首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
刺参增殖主要有二种方式。一种是选择适宜海区投放人工培养的刺参苗种;另一种是从其它水域向刺参增殖区移殖亲参。 下面,主要就选择适宜海区投入人工培育刺参苗种这一增殖技术浅述如下。 一、增殖区域的选择 1.天然种苗栖息密集的区域是最适宜场所。 2.海底倾斜度较小,潮差较大,底质泥沙混合但无淤泥,藻类丰富,岩礁及乱石较多的小海湾。  相似文献   

2.
皱纹盘鲍底播增殖投资少、成本低、经济效益显著,同时有利于恢复海底资源,现将我们的做法介绍如下。一、海区选择:皱纹盘鲍底播放流增殖海区应具备以下条件:(1)水深:3~5米为宜。(2)底质:以岩礁或卵石密布、褐藻从生的海区为宜。(3)水温:底层水温  相似文献   

3.
刺参浅海底播增殖,是针对一些适合刺参生长的海区,由于原来没有刺参或原有刺参资源已经遭到破坏,为恢复或增加海区刺参资源,而从外地移植亲参或苗种的一种仿自然、生态式的资源增殖模式,其增殖方式主要有两种:一是移植亲参;二是放流苗种。本试验选择的是放流苗种的增殖方式。  相似文献   

4.
在建成的人工渔礁群增养殖刺参,有利于修复渔业资源,调节海区的生态环境,净化鱼类、虾类的栖息、生长、发育、繁殖的场所,同时,因为刺参具有很高的营养价值和药用价值而为人们所青睐,所以开发利用人工渔礁进行增养殖刺参,不仅能增加海区的刺参资源量,提高海区的刺参产量,达到增殖渔业资源的目的,而且还增加了市场海珍品供应量,可以获得丰厚的利润.  相似文献   

5.
<正>随着刺参养殖业的发展,刺参的增养殖方法也逐渐多样化,由底播增殖、潮间带围堰养殖、池塘养殖、海上筏式养殖、海底沉笼养殖到人工控温集约化养殖,发展很快。刺参增养殖作为一个新兴的产业,为我国渔业结构的调整提供了新的途径。但就目前这些养殖模式来看,它们都只利用了底层的空间,而中上层水体未能充分利用,致使刺参的产量受到限制。  相似文献   

6.
近几年,刺参的价格居高不下,在北方沿海地区的不少地方,吸引着众多的投资者投资发展刺参增养殖,以满足人们不断增长的物质生活需要。但是,从事刺参增养殖产业并非一帆风顺,也存在着一定的风险,根据笔者的经验,影响刺参生长、成活的因素有如下几个方面:一、地域选择不论是潮间带筑坝投石养参、海底增殖,还是虾池养殖等方式,其地点的选择首先要求周围无工业、生活污水的污染,最好周围无化工厂或有大量的淡水注入,其次是海区潮流畅通且有涡流,水质清澈,海区有大量的海藻,如大叶藻、鼠尾藻、裙带、海带等。最好选择增养殖的地点原来就存在刺参资…  相似文献   

7.
刺参(Apostichopus japonicus Selenka)增殖是指在选定海区内,通过改善海区条件、投放种参和种苗等技术措施,增加或改善资源补充量,增加刺参资源,提高产量的活动。由于刺参营养价值高、移动性差、食物链短、适应性强等特点,是一种优良的增殖品种。  相似文献   

8.
在建成的人工渔礁群增养殖刺参,有利于修复渔业资源,调节海区的生态环境,净化鱼类、虾类的栖息、生长、发育、繁殖的场所,同时,因为刺参具有很高的营养价值和药用价值而为人们所青睐,所以开发利用人工渔礁进行增养殖刺参,不仅能增加海区的刺参资源量,提高海区的刺参产量,达到增殖渔业资源的目的, 而且还增加了市场海珍品供应量,可以获得丰厚的利润。  相似文献   

9.
<正> 刺参Stichopus japonicus Selenka 为食用海参类之上品,有很高经济价值。在我国自然分布最南至江苏连云港。它虽然是产量较大的一个品种,但目前我国刺参生产,仍处于天然海区采捕、人工育苗、海区投放增殖阶段,培苗和投放措施虽也收到增产的效果,但毕竟是人为控制的低级阶段;那  相似文献   

10.
1.巨藻夏孢子体海上暂养以1~2米水层生长最快。2.在自然海区,巨藻配子体发育适宜水温为13~15℃,培育水层以当时透明度的平均值为宜,水温偏低,(6.0℃以下)发育缓慢。在同一水温条件下,配子体发育快慢取决于培育水层的适宜与否。3.在秋、冬及春季都可进行人工采孢子,由于季节不同透明度变化很大,秋季采孢子以深水层(8~10米)萌发率最低,甚至全部死亡。春季则相反,浅水层(6米以上)几乎全部死亡。4.自然海区培育巨藻幼苗,采孢子时期以10月中旬为宜,这时的水温、透明度均有利于巨藻幼苗的发生和生长。附着基质以竹条和石块最佳。  相似文献   

11.
The effects of thermal amplitudes of diel fluctuating temperature on growth and oxygen consumption of the juvenile sea cucumber Apostichopus japonicus (Selenka) were studied at the average temperatures of 15 and 18°C with three diel different fluctuating amplitudes of ±2, ±4 and ±6°C. The optimum thermal amplitudes for growth of the juvenile sea cucumber at the sizes of this experiment, at average temperatures of 15 and 18°C, were estimated to be ±1.38 and ±1.67°C respectively. In the constant temperature regimes, the growth rate at 15°C was higher than that at 18°C. However, the growth rate at 18±2°C was higher than that at 15±2°C. The results from this study suggested that fluctuating temperatures enhanced the optimum temperature for the growth of sea cucumbers compared with that at constant temperatures. Therefore, accurate predictions of the optimum temperature of sea cucumbers in the natural environment, in which water temperatures fluctuate daily and seasonally, should be made from data obtained at fluctuating temperatures.  相似文献   

12.
The feasibility of co‐culturing the sea cucumber Holothuria leucospilota Brandt in a subtropical fish farm was investigated in a field study. Sea cucumbers were cultured in the fish farm in cages suspended at 4 m deep (suspended culture) and directly on the seafloor (bottom culture). The survival and growth of the sea cucumbers were monitored twice during the 3‐month, summer experimental period (May 26–August 14, 2010). Results showed that the suspension‐cultured sea cucumbers exhibited excellent survival rate (100%) during the whole study period. There also occurred no mortality in the bottom‐cultured sea cucumbers during the first culture period (May 26–July 13); but all these died from anoxia caused by water column stratification during the second culture period (July 14–August 14). The specific growth rate of the bottom‐cultured sea cucumbers (1.05 ± 0.21 % day?1) was nearly double that of the suspended culture animals (0.57 ± 0.21 % day?1) during the first culture period, and the growth rates of the suspended culture sea cucumbers in the second culture periods (0.46 ± 0.24 % day?1) was only a little lower than that of the first period. The sea cucumbers H. leucospilota could ingest and assimilate sediment with high organic matter content with an average assimilation efficiency of 14.9 ± 3.9%. This study indicated that fish farm detritus can be effectively used as a food source for the sea cucumber and that it can be turned into a valuable secondary crop in the form of the sea cucumber biomass.  相似文献   

13.
2014年6月,按照海洋资源调查规范,调查北黄海大连沿岸的刺参Apostichopus japonicas原产区中的旅顺口区塔河湾附近海域和大连金州新区城山头海滨地貌保护区海域内大型底栖动物的种类、密度、生物量,计算优势种、生物多样性和群落物种相似性,探讨其修复策略。结果表明,两处海域刺参生境大型底栖动物群落结构基本相同,优势种组成相似,优势类群均为软体动物;物种组成因饵料条件及周边海域底质不同呈现差异性分化;两处海域内海星类与刺参的密度比分别约为1∶3和1∶1,海星类与刺参的生物量比值与密度比相同;海星类与海胆类密度比均约为1∶1和3∶1,海星类与刺参及海胆类密度和的比分别为1∶4和1∶1,海胆类与刺参密度比均约为1∶2。根据调查结果认为刺参生境和增养殖区的养护、修复策略为:(1)多种共养,以参为主;(2)控制海星,适度增殖海胆;(3)提高初级生产力,降低污染。  相似文献   

14.
辽东湾仿刺参养殖池塘底质环境季节变化   总被引:1,自引:0,他引:1  
2013年夏季、秋季和2014年冬季、春季采集辽东湾底充氧和未充氧的仿刺参养殖池塘沉积物样品,2014年春季采集仿刺参发病池塘沉积物样品,分别检测了-5~0cm、-10~-5cm、-15~-10cm 3个层面沉积物的温度、硫化物含量、pH、氧化还原电位,同时监测各池塘表、底层海水温度、盐度、溶解氧、pH、氧化还原电位,探讨两种池塘沉积物底质环境的季节变化规律及春季仿刺参发病池塘与两种未发病池塘沉积物4个指标的变化规律。结果发现,底充氧池塘和未充氧池塘沉积物均呈弱碱性和还原性,两种池塘不同深度沉积物硫化物含量、pH、氧化还原电位的季节变化差异显著,其中,底充氧池塘沉积物各季节硫化物含量显著低于未充氧池塘;池塘沉积物的氧化还原环境与底层海水理化环境存在相关性。与未发病池塘相比,春季发病池塘沉积物呈弱酸性,氧化还原环境为弱还原特性,硫化物含量显著高于未发病池塘。上述结果为仿刺参池塘生态健康养殖和科学管理提供参考。  相似文献   

15.
2013-2015年对刺参(Apostichopus japonicus)养殖池塘进行水质监测,结合生态学、组织学观察和消化酶测定,研究了高温期“高抗1号”新品系刺参的抗逆特性与生理变化.结果显示,“高抗1号”新品系刺参进入夏眠的温度分别为29.13℃、30.47℃、29.68℃,结束夏眠温度分别为24.55℃、24.94℃、24.16℃.非选育刺参进入夏眠的温度分别为27.08℃、28.61℃、27.93℃,结束夏眠温度分别为21.33℃、21.83℃、22.06℃.“高抗1号”新品系刺参比非选育刺参的进入夏眠临界温度平均提高了1.89℃,结束夏眠的临界温度提高了2.81℃,每年夏眠期平均缩短了26.7 d.夏眠期间,刺参的消化道萎缩、变短、变细,颜色变深,肠道内无食物,其肠长、肠重和肠壁比均变小,肠道绒毛膜丰度降低,肠脊高度减小至140μm左右;呼吸树萎缩、体积变小.夏眠过后,刺参消化道恢复正常,肠长、肠重和肠壁比变大,肠道绒毛膜丰度升高,肠脊高度增至640-660 μm.另外,随着水温升高,“高抗1号”新品系刺参和非选育刺参的淀粉酶活力、胰蛋白酶活力整体上均呈下降趋势;而夏眠过后,2种酶活力又显著上升.在同等温度条件下,新品系刺参的淀粉酶活力和胰蛋白酶活力均高于非选育刺参.研究表明,“高抗1号”新品系刺参与非选育刺参相比,对高温的耐受力表现出较大的提升,每年刺参生长期增加近30 d.这种优良性状为刺参抵御高温、提高养殖成活率、增产增收奠定了基础,亦对开展刺参健康养殖、良种推广提供了技术参考.  相似文献   

16.
在水温17~18℃和盐度30条件下,将初始体质量为(4.09±0.26)g的仿刺参饲养在15个循环水玻璃缸(容积100L)中,投喂在基础饲料中添加0%、3%、6%、9%和12%浒苔的饲料,于投喂后第7、14、28d和42d分别检测仿刺参的生长指标、消化酶(蛋白酶、淀粉酶、纤维素酶和褐藻酸酶)和体腔液免疫酶(溶菌酶、酸性磷酸酶、碱性磷酸酶和超氧化物歧化酶)的活性。试验结果表明,投喂试验饲料后第14、28d和42d:(1)饲料中添加6%和9%浒苔组仿刺参的特定生长率显著增加(P0.05),在不同取样时间其他添加组仿刺参的的特定生长率与对照组差异不显著(P0.05);(2)饲料中浒苔添加量为6%和9%试验组仿刺参的4种消化酶比活力显著高于对照组(P0.05),其中6%组仿刺参的消化酶比活力最高;(3)饲料中浒苔添加量为6%时,仿刺参溶菌酶活力显著高于对照组及其他试验组(P0.05);饲料中浒苔添加量为6%和9%时,仿刺参碱性磷酸酶活力和超氧化物歧化酶活力显著高于对照组及其他试验组(P0.05);添加浒苔可以显著提高酸性磷酸酶活力,至第42d,试验组酸性磷酸酶活力高于对照组(P0.05),且浒苔添加量为6%时活力最高。在本试验条件下,饲料中添加浒苔可以提高仿刺参的特定生长率、消化酶活力及免疫力,浒苔的最适添加量为6%~9%。  相似文献   

17.
The bottom culture of southward‐transplanted sea cucumber Apostichopus japonicus in a subtropical fish farm was investigated in a field study at Dapeng Cove, Daya Bay, from January 5–August 5 2011, with the aim of finding the ideal period for culturing A. japonicus in fish farms, and developing an integrated multi‐trophic aquaculture (IMTA) in southern China. Results showed that the bottom‐cultured sea cucumbers survived well (100%) before summer, survival rates decreased to 65.00 ± 21.21% in July, and all animals had died at the end of the study. Specific growth rates of the sea cucumbers were high during winter (1.05 ± 0.03% d?1), decreased in early spring (0.44 ± 0.11% d?1) and became negative in the following months. Growth rate was mainly influenced by water temperature, dissolved oxygen and sulphide content; the anoxia caused by water column stratification at the seafloor in the summer were the main causes of mass mortality. Our results indicate that bottom culture in the temperate season (winter and spring, optimally from late November to early April) is a viable way to rear the deposit feeder A. japonicus underneath a subtropical fish farm.  相似文献   

18.
盐度和溶解氧对刺参非特异性免疫酶活性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
测定了不同盐度(20、25、30、35、40)和不同溶氧水平(充空气,DO 7~9mg/L)充纯氧,DO15~20mg/L;不充气,DO 2~5mg/L)对刺参体腔液中酸性磷酸酶(ACP)、碱性磷酸酶(AKP)、溶菌酶(LZM)和超氧化物歧化酶(SOD)活性变化的影响。盐度试验结果表明,盐度急性变化会引起刺参体腔液ACP、AKP、LZM活性的升高和SOD活性降低,其中第10天时盐度对酶活性的影响最大。溶氧试验显示,过饱和溶氧(DO 15~20mg/L)可使刺参体腔液ACP、AKP、LZM、SOD活性维持在较高水平,不充气组(DO 2~5mg/L)刺参体腔液中ACP、AKP、LZM活性出现短暂升高。恢复性试验中,盐度20、25组对AKP活性和盐度20、40组对SOD活性的影响未恢复到初始水平,其余实验组均能恢复至初始水平,说明低盐对刺参免疫力的影响较大。充纯氧组刺参的AKP活性显著高于充空气组,表明高溶解氧水平在一定程度上提高了刺参免疫力。  相似文献   

19.
The Baltic Sea is a stratified, semienclosed sea typified by a low-salinity surface layer and a deep saline layer of varying volume, salinity, temperature and oxygen concentration. The relationships between these oceanographic factors and the distribution of Baltic cod are presented, utilizing results from a survey carried out during the 1995 spawning period in the Bornholm Basin, at present the main spawning area of this stock. Cod distribution, abundance and population structure were estimated from hydroacoustic and trawl data and related to hydrographic parameters as well as to bottom depth. In the central basin, cod were aggregated in an intermediate layer about 15 m thick. This area of peak abundance was defined at its upper limit by the halocline and at the lower limit by oxygen content. The majority of individuals caught in the basin centre were in spawning or pre-spawning condition with a high proportion of males to females. On the basin slopes, aggregations of cod were found near the bottom. These individuals were mainly immature and maturing stages with an increasing proportion of females to males with size. Salinity and oxygen conditions were found to be the major factors influencing the vertical and horizontal distribution of adult cod. Abundance of immature cod was also positively related to decreasing bottom depths. The effect of temperature was minor. The observed size- and sex-dependent spawning aggregation patterns, in association with habitat volume and stock size, may influence cod catchability and thereby the assessment and exploitation patterns of this stock.  相似文献   

20.
为探明低氧胁迫对刺参(Apostichopus japonicus)抗氧化能力的影响以及刺参的低氧逆境响应机制,给低氧环境条件下的刺参养殖提供指导,本研究通过设置低氧胁迫实验,将刺参在水体低氧[(2.0±0.2) mg/L]8 h 处理后恢复常氧[(7.0±0.2) mg/L]2.5 h,取低氧和常氧不同时间段的刺参肌肉、呼吸树和消化道组织,对各组织的乳酸(LD)、丙二醛(MDA)和抗氧化酶系等应激参数进行测定和变化趋势分析。结果显示,与对照组相比,在低氧胁迫8 h 内,随着低氧暴露时间的延长,刺参肌肉、呼吸树和消化道等组织中的 LD 含量、抗氧化能力(T-AOC)、过氧化氢酶(CAT)、谷胱甘肽-S-转移酶(GST)活力显著上升;超氧化物歧化酶(SOD)活力显著下降;肌肉组织中的 MDA 含量显著降低,呼吸树和消化道中的 MDA 含量显著上升。在恢复常氧阶段,各氧化应激指标逐渐恢复到正常水平。低氧胁迫使刺参的有氧代谢减弱,无氧代谢增强,以维持机体能量需求。低氧胁迫造成刺参机体各种应激生化指标上升或下降,这是机体为适应低氧环境刺激而作出的一种抗氧化策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号