首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Canopy‐forming macroalgae can construct extensive meadow habitats in tropical seascapes occupied by fishes that span a diversity of taxa, life‐history stages and ecological roles. Our synthesis assessed whether these tropical macroalgal habitats have unique fish assemblages, provide fish nurseries and support local fisheries. We also applied a meta‐analysis of independent surveys across 23 tropical reef locations in 11 countries to examine how macroalgal canopy condition is related to the abundance of macroalgal‐associated fishes. Over 627 fish species were documented in tropical macroalgal meadows, with 218 of these taxa exhibiting higher local abundance within this habitat (cf. nearby coral reef) during at least one life‐history stage. Major overlap (40%–43%) in local fish species richness among macroalgal and seagrass or coral reef habitats suggest macroalgal meadows may provide an important habitat refuge. Moreover, the prominence of juvenile fishes suggests macroalgal meadows facilitate the triphasic life cycle of many fishes occupying diverse tropical seascapes. Correlations between macroalgal canopy structure and juvenile abundance suggests macroalgal habitat condition can influence levels of replenishment in tropical fish populations, including the majority of macroalgal‐associated fishes that are targeted by commercial, subsistence or recreational fisheries. While many macroalgal‐associated fishery species are of minor commercial value, their local importance for food and livelihood security can be substantial (e.g. up to 60% of landings in Kenyan reef fisheries). Given that macroalgal canopy condition can vary substantially with sea temperature, there is a high likelihood that climate change will impact macroalgal‐associated fish and fisheries.  相似文献   

2.
Marine ecology seeks to understand the factors that shape biological communities. Progress towards this goal has been hampered by habitat‐centric approaches that ignore the influence of the wider seascape. Coral reef fishes may use non‐reef habitats (e.g. mangrove and seagrass) extensively, yet most studies have focused on within‐reef attributes or connectivity between reefs to explain trends in their distribution and abundance. We systematically review the evidence for multihabitat use by coral reef fishes across life stages, feeding guilds and conservation status. At least 670 species of “coral reef fish” have been observed in non‐reef habitats, with almost half (293 species) being recorded in two or more non‐reef habitats. Of the 170 fish species for which both adult and juvenile data were available, almost 76% were recorded in non‐reef habitats in both life stages. Importantly, over half of the coral reef fish species recorded in non‐reef habitats (397 spp.) were potential fisheries targets. The use of non‐reef habitats by “coral reef” fishes appears to be widespread, suggesting in turn that attempts to manage anthropogenic impacts on fisheries and coral reefs may need to consider broader scales and different forms of connectivity than traditional approaches recommend. Faced with the deteriorating condition of many coastal habitats, there is a pressing need to better understand how the wider seascape can influence reef fish populations, community dynamics, food‐webs and other key ecological processes on reefs.  相似文献   

3.
Predicting the impacts of ocean warming and acidification on marine ecosystems requires an evolutionary perspective because, for most marine species, these environmental changes will occur over a number of generations. Acclimation through phenotypic plasticity and adaptation through genetic selection could help populations of some species cope with future warmer and more acidic oceans. Coral reef species are predicted to be some of the most vulnerable to climate change because they live close to their thermal limits. Yet, their evolutionary history may indicate that they possess adaptations that enable them to cope with a high CO2 environment. Here, we first explore the evolutionary history of reef fishes and how their history has shaped their physiological adaptations to environmental temperatures and pCO2. We examine current‐day thermal and CO2 environments experienced by coral reef fishes and summarize experimental studies that have tested how they respond to elevated temperatures and pCO2 levels. We then examine evidence for acclimation and adaptation to projected ocean warming and acidification. Indeed, new studies have demonstrated the potential for transgenerational plasticity and heritable genetic variation that would allow some fishes to maintain performance as the oceans warm and become more acidic. We conclude by outlining management approaches – specifically those that can help preserve genetic variation by maintaining population size – to enhance the potential for genetic adaptation to climate change.  相似文献   

4.
Climate change is resulting in rapid poleward shifts in the geographical distribution of many tropical fish species, but it is equally apparent that some fishes are failing to exhibit expected shifts in their geographical distribution. There is still little understanding of the species‐specific traits that may constrain or promote successful establishment of populations in temperate regions. We review the factors likely to affect population establishment, including larval supply, settlement and post‐settlement processes. In addition, we conduct meta‐analyses on existing and new data to examine relationships between species‐specific traits and vagrancy. We show that tropical vagrant species are more likely to originate from high‐latitude populations, while at the demographic level, tropical fish species with large body size, high swimming ability, large size at settlement and pelagic spawning behaviour are more likely to show successful settlement into temperate habitats. We also show that both habitat and food limitation at settlement and within juvenile stages may constrain tropical vagrant communities to those species with medium to low reliance on coral resources.  相似文献   

5.
  • 1. A detailed study on the spatial and temporal patterns of reef fish assemblages associated with non‐reefal coral communities at A Ma Wan (AMW) and A Ye Wan (AYW) in Tung Ping Chau, Hong Kong, China, was carried out using an underwater visual census method from January 1998 to December 1999.
  • 2. The study identified a total of 106 species (76 genera in 39 families) of fish in the study sites, in which 88 species were recorded in AMW and 78 species in AYW. Seasonal patterns in the abundance and species richness of all reef fishes and most of the frequently encountered families/trophic groups in both study sites were observed. Seasonal fluctuation of macroalgae, the influence of recruitment of larvae, and the possible seasonal variation in the behaviour of fish may all contribute to these observed seasonal patterns.
  • 3. Multidimensional scaling (MDS) ordinations demonstrated that there were spatial variations in the fish community structures within and between sites. Such spatial patterns were possibly related to the spatial variation of the coral community structures in the study sites. The ordinations also showed that the fish community structures in the study sites were not seasonally stable. Such temporal instability of the fish community structures may be partly due to habitat isolation among the fish communities around the island.
  • 4. These results imply that preservation and enhancement of habitat connectivity of the coral communities should be one of the main conservation strategies for the reef fish communities of Tung Ping Chau, and those of Hong Kong in general. This strategy may be equally applicable to other non‐reefal coral communities elsewhere around the world.
Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Yohei  NAKAMURA  Mitsuhiko  SANO 《Fisheries Science》2004,70(5):788-803
ABSTRACT:   To clarify faunal overlap between a seagrass bed and adjacent coral and sand areas, and the number of reef fishes utilizing the seagrass bed as juvenile habitat, visual censuses were conducted at Amitori Bay, Iriomote Island, Japan. The numbers of species and individuals of fishes were significantly higher in the coral area than in the seagrass bed and sand area. Cluster and ordination analyses based on the number of individuals of each species demonstrated that the fish assemblage structure differed among the three habitats in each season, but with some overlaps. Approximately half the seagrass bed fishes occurred in the adjacent coral area (coral–seagrass species). Dominant species of coral–seagrass species utilized the seagrass bed as an important juvenile habitat. Thus, some overlaps in habitat use were present between the seagrass bed and adjacent coral area. Despite such overlaps, however, coral–seagrass species accounted for only approximately 15% of coral reef fishes overall, indicating that most of the latter hardly utilize the seagrass bed directly in the study area.  相似文献   

7.
8.
Reef fishes are significant socially, nutritionally and economically, yet biologically they are vulnerable to both over‐exploitation and degradation of their habitat. Their importance in the tropics for living conditions, human health, food security and economic development is enormous, with millions of people and hundreds of thousands of communities directly dependent, and many more indirectly so. Reef fish fisheries are also critical safety valves in times of economic or social hardship or disturbance, and are more efficient, less wasteful and support far more livelihoods per tonne produced than industrial scale fisheries. Yet, relative to other fisheries globally, those associated with coral reefs are under‐managed, under‐funded, under‐monitored, and as a consequence, poorly understood or little regarded by national governments. Even among non‐governmental organizations, which are increasingly active in tropical marine issues, there is typically little focus on reef‐associated resources, the interest being more on biodiversity per se or protection of coral reef habitat. This essay explores the background and history to this situation, examines fishery trends over the last 30 years, and charts a possible way forward given the current realities of funding, capacity, development patterns and scientific understanding of coral reef ecosystems. The luxury live reef food‐fish trade is used throughout as a case study because it exemplifies many of the problems and challenges of attaining sustainable use of coral reef‐associated resources. The thesis developed is that sustaining reef fish fisheries and conserving biodiversity can be complementary, rather than contradictory, in terms of yield from reef systems. I identify changes in perspectives needed to move forward, suggest that we must be cautious of ‘fashionable’ solutions or apparent ‘quick fixes’, and argue that fundamental decisions must be made concerning the short and long‐term values of coral reef‐associated resources, particularly fish, for food and cash and regarding alternative sources of protein. Not to address the problems will inevitably lead to growing poverty, hardship and social unrest in many areas.  相似文献   

9.
  • 1. Quantitative subtidal surveys of fishes, macro‐invertebrates and sessile organisms at 33 sites within the Lord Howe Island Marine Park revealed a rich fauna and flora, including 164 fishes, 40 mobile invertebrate taxa, 53 coral and other sessile invertebrate taxa, 32 algal taxa, and two seagrasses. The biota in this newly‐zoned marine park was overwhelmingly tropical when species lists were tabulated; however, species with distributions centred on temperate coasts of eastern Australia and New Zealand occurred in disproportionately high densities compared with the tropical species.
  • 2. Lord Howe Island reefs were generally in good condition. Virtually no bleached coral was observed (0.2% of the reef surface; 0.8% of total hard coral cover). Living scleractinian coral comprised the predominant group of organisms growing on reef surfaces, with 25.5% cover overall. Other major taxa observed were brown algae (18.8% cover) and red algae (16.9% cover).
  • 3. Three distinctive community types were identified within the marine park—coral reefs, macroalgal beds and an offshore/open coast community. The distribution of these community types was strongly related to wave exposure, as indicated by an extremely high correlation with the first principal coordinates axis for biotic data (R2=0.80).
  • 4. The close (<3 km) proximity of tropical coral and temperate macroalgal community types off Lord Howe Island is highly unusual, with localized patterns of nutrient enrichment suggested as the primary cause. The macroalgal community type is only known from a small area off the south‐western coast that is not protected from fishing. This community is considered highly susceptible to threats because of potential impacts of global warming and the possibility of expansion of sea urchin barrens. Coral bleaching and ocean acidification associated with global climate change also threaten the coral reef community, which includes relatively high numbers of endemic and near endemic fish species. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

10.
Extinction vulnerability in marine populations   总被引:16,自引:0,他引:16  
Human impacts on the world's oceans have been substantial, leading to concerns about the extinction of marine taxa. We have compiled 133 local, regional and global extinctions of marine populations. There is typically a 53‐year lag between the last sighting of an organism and the reported date of the extinction at whatever scale this has occurred. Most disappearances (80%) were detected using indirect historical comparative methods, which suggests that marine extinctions may have been underestimated because of low‐detection power. Exploitation caused most marine losses at various scales (55%), followed closely by habitat loss (37%), while the remainder were linked to invasive species, climate change, pollution and disease. Several perceptions concerning the vulnerability of marine organisms appear to be too general and insufficiently conservative. Marine species cannot be considered less vulnerable on the basis of biological attributes such as high fecundity or large‐scale dispersal characteristics. For commercially exploited species, it is often argued that economic extinction of exploited populations will occur before biological extinction, but this is not the case for non‐target species caught in multispecies fisheries or species with high commercial value, especially if this value increases as species become rare. The perceived high potential for recovery, high variability and low extinction vulnerability of fish populations have been invoked to avoid listing commercial species of fishes under international threat criteria. However, we need to learn more about recovery, which may be hampered by negative population growth at small population sizes (Allee effect or depensation) or ecosystem shifts, as well as about spatial dynamics and connectivity of subpopulations before we can truly understand the nature of responses to severe depletions. The evidence suggests that fish populations do not fluctuate more than those of mammals, birds and butterflies, and that fishes may exhibit vulnerability similar to mammals, birds and butterflies. There is an urgent need for improved methods of detecting marine extinctions at various spatial scales, and for predicting the vulnerability of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号