首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
Oxygen minimum zones (OMZs) below near‐surface optimums in the eastern tropical seas are among the largest contiguous areas of naturally occurring hypoxia in the world oceans, and are predicted to expand and shoal with global warming. In the eastern tropical Pacific (ETP), the surface mixed layer is defined by a shallow thermocline above a barrier of cold hypoxic water, where dissolved oxygen levels are ≤3.5 mL L?1. This thermocline (~25–50 m) constitutes a lower hypoxic habitat boundary for high oxygen demand tropical pelagic billfish and tunas (i.e., habitat compression). To evaluate similar oceanographic conditions found in the eastern tropical Atlantic (ETA), we compared vertical habitat use of 32 sailfish (Istiophorus platypterus) and 47 blue marlin (Makaira nigricans) monitored with pop‐up satellite archival tags in the ETA and western North Atlantic (WNA). Both species spent significantly greater proportions of their time in near‐surface waters when inside the ETA than when in the WNA. We contend that the near‐surface density of billfish and tunas increases as a consequence of the ETA OMZ, therefore increasing their vulnerability to overexploitation by surface gears. Because the ETA OMZ encompasses nearly all Atlantic equatorial waters, the potential impacts of overexploitation are a concern. Considering the obvious differences in catchability inside and outside the compression zones, it seems essential to standardize these catch rates separately to minimize inaccuracies in stock assessments for these species. This is especially true in light of global warming, which will likely exacerbate future compression impacts.  相似文献   

2.
Vertical habitat use of sailfish (Istiophorus platypterus) was evaluated using pop‐up satellite archival tag data from the eastern tropical Atlantic, western North Atlantic, and eastern tropical Pacific. Data included Argos transmitted depth, temperature, and light level frequency histograms binned at 1–8‐h intervals, and four recovered pop‐up satellite archival tags that provided high resolution archival data recorded at 30‐s intervals. We tabulated the proportions of time spent within each degree of water temperature relative to the surface temperature (Delta T) and proportions of time at temperature, as these are major input variables for habitat standardization models used in stock assessment procedures. Frequency distributions were calculated for daylight, darkness, and twilight for each of the three regions and for all regions combined. Vertical habitat envelopes indicated greater use of deeper strata in the western North Atlantic, compared to the hypoxia‐based habitat compressed regions of the eastern Atlantic and Pacific. However, there were no significant differences in Delta T distributions when comparing the three regions, affirming this metric for its application in habitat standardization models.  相似文献   

3.
The blue marlin (Makaira nigricans) is a highly migratory pelagic predator of tropical and subtropical seas. Information on the habitat use of marine species is fundamental to understanding their ecology and population dynamics and is needed to inform responsible management strategies. Using a long‐term satellite tagging data set from The International Game Fish Association Great Marlin Race, we examined habitat use and how oxygen and temperature influence the horizontal and vertical distributions of blue marlin in the Central Pacific. Blue marlin primarily occurred in warm waters (26–30°C) and exhibited a diel bimodal depth distribution across the 5‐year data record (2009–2013), with fish spending the majority of their time near the surface at night and at deeper depths during the day (25–100 m). The depth distribution of blue marlin was limited in areas where low oxygen and/or temperature conditions occur closer to the surface, with the extent of habitat compression being greatest when both oxygen and temperature were limiting. The migrations of blue marlin appeared restricted during the 2010 La Niña, when increased equatorial upwelling resulted in an extension of the cold, low oxygen waters of the cold tongue into the Central Pacific, creating a barrier to the trans‐equatorial migrations that occurred during all other tagging years. If the frequency and intensity of La Niña events increases and the oxygen minimum layer continues to expand as has been predicted under certain climate change scenarios, the migratory behavior and habitat availability of blue marlin may be impacted.  相似文献   

4.
The blue shark (Prionace glauca) is the most frequently captured shark in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. As part of cooperative scientific efforts for fisheries and biological data collection, information from fishery observers, scientific projects and surveys, and from recreational fisheries from several nations in the Atlantic and Indian Oceans was compiled. Data sets included information on location, size and sex, in a total of 478,220 blue shark records collected between 1966 and 2014. Sizes ranged from 36 to 394 cm fork length. Considerable variability was observed in the size distribution by region and season in both oceans. Larger blue sharks tend to occur in equatorial and tropical regions, and smaller specimens in higher latitudes in temperate waters. Differences in sex ratios were also detected spatially and seasonally. Nursery areas in the Atlantic seem to occur in the temperate south‐east off South Africa and Namibia, in the south‐west off southern Brazil and Uruguay, and in the north‐east off the Iberian Peninsula and the Azores. Parturition may occur in the tropical north‐east off West Africa. In the Indian Ocean, nursery areas also seem to occur in temperate waters, especially in the south‐west Indian Ocean off South Africa, and in the south‐east off south‐western Australia. The distributional patterns presented in this study provide a better understanding of how blue sharks segregate by size and sex, spatially and temporally, and improve the scientific advice to help adopt more informed and efficient management and conservation measures for this cosmopolitan species.  相似文献   

5.
We are developing a spatial, multigear, multispecies population dynamics simulation model for tropical tunas in the Pacific Ocean. The model is age-structured to account for growth and gear selectivity. It includes a tuna movement model based on a diffusion–advection equation in which the advective term is proportional to the gradient of a habitat index. The monthly geographical distribution of recruitment is defined by assuming that spawning occurs in areas where sea surface temperature is above 25°C. During the first 3 months of their life, simulated tunas are transported by oceanic currents, after which movement is conditioned by gradients in the habitat index. Independent estimates of natural mortality rates and population size from large-scale tagging experiments carried out by the Secretariat of the Pacific Community are used in the simulations. The habitat index consists of components due to forage density and sea surface temperature, both of which are suspected to play major roles in determining tuna distribution. Because direct observations of forage are not available on a basin scale, we developed a submodel to simulate the surface tuna forage production (Lehodey et al ., 1998). At present, only skipjack ( Katsuwonus pelamis ; a surface tuna species caught by purse seine and by pole-and-line) is considered, at a 1°-square resolution and on a monthly climatological time series. Despite the simplicity of the model and the limitations of the data used, the simulation model is able to predict a distribution of skipjack catch rates, of the different fleets involved in the fishery, that is fairly consistent with observations.  相似文献   

6.
The physical environment directly influences the distribution, abundance, physiology and phenology of marine species. Relating species presence to physical ocean characteristics to determine habitat associations is fundamental to the management of marine species. However, direct observation of highly mobile animals in the open ocean, such as tunas and billfish, is challenging and expensive. As a result, detailed data on habitat preferences using electronic tags have only been collected for the large iconic, valuable or endangered species. An alternative is to use commercial fishery catch data matched with historical ocean data to infer habitat associations. Using catch information from an Australian longline fishery and Bayesian hierarchical models, we investigate the influence of environmental variables on the catch distribution of yellowfin tuna (Thunnus albacares). The focus was to understand the relative importance of space, time and ocean conditions on the catch of this pelagic predator. We found that pelagic regions with elevated eddy kinetic energy, a shallow surface mixed layer and relatively high concentrations of chlorophyll a are all associated with high yellowfin tuna catch in the Tasman Sea. The time and space information incorporated in the analysis, while important, were less informative than oceanic variables in explaining catch. An inspection of model prediction errors identified clumping of errors at margins of ocean features, such as eddies and frontal features, which indicate that these models could be improved by including representations of dynamic ocean processes which affect the catch of yellowfin tuna.  相似文献   

7.
Highly productive surface waters and hypoxic (dissolved oxygen, DO ≤ 2.0 mg L?1) bottom waters develop seasonally on the northwestern Gulf of Mexico continental shelf due to nutrient and freshwater inputs from the Mississippi‐Atchafalaya River system. We investigated the spatial distribution of the cownose ray (Rhinoptera bonasus), a highly mobile, bentho‐pelagic species that is a seasonal resident of the shelf, in relation to surface chlorophyll, bottom‐water hypoxia, and other environmental variables (salinity, temperature, depth). We used synoptic trawl and aerial surveys to investigate ray distributions at both shelfwide (100–1000s km) and local (5–50 km) spatial scales. Shelfwide sampling indicated that rays were associated with regions of high surface chlorophyll and low bottom salinity and DO, conditions characterizing the Mississippi‐Atchafalaya plume region. Local sampling in and around the hypoxic zone indicated that rays preferred habitats where bottom waters were hypoxic but they primarily occupied normoxic (DO > 2.0 mg L?1) waters above the bottom hypoxic layer. Stomach fullness and diet composition were similar between rays sampled in habitats with hypoxic versus normoxic bottom waters. These results indicate that cownose rays are strongly associated with riverine‐influenced regions of the shelf and preferentially use habitats with hypoxic bottom waters, perhaps for benthic foraging. Collectively, our results highlight the importance of considering the responses of mobile species to enhanced productivity and to hypoxia‐induced habitat degradation, which are both the products of coastal eutrophication.  相似文献   

8.
金枪鱼人工集鱼装置(Fish Aggregation Devices,FADs)分为漂流式和锚泊式两种,人工集鱼装置可以吸引热带金枪鱼类和其他中上层鱼类,在全球范围内支持了数千艘渔船的捕捞作业,大幅提高了捕捞效率和渔获量。但大规模投放的人工集鱼装置被认为会对金枪鱼种群和中上层生态系统造成潜在的生态影响:可能会对金枪鱼的集群、摄食、健康、生长、洄游、死亡等生活史活动产生负面影响,从而导致种质衰退;另一方面,兼捕多种硬骨鱼类、鲨鱼、蝠鲼、海龟等非目标鱼种也可能扰动大洋中上层生态系统的平衡。但是,对于人工集鱼装置生态影响的评估在不同类型不同海域的研究结果中存在矛盾并无法确定。本文梳理归纳了过去30年中人工集鱼装置生态影响评估的相关研究进展,在此基础上展望了今后研究的改进方向,以期为人工集鱼装置生态影响的研究和管理提供参考。  相似文献   

9.
Swordfish are highly specialized top‐level predators that have been challenging to study. In this paper, data from 31 pop‐up satellite archival tags attached to swordfish from (i) the eastern Pacific, (ii) central Pacific, and (iii) western North Atlantic‐Caribbean were analyzed. Common across locations was a pronounced diel vertical pattern with daytime hours spent primarily below the thermocline and nighttime hours spent in warmer waters, close to the surface. One exception to this pattern was periodic daytime basking events which were most common in cooler waters off California. Maximum daytime depths were significantly correlated with light penetration as measured by the diffuse attenuation coefficient at 490 nm. Temperature did not appear to influence daytime depths, and swordfish tolerated both extremely low temperatures (4°C) and rapid and dramatic temperature changes (>20°C). Temperature did appear to influence the nighttime depths in the Pacific where fish typically remained in the surface mixed layer. In contrast, in the warm tropical Atlantic this was not the case, and nighttime depths were much deeper. In all areas, nighttime depth increased around the full moon. Given the parallels between the vertical movement patterns of swordfish and those of the deep sound scattering layer we suggest that swordfish vertical distribution patterns, especially during daytime, are influenced largely by resource availability. At night, when swordfish are typically targeted by fisheries, both ambient light and temperature influence movements. Understanding vertical movement patterns of swordfish can help evaluate gear vulnerability, improve population assessments, and potentially reduce fisheries bycatch.  相似文献   

10.
拟锥齿鲨(Pseudocarcharias kamoharai)是金枪鱼延绳钓渔业中较常见的兼捕物种。它处于海洋生态结构的顶端,对海洋生态系统的稳定和多样性起着非常重要的作用。根据我国金枪鱼渔业国家观察员2011~2015年在热带大西洋海域(6.38°S~15.17°N、42.02°W~18.53°W)调查时采集的1 426 ind拟锥齿鲨和2006~2015年在热带太平洋海域(16.88°S~10.85°N、148.71°E~96.80°W)调查时采集的1 037 ind拟锥齿鲨,按不同性别对其生物学特征进行初步研究和比较。结果表明:热带太平洋、热带大西洋两海域拟锥齿鲨雄性和雌性之间在平均叉长、优势叉长方面均存在显著性差异(P0.05),热带太平洋海域的拟锥齿鲨优势叉长和平均叉长值更大;两洋区雄性和雌性拟锥齿鲨叉长与全重关系均存在显著性差异(P0.05);两洋区拟锥齿鲨的雌雄性比分别为1∶0.80和1∶1.71,具显著性差异(P0.05);在拟锥齿鲨的摄食等级、肝重指数和繁殖特征上两洋区无显著性差异(P0.05)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号