首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从2009年7月到2010年6月,我们用两种方法(bbe FluoroProbe和分光光度法)在千岛湖的三个采样点检测叶绿素a的定量分析。分光光度法需要精确的采样以及耗时的测量过程,但是bbe却可以直接用于水体进行连续的测量。这两种方法所测得的叶绿素a的额浓度具有显著的相关性。整个湖泊的相关性等式是Spectrophotometry = 0.6538 bbe + 0.752(R² = 0.6883),在同一深度的水体中相关系数分别是S1 : r = 0.990 , p<0.01 , n = 7 ; S4 : r = 0.988 , p<0.01 , n = 8 ; S9 : r = 0.979 , p<0.01 , n = 12。相同月份的相关系比相同深度的相关性较低,分别是S1: r=0.8102, P<0.01, n=11; S2: r=0.9297, P<0.01, n=11 ;S3: r=0.8919, P<0.01, n=11.通过我们的比较得出,分光光度法与bbe FluoroProbe都能作为检测水质的工具,但是需要根据测量水体的具体情况来进行选择。  相似文献   

2.
本实验在2012年9月~2013年9月期间,每季节采样一次,测定泼河水库叶绿素a(chl.a)的浓度,分析泼河水库叶绿素a的分布特征及其与总氮(TN)及总磷(TP)等环境因子的相关性。结果发现,泼河水库叶绿素a浓度的季节分布由高至低为夏季春季秋季冬季;空间分布为春季和夏季河流入库口叶绿素a的浓度高于其他水域;因子相关性分析表明,春季和夏季泼河水库叶绿素a浓度与水体中总磷的浓度相关,其中夏季相关性极其显著。  相似文献   

3.
叶绿素a是水环境评价和水生态研究中的一项重要指标。针对叶绿素a测定中前处理耗时长、提取不完全等问题,研究了液氮冻融前处理对叶绿素a测定效率的影响。以实验室培养的小球藻(Chlorella pyrenoidosa)和微囊藻(Microcystis aeruginosa)藻液为实验材料,通过单因素实验和正交实验设计,探究速冻时间、冻融次数、浸提时间等主要参数对提取效率的影响,并确定液氮冻融前处理测定叶绿素a的最优条件。结果表明,液氮冻融前处理测定叶绿素a的最优条件为速冻30 s、冻融4次、90%的丙酮浸提4 h,在此条件下,小球藻和微囊藻叶绿素a浓度测定相对标准偏差分别为0.57%和2.25%,变异系数CV分别为0.46%和1.84%。野外水样测定结果显示,与丙酮-研磨法、分光光度法(SL 88-2012)、分光光度法(HJ 897-2017)和反复冻融浸提法相比,液氮冻融前处理法的提取效率高于其他方法且测定结果相对偏差更小,浸提时间较其他4种方法缩短50%以上,其浸提效率达93%以上。液氮冻融前处理法对叶绿素a的提取效率明显高于其他方法且数据重现性较好,具有操作简单、结果准确、操作耗时短等特点。  相似文献   

4.
为了解包头市南海湖水体水质状况及富营养化趋势,于2017年4月-2018年3月,在南海湖中选取20个采样点,对水体中叶绿素a含量及主要营养盐进行测定,并对叶绿素a和营养盐含量进行相关系分析。结果表明:南海湖水体总氮和总磷指标均超过了地表水Ⅴ类标准。南海湖氮磷营养盐存在着时空差异,总氮和氨氮随季节变化明显,其含量均呈现冬季>秋季>夏季>春季;总磷的含量主要表现为秋季最高,春季最低;硝态氮的含量在四个季节差异不大。空间上各营养盐均呈现东部、北部高,西部、南部低的趋势。水体中叶绿素a含量的变化区间为21.94~40.92μg·L-1,时间上呈现秋季>夏季>春季>冬季。空间上呈现东北高、西南低的趋势,与氮磷营养盐的分布趋势相同。叶绿素a在四个季节中与总氮,氨氮,总磷均呈现显著正相关(P<0.05)。  相似文献   

5.
为探究沙湖水体叶绿素a的时空分布特征及其与水环境因子关系,2015-2017年冬季(1月)、春季(4月)、夏季(7月)、秋季(10月)对沙湖水体叶绿素a含量和常规水环境因子进行采样与检测,分析沙湖叶绿素a含量与环境因子之间的相关性,通过逐步回归法和通径分析探讨了时空性变化和季节性变化对叶绿素a含量的影响。结果表明,沙湖叶绿素a季节变化明显,夏季最高,冬春两季相对较低,最大值出现在2017年7月(夏季),最小值出现在2015年4月(春季),2017年叶绿素含量最高,年均值为18.94 μg/L,空间分布也存在明显差异。相关分析表明,总磷(TP)、化学需氧量(CODCr)、五日生化需氧量(BOD5)和透明度(SD)是影响沙湖叶绿素a含量的主要环境因子;逐步回归分析表明,不同季节、不同采样点影响沙湖叶绿素a含量的环境因子存在差异,有机污染物与氮磷营养盐是主要的影响因素;通径分析表明,化学需氧量和总磷的总决定系数(dij)分别为0.379和0.373,是影响沙湖叶绿素a含量最主要的两个环境因子;其中总磷对沙湖叶绿素a含量的直接作用较大,是对叶绿素a起决定性作用的限定性营养盐。  相似文献   

6.
为了探究人类活动对洱海水体富营养化进程的影响,2014年4月、7月、11月和2015年1月在洱海全湖设置36个采样点进行采样监测,研究洱海光学衰减系数(K)、透明度(SD)、浊度(Turb)和叶绿素a(Chl-a)的季节变化规律及其相关性,并分析沉水植物分布对光学特性的影响,以期为洱海富营养化治理和控制提供基本数据支持。结果表明,光学衰减系数的季节变化规律为春季(0.59 m-1)冬季(0.68 m-1)秋季(0.95 m-1)夏季(1.05 m-1);叶绿素a含量与光学衰减系数的季节变化规律相同,为春季(5.24μg/L)冬季(5.49μg/L)秋季(12.33μg/L)夏季(14.22μg/L);透明度季节变化规律为夏季(1.86 m)秋季(2.28 m)春季(3.00 m)冬季(3.07 m);浊度季节变化规律是春季(32.50 mg/L)冬季(32.52 mg/L)秋季(32.64 mg/L)夏季(32.70 mg/L)。光学衰减系数与透明度、浊度和叶绿素a均呈显著正相关(P0.01),相关系数分别为0.648、0.523和0.467;透明度与叶绿素a和浊度均呈显著负相关(P0.01),相关系数分别为0.497和0.564;浊度与叶绿素a显著正相关(P0.01),相关系数为0.241。叶绿素a在一定程度上会影响光学衰减系数,但不是其主要影响因素。在秋季和冬季,沉水植物区的水体光学衰减系数显著低于无沉水植物区(P0.05),但这种差异在春季和夏季不显著(P0.05)。在一年中的各季节,沉水植物区与无沉水植物区的水体透明度和叶绿素a含量均无显著差异(P0.05);沉水植物区的水体浊度显著低于无沉水植物区(P0.01)。  相似文献   

7.
为探究沙湖水体叶绿素a的时空分布特征及其与水环境因子关系,2015-2017年冬季(1月)、春季(4月)、夏季(7月)、秋季(10月)对沙湖水体叶绿素a含量和常规水环境因子进行采样与检测,分析沙湖叶绿素a含量与环境因子之间的相关性,通过逐步回归法和通径分析探讨了时空性变化对叶绿素a含量的影响。结果表明,沙湖叶绿素a季节变化明显,夏季最高,冬春两季相对较低,最大值出现在2017年7月(夏季),最小值出现在2015年4月(春季),2017年叶绿素a含量最高,年均值为18.94μg/L,空间分布也存在明显差异。相关分析表明,总磷(TP)、化学需氧量(COD_(Cr))、五日生化需氧量(BOD_5)和透明度(SD)是影响沙湖叶绿素a含量的主要环境因子;逐步回归分析表明,不同季节、不同采样点影响沙湖叶绿素a含量的环境因子存在差异,有机污染物与氮磷营养盐是主要的影响因子;通径分析表明,化学需氧量和总磷的总决定系数(d_(ij))分别为0.379和0.373,是影响沙湖叶绿素a含量最主要的两个环境因子;其中总磷对沙湖叶绿素a含量的直接作用较大,是对叶绿素a起决定性作用的限定性营养盐。  相似文献   

8.
监测了三峡水库小江回水区2008-2010年间的水环境状况,研究了水环境因子时空变化特征,以及水体水质、富营养化状态的变化趋势.结果表明:小江回水区大多数水环境因子在不同月份间、不同年度间有显著差异;各断面间水环境因子差异不显著;小江回水区总氮(TN)、总磷(TP)污染一直比较严重,但2008年175m试验性蓄水后小江回水区水质未呈现进一步恶化趋势;小江回水区总体呈现轻度富营养化水平,2009年、2010年的富营养化状况较2008年有所降低.叶绿素a与水环境因子间的相关关系分析发现,叶绿素a含量与溶解氧(DO)呈显著正相关,与透明度(SD)呈显著负相关;与叶绿素a含量关系密切的环境因子随季节发生变化.  相似文献   

9.
根据2009年7月至11月对白洋淀水产及畜禽养殖区的采样调查资料,分析了白洋淀不同养殖区的叶绿素a及溶解无机氮分布特点,以及它们与养殖模式的关系。结果显示,白洋淀叶绿素a及溶解无机氮有显著相关关系,其回归方程为:y=0.004 2 x+0.575 8;不同的养殖模式及投饵量是影响淀区水体溶解无机氮和叶绿素a的重要因素。  相似文献   

10.
本文监测了三峡水库小江回水区2008-2010年间的水环境状况,研究了水环境因子时空变化特征,以及水体水质、富营养化状态的变化趋势。结果表明:小江回水区不同月份间水环境因子有显著差异,但不同年度间差异不显著;各断面间水环境差异不显著;小江回水区TN、TP污染一直比较严重,但2008年175m试验性蓄水后小江回水区水质未呈现进一步恶化趋势;小江回水区总体呈现轻度-中度富营养化水平,2009年、2010年的富营养化水平较2008年有所降低。叶绿素a与水环境因子间的相关关系分析发现,叶绿素a含量与TN、COD、WT呈显著正相关,与SD呈显著负相关;与叶绿素a含量关系密切的环境因子随季节发生变化。  相似文献   

11.
氨氮的简易测定方法   总被引:2,自引:0,他引:2  
氨氮是水产育苗、养殖中需要密切关注的水质指标,氨氮过高会影响水产生物的生长发育、甚至造成水产生物的死亡,因此,养殖户需要经常对水体中氨氮含量进行测定。本方法以纳氏试剂法为基础,运用纯净水代替无氨水、目视比色法代替分光光度法,并对测定过程进行简化,是一种廉价、快速、简便、稳定的水体氨氮测定方法,方法测定结果与传统的纳氏试剂法相当一致,适合于水产养殖场水体中氨氮的测定。1材料与方法1.1仪器与试剂(1)普通天平、移液管、洗耳球;(2)市售596mL装纯净水;(3)称取24g氢氧化钠于空的纯净水瓶(596mL,下同),倒入约半瓶纯净水,冷却…  相似文献   

12.
三峡水库小江回水区叶绿素a与环境因子时空变化   总被引:1,自引:0,他引:1  
于2013年1-12月在小江水华暴发的敏感区域高阳断面开展了水文、营养盐、叶绿素a等指标长期、定点监测,分析库湾水体叶绿素a及环境因子的时空变化特征及其相互关系。结果表明高阳断面水体在1月、10-12月处于混合状态,3-8月则处于弱分层到稳定分层状态。水体在混合状态时各理化因子、营养盐及叶绿素a分层变化不显著;而处于分层状态时,各层水体氮磷营养盐呈现较显著差异,时间分布上冬季略高于夏季,干流倒灌对高阳断面营养盐的季节分布影响显著。叶绿素a浓度呈现明显的夏季高、冬季低的趋势,水体分层对叶绿素a垂向分布影响显著,当水体处于分层状态时,表层叶绿素浓度明显高于中、底层。高阳断面各层水体叶绿素a浓度与硝氮和可溶性磷酸盐呈显著负相关,表明营养盐是小江高阳叶绿素变化的限制因素。表层水体叶绿素a与硝氮、磷酸盐、溶解氧、透明度、水温、表底温差等呈显著相关(P<0.01),表明表层叶绿素a与环境因子相关性较强;中层叶绿素a与硝氮、总氮、总磷、磷酸盐、水温、透明度、水深、水体稳定系数等呈显著相关(P<0.01),表明水体的扰动是影响中层水体叶绿素a增长的关键因素之一;底层水体叶绿素a与硝氮(P<0.01)、磷酸盐(P<0.05)、水深(P<0.05)呈显著相关。  相似文献   

13.
通过在相邻两个池塘分别设置固定采样点,作为对照区(非养殖区)和实验区(海蜇养殖区),并在5月的中旬、7月中旬以及9月中旬(即海蜇放养前期、海蜇养殖期间(6月初至8月下旬)以及海蜇采收后),分别采样水样后测定溶解氧DO、氨氮NH_4~+-N、硝氮NO_3~--N以及叶绿素Chl a含量的变化情况,探讨海蜇养殖对池塘水体中溶解氧和营养盐的影响。结果表明,池塘实验点表层和中层DO在不同月份间均存在显著性差异(P0.05),7月份DO显著低于其他月份,这与水温升高、浮游生物耗氧及有机质分解加速有关。由于海蜇的扰动作用,7月份实验点底层DO显著高于对照点的(P0.05),而实验点表层和中层略低于对照点的(P0.05)。池塘实验点和对照点NH_4~+-N、Chl a含量在不同月份和不同水层间均存在显著性差异(P0.05)。由于海蜇对浮游生物的捕食作用,水体中藻类含量升高,因此7月份实验点表层和中层水体中Chl a含量显著高于对照点的(P0.05)。7月份和9月份池塘中NH_4~+-N显著高于5月份的,并且7月份实验点的NH_4~+-N显著高于对照点的(P0.05),均与海蜇扰动作用相关。夏秋季节水温上升,浮游植物大量繁殖生长,消耗大量的NO_3~--N,因而7月份和9月份NO_3~--N显著低于5月份的(P0.05),并且7月份实验点中层NO_3~--N显著低于对照点的(P0.05)。  相似文献   

14.
为了探究华阳河湖群叶绿素a浓度的季节动态与空间分布规律,2016年4月(春季)、7月(夏季)、10月(秋季)和2017年1月(冬季),对华阳河湖群叶绿素a的季节动态及环境因子进行调查,在龙感湖、黄大湖和泊湖分别设置9个(S_1~S_9)、8个(S_(10)~S_(17))和7个(S_(18)~S_(24))采样点,共计24个采样点;通过分层聚类法分析叶绿素a的时空分布特征,并运用主成分分析法探讨了华阳河湖群叶绿素a与环境因子的关系。结果显示,华阳河湖群水体叶绿素a浓度呈现明显的时空分布特征,叶绿素a年均值为7.18μg/L,变化范围0.27~66.61μg/L,最大值出现在2016年10月(秋季),最小值出现在2017年1月(冬季);叶绿素a浓度的季节变化呈现夏、秋季较高,春、冬季较低的动态特征。在空间变化上,叶绿素a浓度在龙感湖最高,其次是泊湖,黄大湖最低。运用分层聚类分析法将华阳河湖群的叶绿素a的时空特征分为三类;主成分分析表明,水体中营养盐是影响叶绿素a季节动态和空间分布的主要环境因子,总氮在3个湖泊中与叶绿素a显著正相关,总磷与叶绿素a在泊湖和黄大湖呈负相关,而在龙感湖呈正相关。研究表明,越冬水鸟的排泄物对叶绿素a的时空分布有重要影响。  相似文献   

15.
2013年1-12月在小江水华暴发的敏感区域高阳断面开展了水文、营养盐、叶绿素a等指标长期、定点监测,分析库湾水体叶绿素a及环境因子的时空变化特征及其相互关系。结果表明,高阳断面水体在1月、10-12月处于混合状态,3-8月则处于弱分层到稳定分层状态。水体处于混合状态时,各层营养盐浓度变化不显著,处于分层状态时,则呈现较显著差异;时间分布上,冬季氮磷营养盐浓度(TN:1.52~1.74 mg/L,TP:0.092~0.095 mg/L)略高于夏季(TN:1.16~1.56 mg/L,TP:0.037~0.085 mg/L),干流水体倒灌作用对其影响显著。叶绿素a浓度呈现夏季高、冬季低的趋势,水体分层对叶绿素a垂向分布影响显著;当水体处于分层状态时,表层叶绿素a浓度(18.56~92.23 mg/m~3)明显高于中、底层(2.54~21.56 mg/m~3)。营养盐为小江高阳叶绿素a变化的限制因素,各层水体叶绿素a浓度与硝氮和可溶性磷酸盐呈显著负相关。表层水体叶绿素a与环境因子相关性较强,叶绿素a与营养盐、溶解氧、透明度、水温、表底温差等呈极显著相关(P0.01);中层叶绿素a与营养盐、水温、透明度、水深、水体稳定系数等呈极显著相关(P0.01),表明水体扰动是影响中层水体叶绿素a增长的关键因素之一;底层水体叶绿素a与硝氮(P0.01)、磷酸盐(P0.05)、水深(P0.05)呈极显著或显著相关。  相似文献   

16.
根据2010年3月-12月对三峡水库小江沿岸水体的水质监测数据,分析总氮、总磷、化学需氧量和叶绿素a等水质因子的时空变化规律,以及叶绿素a与水质因子之间的相互关系,评价水体富营养化水平。结果表明:总氮、总磷、化学需氧量和叶绿素 a含量分别为1.980±0.119mg/L、0.114±0.018mg/L、9.520±1.748 mg/L和23.342±8.810 mg/L,小江沿岸水体呈现中度富营养化水平。叶绿素a与水质因子间的相关关系分析发现,叶绿素a含量与温度、pH、溶解氧、亚硝酸氮和化学需氧量显著相关,与总氮、总磷不具有显著相关性。这说明小江沿岸水体叶绿素a含量与总营养盐无关,而主要与水体所含的有机质含量有关。  相似文献   

17.
采用回归统计方法分析白洋淀水产养殖区水质监测数据,研究白洋淀浅水草型湖泊夏季水体叶绿素a与环境因子的相关性,建立相应的回归方程。研究表明,白洋淀浅水草型湖泊水体叶绿素a含量与水温、pH、DO、COD、高锰酸盐指数呈显著正相关;叶绿素a与NH_4~+-N、NO_3~--N呈负相关,与NO_2~--N无明显相关,与TN无显著正相关;而叶绿素a与TP呈一定的正相关,白洋淀浅水草型湖泊可能是磷限制性湖泊。  相似文献   

18.
高位虾池养殖过程主要理化因子的变化及水质评价   总被引:5,自引:0,他引:5  
研究了湛江东海岛2口凡纳滨对虾高位养殖虾池水体主要理化因子在养殖过程中的动态变化及其相互关系,并用营养状态质量法对该养殖场的水质状况进行评价.试验结果表明,养殖过程水体中DO、pH、温度和盐度波动较小、变化平缓,而COD、DOC、营养盐和叶绿素a的含量随养殖过程而上升.主要理化因子之间的相关关系复杂,但叶绿素a与营养盐之间存在显著的正相关关系.在养殖中后期,表征富营养化的NQI值大幅度升高,水体富营养化程度严重.  相似文献   

19.
为了探究抽水蓄能电站水位波动、营养物质时空分布以及浮游植物分布特性,分析水体营养状态及其成因,为后期控制水体富营养化提供指导。2014-2015年在浙江天荒坪抽水蓄能电站的上水库(S1)和下水库(S3-S4)设置4个采样点,获取相关的监测点数据,分析了水库水位、水体稳定性、营养盐以及叶绿素a的分布规律,讨论了水库水位剧烈波动对水体稳定、营养盐以及叶绿素a浓度的影响。结果表明:(1)天荒坪抽水蓄能电站水库水体稳定性较小,各监测点浮点频率均在0.2×10~(-4)s~(-2)以下。总氮、溶解性硅酸盐浓度较高,总氮范围在1.8~2.8 mg/L,已达到Ⅴ类水标准;硅酸盐浓度为3.30~8.00 mg/L;叶绿素a浓度较低,为1.60~6.24μg/L;(2)抽水蓄能电站水库水位频繁波动致使水体垂向掺混加强,混合层增大,水体在上、下库内滞留时间减短,致使游植物生长受到抑制,水体中叶绿素a浓度降低。大幅度水体交换、冲洗造成营养物质在一定程度上被稀释;(3)天荒坪抽水蓄能电站水库处于中营养状态,各监测点富营养化指数在30~40。总氮对水体富营养化贡献最大,基准指标叶绿素a贡献反而较小。抽水蓄能电站频繁水位波动稀释了水体中的营养物质,并限制了浮游植物的生长,减轻了水库的富营养化程度。  相似文献   

20.
以白洋淀养殖水体2009年夏季监测数据为依据,采用修正的卡森指数法(TSIM)对不同的养殖区域水体进行分析和讨论,其中修正卡森指数的评价结果为TSIM=67.62,已符合富营养化的标准。总磷、总氮含量与叶绿素a呈显著正相关关系,尤其总磷与叶绿素a的相关性更加显著,白洋淀浅水草型湖泊可能是一定程度的磷限制性湖泊。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号