过90d的养殖,结果表明:养殖密度对养殖水质、体重、变异系数、肥满度、增重率、日增重、特定生长率、存活率和饲料系数均有显著差异。高密度组NH4+-N大于0.025 mg/L,TP大于0.01 mg/L,TN大于0.05 mg/L;体重、增重率、日增重、特定生长率,9尾/m~2密度组差异最大,与其余3个密度组有显著差异;生长离散低密度组(D1、D3)与高密度组(D3、D4)有显著差异,低密度组之间、高密度组之间无显著差异;12尾/m~2存活率最低,与其他密度组有显著差异;肥满度和饲料系数低密度组之间、高密度组之间均无显著差异,低密度组与高密度组之间有显著差异。综合试验结果,建议图们雅罗鱼幼鱼放养密度在9尾/m~2。  相似文献   

8.
集约化池塘网箱养殖黄鳝技术的生产试验   总被引:5,自引:0,他引:5  
储张杰 《水利渔业》2002,22(4):11-12
试验池塘内放置固定式网箱 30只 ,规格为 8m× 4m× 2m ,人工投喂低值小杂鱼、河蚌肉、鱼粉、配合饵料。每平方米网箱放养规格 30~ 70g/尾的鳝种 1 2kg ,约 30尾 ,饲养 6个月 ,产鳝鱼 3 4kg/m2 ,净增重 2 2kg/m2 ,盈利 10 7 1元 /m2 ,投入产出比 1∶2 7,经济效益显著  相似文献   

9.
本文主要研究密度对网箱养殖硬头鳟Oncorhynchus mykiss存活和生长的影响。在水温8.2~19.1℃下,将体质量1.02 kg的硬头鳟鱼种养殖在5m×10m×6m网箱中,网箱放置在松花江上游的松山水库中,密度分别为5尾/m~2(Ⅰ组)、8尾/m~2(Ⅱ组)、11尾/m~2(Ⅲ组)和14尾/m~2(Ⅳ组),投喂粗蛋白含量为42%、粗脂肪22%的颗粒饲料,常规养殖。145d的养殖表明:网箱养殖的放养密度对硬头鳟的生长有一定影响。第Ⅳ组鱼的存活率显著低于其他3组(P0.05);放养密度为5~11尾/m~2时硬头鳟的生长与密度呈正相关,大于此密度范围则呈负相关。第Ⅲ组鱼的终末体质量、日增重、增重率、利润和利润率显著高于其余3组(P0.05);4个密度组硬头鳟的产量随放养密度增加而递增。本试验表明:网箱养殖硬头鳟的放养密度为11尾/m~2较适宜。  相似文献   

10.
在水温21.3~27.5℃条件下研究了两种不同基础饲料配比不同浓度的嗜水气单胞菌后,日本医蛭(Hirudo nipponia)增重率、饲料系数和存活率的变化。结果表明,以新鲜猪血为基础饲料配比试验,试验2~#、3~#组日本医蛭总增重率分别为804.99%±56.16%和682.33%±43.11%,高于其余各组;试验2~#组的总饲料系数为2.71±0.32,低于0#、1~#组,试验3~#组饲料系数最低为2.61±0.19;试验2~#、3~#组日本医蛭存活率分别为93%±4.23和96.00%±0.00%,高于其余各组。以人工配合饲料为基础饲料配比试验,试验1~#、2~#组日本医蛭总增重率分别为102.33%±12.12%和114.33%±14.81%,高于其余各组;试验1~#、2~#组总饲料系数分别为3.57±0.31和3.41±0.25,低于其余各组;试验1~#、2~#组日本医蛭存活率分别为88.00%±5.64%和87.00%±4.23%,高于其余各组。  相似文献   

11.
为研究地膜光伏工程化养殖模式的实用性,在地膜光伏工程化养殖系统中开展凡纳滨对虾养殖试验。地膜光伏工程化养殖系统由对虾养殖系统和光伏发电系统组成。取3口池塘进行凡纳滨对虾高密度养殖试验,放养密度为500尾/m^2,养殖试验周期100 d。凡纳滨对虾平均体长达到(9.77±0.11)cm,平均体质量(10.80±0.82)g。1号池塘产量为4.25 kg/m^2,存活率为78.71%,饲料系数为1.22;2号池塘养殖产量为4.42 kg/m^2,存活率为81.85%,饲料系数为1.18;3号池塘产量为4.07 kg/m^2,存活率为75.37%,饲料系数为1.25。养殖期间8:00水温范围为22.5~31.0℃;15:00水温范围为22.5~32.0℃,日气温差最大为11.0℃,日水温差最大为2.5℃。养殖期间pH稳定在7.00~8.34。养殖期间亚硝酸盐氮(NO-2-N)0~8.47 mg/L,总氨氮(TAN)0~7.83 mg/L。地膜光伏工程化养殖模式养殖凡纳滨对虾,实现了对虾养殖和光伏发电的双重收益,具有较大的实用价值,是一种值得推广的养殖模式。  相似文献   

12.
将初始体重为(580.9±44.65)g的大菱鲆成鱼按照低密度A组14.30 kg/m2、中密度B组20.49 kg/m2、高密度C组31.32 kg/m2的标准分为3个不同养殖密度组,并放养于循环水养殖系统中120 d,同时对大菱鲆成活率、体重差异、饵料系数、溶菌酶水平及养殖水体中总氨氮(TAN)、亚硝酸氮(NO2--N)、COD浓度的变化进行测定。研究表明,实验结束时A、B、C三组大菱鲆养殖密度分别达到30.09、41.30、60.07 kg/m2,各实验组成活率都在95%以上。大菱鲆养殖密度对增重率的影响主要体现在研究前期,并且随着养殖密度的增加,各实验组体重差异度出现显著变化(P0.01)。大菱鲆A、B、C组的饵料系数分别为0.73、0.75、0.82,与养殖密度呈正相关。研究开始第5天,高密度组大菱鲆溶菌酶水平升高,20 d后血液溶菌酶水平逐渐降低,40 d之后显著低于低密度组。研究期间系统运行稳定,循环水养殖大菱鲆的不同密度对系统各项水质指标总氨氮(TAN)、亚硝酸氮(NO2--N)、COD浓度的变化有显著影响(P0.05)。研究结果显示,随着养殖密度的升高,各项水质指标显著升高,但高密度组各项水质指标均未超过渔业水质标准所规定的浓度。  相似文献   

13.
采用自行设计的抽屉式生物滤器应用于漠斑牙鲆(Paralichthys lethostigma)闭合循环水养殖系统,研究其对循环养殖水的处理效果及漠斑牙鲆的增重和饲料利用率的影响。结果表明:经过60 d的循环水养殖,漠斑牙鲆从初始时的(225.4±11.9)g增加到结束时的(337.5±10.3)g,增重率49.97%;试验饲料系数1.06,养殖密度24.1 kg/m3,成活率100%;抽屉式生物滤器对于NH4+-N、NO2--N和COD去除率分别为(10.61±1.88)%、(14.90±3.06)%和(16.11±1.70)%,可满足漠斑牙鲆养殖水体的水质要求。  相似文献   

14.
刘艳艳 《水产养殖》2012,33(10):9-12
选取平均体重为(359±16)g/尾的健康牙鲆48尾,随机分成3组,每组2个重复。采用3种不同饲料进行投喂,比较牙鲆专用配合饲料对牙鲆生长速度、饲料效率及消化率的影响。经过42d的饲养,结果表明:自配饲料(A组)增重速度最快、饲料系数最低,尾相对增重率达到230.1%、饲料系数达到1.59。牙鲆每增重1.0kg所需饲料成本最低,与B组、C组相比分别节省了13.7%和18.9%。A组的干物质消化率为81.56%,比B组、C组分别高5.33%和9.39%。A组的蛋白质消化率为91.17%,比B组、C组分别高3.26%和7.51%。  相似文献   

15.
研究了在豆粕型饲料中添加不同浓度的蛋氨酸对江黄颡鱼生长的影响。试验鱼分为3个组,蛋氨酸的添加量分别为0、0.2%、0.4%,分别对应Ⅰ、Ⅱ、Ⅲ组,Ⅰ组设为对照组,饲养周期为8周。试验结果表明,Ⅱ组、Ⅲ组的质量增长率显著高于对照组(P<0.05),其中Ⅱ组质量增长率最高(176.22±3.56)%;Ⅱ组的成活率显著高于对照组(P<0.05);各组的饲料系数与对照组比较无显著性差异(P>0.05),Ⅲ组饲料系数最小(2.60±0.13);各试验组之间的摄食量差异不显著(P>0.05),Ⅱ组的摄食量较对照组高12.50%。在本研究条件下,建议蛋氨酸的添加量为0.2%~0.4%。  相似文献   

16.
将体质量(10.82±0.17)g的赤点石斑鱼(Epinephelus akaara)幼鱼饲养在室内循环水、直径40cm×水深50cm池中,每个池中10(G_(10))、20(G_(20))和40(G_(40))尾,投喂常规饲料,每周测4次水质。8周的养殖结果表明,养殖时间和放养密度均影响赤点石斑鱼的生长、存活和水质。随着养殖时间的加长,成活率逐步降低,但整体保持在40.00%~90.00%之间,G_(10)组的成活率显著高于G_(40)组(P0.05)。试验结束时,赤点石斑鱼的增重率(WGR)变化在(47.97±1.98)~(68.02±2.34)%之间,特定生长率(SGR)变化在(0.70±0.33)~(0.93±0.42)%/d之间,两指标不同密度组差异显著(P0.05),而各组鱼的肝体比(HIS)、内脏比(VSI)和肥满度(CF)差异不显著(P0.05)。  相似文献   

17.
Abstract. A trial was conducted in 30 earthen ponds of approximately 100 m2 to evaluate the effects of nine supplemental feeds containing different protein: energy ratios on the growth and survival of Oreochromis niloticus (L.) in brackish water ponds. The formulated feeds had protein levels of 20%, 25% and 30% each at three energy levels of 3000 kcal, 3500 kcal and 4000 kcal. There was a control (diet 0) with no feeding and mean weight gain, growth rate, feed conversion rate and survival rate were determined. Fingerlings were acclimated from 0 to 29 ppt salinity before the trial and 20% of fish in each treatment were sampled every 30 days to monitor growth changes and adjust the feed. Mean weight gain was significantly different as follows: 30%:4000 kcal (102·21 g); 30% :3000 kcal (93·24g); 25%:3000 kcal (89·79g); 30%:3500 kcal (83·42g); 25%:4000 kcal (78·80g); 25%:3500 kcal (78·13g); 20%:3000 kcal (76·50g); 20%:4000 kcal (71·05g); 20%:3500 kcal (69·68 g) and control (59·11 g). Growth rates were significantly different (P < 0·05) and increased with increasing energy level at the 30% protein feeds but decreased at high energy levels in the 20% and 25% protein feeds. Feed conversion was significantly different due to interaction between protein and energy levels in the feeds, and was better at the 30%:3500 kcal feed, with a feed conversion of 1·55. Survival rates were not significantly different (P > 0·05).  相似文献   

18.
We investigated the effects of the stocking density of white shrimp (Litopenaeus vannamei) on shrimp and tilapia growth and nutrient conversion in an integrated closed recirculating system both with and without Nile tilapia (Oreochromis niloticus). A 2 × 3 factorial design involving tilapia presence/absence and shrimp stocking densities of 40, 80 and 120 m?2 was applied, using a tilapia:shrimp ratio of 0.025. There were no significant interactions between tilapia presence and shrimp stocking density in terms of shrimp growth performance or feed utilization. The presence of tilapia had no effect on the shrimp growth rate, survival rate or total weight gain (%). Shrimp growth declined significantly with increased shrimp stocking density, but the growth of tilapia was not significantly different among the three shrimp densities tested. The conversion of feed nitrogen and phosphorus into total harvested animal biomass was significantly higher in the presence than in the absence of tilapia. The nutrient conversion rate at the lowest shrimp density (40 m?2) was significantly higher than at the highest density tested (120 m?2).  相似文献   

19.
曾娟  高启平  苏宝辉 《淡水渔业》2021,51(2):107-112
为探讨池塘内循环养殖模式下不同营养水平饲料对建鲤(Cyprinus carpiovar)生长性能及养殖效益的影响,以常规池塘养殖营养水平饲料为对照,提高蛋白、脂肪含量,形成3个营养水平的试验饲料,其中粗蛋白水平分别为32%、34%、38%,粗脂肪水平分别为8%、10%、11%,分别记为F1、F2、F3组,每组设3个重复,在跑道池(22 m×5 m×2 m)中连续投喂初始平均体重为(85.26±0.98)g的建鲤幼鱼72 d。结果显示:饲料营养水平对建鲤的存活率、增重率、特定生长率和饲料系数无显著影响;F3组蛋白质效率显著低于F1、F2。饲料营养水平对建鲤肝体指数、肠体指数和肥满度无显著影响;F3组的空腔率显著低于F1组。对照组F1的养殖效益最高,随着饲料营养水平的提高,建鲤养殖效益下降。综上所述,在池塘内循养殖模式下,投喂蛋白含量在32%左右,脂肪含量在8%左右及适量限制性氨基酸的饲料,建鲤幼鱼生长性能和养殖效益最好。  相似文献   

20.
循环水养殖系统生物滤器负荷挂膜技术   总被引:4,自引:0,他引:4       下载免费PDF全文
循环水养殖系统启动运行前往往需要经过一段时间的生物膜预培养,使生物膜达到成熟稳定,从而保证系统的水质净化功能。本研究通过养殖试验,研究了生物滤器负荷挂膜的技术方法,以期实现生物膜的快速成熟和系统的快速启动。为此,构建了6组循环水系统组成的养殖车间,建成后立即投入试验生产。试验为期120 d,养殖种类为红鳍东方鲀,初始放养平均体重(632.5±2.26)g。期间,红鳍东方鲀平均增重29.91%,养殖成活率98.7%,养殖密度由(19.34±1.89)kg/m3增加到(32.17±3.40)kg/m3,投饵率由0.2%增加到0.5%–0.7%,每日换水量由50%逐渐减至10%。结果表明,在生物膜的生长期,通过对投饵量及新水补充量的有效调节,可以把养殖水体中的氨氮和亚硝氮浓度控制在安全范围以内,以保证养殖鱼类的生长。生物膜在50天左右达到完全成熟,此后便可依靠生物膜的净化作用将氨氮浓度控制在0.5?1.2 mg/L、亚硝氮浓度控制在0.2?0.5 mg/L、pH值控制在6.5–7.5、COD值低于4 mg/L、细菌总数控制在800–2100 cell/ml的安全范围内。利用生物滤器负荷挂膜技术,在合理调控水质指标的条件下,循环水养殖系统建成后可以立即投入生产,实现生物滤器挂膜与养殖生产的同步进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号