首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is the aetiological agent of furunculosis in marine and freshwater fish. Once A. salmonicida invade the fish host through skin, gut or gills, it spreads and colonizes the head kidney, liver, spleen and brain. A. salmonicida infects leucocytes and exhibits an extracellular phase in the blood of the host; however, it is unknown whether A. salmonicida have an intraerythrocytic phase. Here, we evaluate whether A. salmonicida infects Atlantic salmon (Salmo salar) erythrocytes in vitro and in vivo. A. salmonicida did not kill primary S. salar erythrocytes, even in the presence of high bacterial loads, but A. salmonicida invaded the S. salar erythrocytes in the absence of evident haemolysis. Naïve Atlantic salmon smolts intraperitoneally infected with A. salmonicida showed bacteraemia 5 days post‐infection and the presence of intraerythrocytic A. salmonicida. Our results reveal a novel intraerythrocytic phase during A. salmonicida infection.  相似文献   

2.
Recent development of imaging tools has facilitated studies of pathogen infections in vivo in real time. This trend can be exemplified by advances in bioluminescence imaging (BLI), an approach that helps to visualize dissemination of pathogens within the same animal over several time points. Here, we employ bacterial BLI for examining routes of entry and spread of Aeromonas salmonicida susbp. salmonicida in rainbow trout. A virulent Danish A. salmonicida strain was tagged with pAKgfplux1, a dual‐labelled plasmid vector containing the mutated gfpmut3a gene from Aequorea victoria and the luxCDABE genes from the bacterium Photorhabdus luminescens. The resulting A. salmonicida transformant exhibited growth properties and virulence identical to the wild‐type A. salmonicida, which made it suitable for an experimental infection, mimicking natural conditions. Fish were infected with pAKgfplux1 tagged A. salmonicida via immersion bath. Colonization and subsequent tissue dissemination was followed over a 24‐h period using the IVIS spectrum imaging workstation. Results suggest the pathogen's colonization sites are the dorsal and pectoral fin and the gills, followed by a progression through the internal organs and an ensuing exit via the anal opening. This study provides a tool for visualizing colonization of A. salmonicida and other bacterial pathogens in fish.  相似文献   

3.
We present a study on the effect of water temperature on immunization of Atlantic lumpfish. In total, 360 fish were vaccinated with either 50 μl of an oil‐based injection vaccine (VAX), with Aeromonas salmonicida and Vibrio salmonicida antigens, or PBS. Fish were vaccinated at three different water temperatures, 5°C, 10°C and 15°C, and sorted into six groups (N = 60). Lumpfish were weighed every 3 weeks after vaccination, sampled at 3, 6, 9 and 18 weeks post‐immunization (wpi) and evaluated by modified Speilberg score, ELISA and immunoblotting. Vaccinated fish showed low antibody response against V. salmonicida. Fish vaccinated at 5°C showed significantly lower antibody response against A. salmonicida throughout the study. At higher temperatures, vaccinated fish showed significantly increased antibody responses, at 18 wpi for 10°C and at 6 and 18 wpi for 15°C. Immunoblotting demonstrated specific response against the LPS antigen of A. salmonicida in the 10°C and 15°C VAX groups. Mean body weight increased in all groups throughout the study. Vaccinated fish had low Speilberg scores with no melanization of abdominal tissue. Our results show that vaccinating lumpfish at a lower water temperature may lead to a low antibody response against A. salmonicida.  相似文献   

4.
Michigan's fisheries rely primarily upon the hatchery propagation of salmonid fish for release in public waters. One limitation on the success of these efforts is the presence of bacterial pathogens, including Aeromonas salmonicida, the causative agent of furunculosis. This study was undertaken to determine the prevalence of A. salmonicida in Michigan fish, as well as to determine whether biochemical or gene sequence variability exists among Michigan isolates. A total of 2202 wild, feral and hatchery‐propagated fish from Michigan were examined for the presence of A. salmonicida. The examined fish included Chinook salmon, Oncorhynchus tshawytscha (Walbaum), coho salmon, O. kisutcha (Walbaum), steelhead trout, O. mykiss (Walbaum), Atlantic salmon, Salmo salar L., brook trout, Salvelinus fontinalis (Mitchill), and yellow perch, Perca flavescens (Mitchill). Among these, 234 fish yielded a brown pigment‐producing bacterium that was presumptively identified as A. salmonicida. Further phenotypic and phylogenetic analyses identified representative isolates as Aeromonas salmonicida subsp. salmonicida and revealed some genetic and biochemical variability. Logistic regression analyses showed that infection prevalence varied according to fish species/strain, year and gender, whereby Chinook salmon and females had the highest infection prevalence. Moreover, this pathogen was found in six fish species from eight sites, demonstrating its widespread nature within Michigan.  相似文献   

5.
Due to increasing resistance to chemical therapeutants, the use of ‘cleaner fish’ (primarily wrasse, Labridae, species) has become popular in European salmon farming for biocontrol of the salmon louse, Lepeophtheirus salmonis (Krøyer). While being efficient de‐licers, cleaner fish mortality levels in salmon cages are commonly high, and systemic bacterial infections constitute a major problem. Atypical furunculosis, caused by Aeromonas salmonicida A‐layer types V and VI, is among the most common diagnoses reached in clinical investigations. A previously described real‐time PCR (qPCR), targeting the A. salmonicida A‐layer gene (vapA), was modified and validated for specific and sensitive detection of all presently recognized A‐layer types of this bacterium. Before stocking and during episodes of increased mortality in salmon cages, cleaner fish (primarily wild‐caught wrasse) were sampled and screened for A. salmonicida by qPCR and culture. Culture indicated that systemic bacterial infections are mainly contracted after salmon farm stocking, and qPCR revealed A. salmonicida prevalences of approximately 4% and 68% in pre‐ and post‐stocked cleaner fish, respectively. This underpins A. salmonicida's relevance as a contributing factor to cleaner fish mortality and emphasizes the need for implementation of preventive measures (e.g. vaccination) if current levels of cleaner fish use are to be continued or expanded.  相似文献   

6.
Juvenile Atlantic halibut (~100 mg, Hippoglossus hippoglossus) were exposed to Vibrio proteolyticus, a Vibrio spp. isolate, Photobacterium damselae ssp. damselae and five different isolates of Aeromonas salmonicida ssp. achromogenes via an hour‐long bath immersion to ascertain their variation in pathogenicity to this fish species. Results were analysed using Kaplan–Meier survival analysis. Analysis of the data from challenges using A. salmonicida ssp. achromogenes revealed three survival values of zero and a spread of values from 0 to 28.43. Challenges using a Vibrio spp isolate, Vproteolyticus and P. damselae resulted in Kaplan–Meier survival estimates of 31.21, 50.41 and 57.21, respectively. As all bacterial species tested could induce juvenile halibut mortalities, they must all be considered as potential pathogens. However, the degree of pathogenicity of A. salmonicida is isolate dependent.  相似文献   

7.
8.
Megalocytiviruses cause high mortality diseases that have seriously impacted aquaculture, with the most frequent outbreaks occurring in East and South‐East Asia. The international trade of juvenile fish for food and ornamental aquaculture has aided the spread of these viruses, which have spread to Europe and Australia and other regions. Australian freshwater fishes were examined for susceptibility to infection with the exotic megalocytivirus, dwarf gourami iridovirus (DGIV), which belongs to a group with the type species, Infectious spleen and kidney necrosis virus (ISKNV). Fish were held at 23 ± 1 °C and challenged by intraperitoneal (IP) injection or by cohabitation with Murray cod, Maccullochella peelii (Mitchell) infected with DGIV. A species was deemed to be susceptible to DGIV based on evidence of viral replication, as determined by qPCR, and megalocytic inclusion bodies observed histologically. Horizontal transmission occurred between infected Murray cod and golden perch, Macquaria ambigua (Richardson), Macquarie perch, Macquaria australasica (Cuvier) and Murray cod. This indicated that DGIV shed from infected fish held at 23 °C can survive in fresh water and subsequently infect these naïve fish. Further, DGIV administered IP was highly pathogenic to golden perch, Macquarie perch and Murray cod. Compared to these species, the susceptibility of southern pygmy perch, Nannoperca australis (Gunther) was lower. Freshwater catfish (dewfish), Tandanus tandanus (Mitchell), were not susceptible under the experimental conditions based on the absence of clinical disease, mortality and virus replication. This study showed the potential risks associated with naïve and DGIV‐infected fish sharing a common water source.  相似文献   

9.
Precise deletion of genes related to virulence can be used as a strategy to produce attenuated bacterial vaccines. Here, we study the deletion of the cyclic‐3′,5′‐adenosine monophosphate (cAMP) receptor protein (Crp) in Aeromonas salmonicida, the aetiologic agent of furunculosis in marine and freshwater fish. The Crp protein is a conserved global regulator, controlling physiology processes, like sugar utilization. Deletion of the crp gene has been utilized in live attenuated vaccines for mammals, birds and warm water fish. Here, we characterized the crp gene and reported the effect of a crp deletion in A. salmonicida virulent and non‐virulent isolates. We found that A. salmonicida Δcrp was not able to utilize maltose and other sugars, and its generation time was similar to the wild type. A. salmonicida ?crp showed a higher ability of cell invasion compared to the wild type. Fish challenges showed that A. salmonicida ?crp is ~6 times attenuated in Oncorhynchus mykiss and conferred protective immunity against the intraperitoneal challenge with A. salmonicida wild type. We concluded that deletion of A. salmonicida crp influences sugar utilization, cell invasion and virulence. Deletion of crp in A. salmonicida could be considered as part of an effective strategy to develop immersion live attenuated vaccines against furunculosis.  相似文献   

10.
Sequence variation in a region of the virulence array protein gene (vapA; A‐layer) was assessed in 333 (‘typical’ and ‘atypical’) isolates of the fish pathogenic bacterium Aeromonas salmonicida. Resulting similarity dendrograms revealed extensive heterogeneity, with nearly all isolates belonging to either of 14 distinct clusters or A‐layer types. All acknowledged A. salmonicida subspecies (except ssp. pectinolytica, from which no vapA sequence could be obtained) were clearly separated, and notably, all isolates phenotypically identified as ssp. salmonicida formed a distinct and exclusive A‐layer type. Additionally, an array of un‐subspeciated atypical strains formed several equally prominent clusters, demonstrating that the concept of typical/atypical A. salmonicida is inappropriate for describing the high degree of diversity evidently occurring outside ssp. salmonicida. Most representatives assessed in this study were clinical isolates of spatiotemporally diverse origins, and were derived from a variety of hosts. We observed that from several fish species or families, isolates predominantly belonged to certain A‐layer types, possibly indicating a need for host‐/A‐layer type‐specific A. salmonicida vaccines. All in all, A‐layer typing shows promise as an inexpensive and rapid means of unambiguously distinguishing clinically relevant A. salmonicida subspecies, as well as presently un‐subspeciated atypical strains.  相似文献   

11.
Furunculosis, a septicaemic infection caused by the bacterium Aeromonas salmonicida subsp. salmonicida, currently causes problems in Danish seawater rainbow trout production. Detection has mainly been achieved by bacterial culture, but more rapid and sensitive methods are needed. A previously developed real‐time PCR assay targeting the plasmid encoded aopP gene of A. salmonicida was, in parallel with culturing, used for the examination of five organs of 40 fish from Danish freshwater and seawater farms. Real‐time PCR showed overall a higher frequency of positives than culturing (65% of positive fish by real‐time PCR compared to 30% by a culture approach). Also, no real‐time PCR‐negative samples were found positive by culturing. A. salmonicida was detected by real‐time PCR, though not by culturing, in freshwater fish showing no signs of furunculosis, indicating possible presence of carrier fish. In seawater fish examined after an outbreak and antibiotics treatment, real‐time PCR showed the presence of the bacterium in all examined organs (1–482 genomic units mg?1). With a limit of detection of 40 target copies (1–2 genomic units) per reaction, a high reproducibility and an excellent efficiency, the present real‐time PCR assay provides a sensitive tool for the detection of A. salmonicida.  相似文献   

12.
Flavobacterium psychrophilum, the causative agent of bacterial cold‐water disease (BCWD) in freshwater‐reared salmonids, is also a common commensal organism of healthy fish. The virulence potential of F. psychrophilum isolates obtained from BCWD cases in Ontario between 1994 and 2009 was evaluated. In preliminary infection trials of rainbow trout juveniles, significant differences (0% to 63% mortality) in the virulence of the 22 isolates tested were noted following intraperitoneal injection with 10cfu/fish. A highly virulent strain, FPG 101, was selected for further study. When fish were injected intraperitoneally with a 106, 107 or 10cfu/fish of F. psychrophilum FPG 101, the 108 cfu/fish dose produced significantly greater mortality (p < 0.05). The bacterial load in spleen samples collected from fish every 3 days after infection was determined using rpoC quantitative polymerase chain reaction amplification and by plate counting. Bacterial culture and rpoC qPCR were highly correlated (R2 = 0.92); however, culture was more sensitive than the qPCR assay for the detection of F. psychrophilum in spleen tissue. Ninety‐seven per cent of the asymptomatic and the morbid fish had splenic bacterial loads of <2.8 log10 gene/copies and >3.0 log10 gene copies/reaction, respectively, following infection with 108 cfu/fish.  相似文献   

13.
14.
Aeromonas salmonicida strains are roughly classified into two categories, typical and atypical strains. The latter mainly regroup isolates that present unusual phenotypes or hosts, comparatively to the typical strains that belong to the salmonicida subspecies. This study focuses on an uncharacterized atypical strain, M18076‐11, isolated from lumpfish (Cyclopterus lumpus) and not part of the four recognized Aeromonas salmonicida subspecies. This isolate presents an unreported phenotype in the A. salmonicida species: the formation of large granular aggregates. Granules are formed of a heterogeneous mix of live and dead cells, with live cells composing the majority of the population. Even if no mechanism was determined to cause cellular aggregation, small globular structures at the cell surface were observed, which might affect granular formation. Pan‐genome phylogenetic analysis indicated that this strain groups alongside the masoucida subspecies. However, phenotypic tests showed that these strains have diverging phenotypes, suggesting that M18076‐11 might belong to a new subspecies. Also, a pAsal1‐like plasmid, which was only reported in strains of the subspecies salmonicida, was discovered in M18076‐11. This study sheds light on unsuspected diversity in A. salmonicida subspecies and stresses the need of thorough identification when a new strain is encountered, as unique traits might be discovered.  相似文献   

15.
Aeromonas salmonicida subspecies salmonicida, a fish pathogen, expresses various virulence factors such as an A-layer, lipases and proteases during the infection process. Not all strains of this bacterium express the same virulence factors. It is important to be able to evaluate which factors are present when characterizing strains. The A-layer and secreted lipases and proteases are usually detected by agar-based tests that require long incubation (24 h and more) and may provide ambiguous results. In the present study, protocols have been optimized to determine the presence of these virulence factors using liquid tests. For A-layer detection, the optimized method stains the positive bacteria with Coomassie Brilliant Blue. The lipases are detected by a colorimetric biochemical reaction triggered by the degradation of p-nitrophenyl dodecanoate into a yellow product detectable by spectrophotometry, if the result is positive. Both of these tests show results in less than an hour. Finally, the protease activity is measured by clarification of a medium containing milk during an overnight bacterial growth. These new protocols provide opportunities for quicker characterization of A. salmonicida subsp. salmonicida strains and, particularly, provide more precise results.  相似文献   

16.
Skin ulcerations rank amongst the most prevalent lesions affecting wild common dab (Limanda limanda) with an increase in prevalence of up to 3.5% in the Belgian part of the North Sea. A complex aetiology of these ulcerations is suspected, and many questions remain on the exact factors contributing to these lesions. To construct the aetiological spectrum of skin ulcerations in flatfish, a one‐day monitoring campaign was undertaken in the North Sea. Fifteen fish presented with one or more ulcerations on the pigmented and/or non‐pigmented side. Pathological features revealed various stages of ulcerations with loss of epidermal and dermal tissue, inflammatory infiltrates and degeneration of the myofibers bordering the ulceration, albeit in varying degrees. Upon bacteriological examination, pure cultures of Vibrio tapetis were retrieved in high numbers from five fish and of Aeromonas salmonicida in one fish. The V. tapetis isolates showed cross‐reactivity with the sera against the representative strain of serotype O2 originating form a carpet‐shell clam (Ruditapes descussatus). Moreover, the A. salmonicida isolates displayed a previously undescribed vapA gene sequence (A‐layer type) with possible specificity towards common dab. Further research is necessary to pinpoint the exact role of these agents in the development of skin ulcerations in common dab.  相似文献   

17.
Aeromonas hydrophila is known to be causative agent of an infection named as Bacterial haemorrhagic septicaemia or red pest in freshwater fish. The aim of this study was to develop and validate the glycoprotein‐based fish vaccine against Aeromonas hydrophila. For this aim, after identification and characterization of A. hydrophila isolates from fish farms, one A. hydrophila isolate was selected as vaccine strain. Antigenic glycoproteins of this vaccine strain were determined by Western blotting and glycan detection kit. The connection types of these glycoproteins were examined by glycoprotein differentiation kit. Two glycoproteins, molecular weights of 19 and 38 kDa, with SNA connection type were selected for use in vaccination trials. After their purification by SNA‐specific lectin and size‐exclusion chromatography, protection studies with purified proteins were performed. For challenge trials, four experimental fish groups were designated: Group I (with montanide), Group II (with montanide and ginseng), Group III [with Al(OH)3] and Group IV [with Al(OH)3 and ginseng]. The survival ratings of fish were determined, and protection was calculated as 21.56%, 29.41%, 69.83% and 78.88% in groups I, II, III and IV, respectively. In conclusion, A. hydrophila glycoproteins with Al(OH)3 and ginseng could be used as a safe and effective vaccine for fish.  相似文献   

18.
A selective and differential medium termed ‘LG agar’ was developed for the isolation and presumptive identification of Lactococcus garvieae that results in black colonies with red halos. In this study, all 14 strains of L. garvieae and only 9 of the 148 strains representing 38 other species were able to grow on the LG agar. The nine viable strains on LG agar plates (including Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Vibrio fluvialis, Vibrio furnissii, Vibrio mimicus and Vibrio salmonicida) were further differentiated from L. garvieae by various colours or colony features. Colonies isolated from the mixing culture and the infected giant sea perch using LG agar plates were all positively identified as L. garvieae by conventional tests and 16S rDNA sequencing. Furthermore, LG agar discriminated capsulated strains of L. garvieae, which were believed to be correlated with pathogens of fish and shellfish, from non‐capsulated ones by colony appearances. The specificity and differentiating ability of LG agar suggest that this medium displays considerable potential for primary isolation and presumptive identification of L. garvieae from pathological and environmental samples.  相似文献   

19.
A disease outbreak in farmed Atlantic cod caused by Yersinia ruckeri is reported. Mortality started following vaccination of cod reared in two tanks (A and B). The accumulated mortality reached 1.9% in A and 4.8% in B in the following 30 days when treatment with oxytetracycline was applied. Biochemical and molecular analysis of Y. ruckeri isolates from the cod and other fish species from fresh and marine waters in Iceland revealed a high salinity‐tolerant subgroup of Y. ruckeri serotype O1. Infected fish showed clinical signs comparable with those of Y. ruckeri ‐infected salmonids, with the exception of granuloma formations in infected cod tissues, which is a known response of cod to bacterial infections. Immunohistological examination showed Y. ruckeri antigens in the core of granulomas and the involvement of immune parameters that indicates a strong association between complement and lysozyme killing of bacteria. Experimental infection of cod with a cod isolate induced disease, and the calculated LD50 was 1.7 × 104 CFU per fish. The results suggest that yersiniosis can be spread between populations of freshwater and marine fish. Treatment of infected cod with antibiotic did not eliminate the infection, which can be explained by the immune response of cod producing prolonged granulomatous infection.  相似文献   

20.
Numerous isolates of Flavobacterium columnare were previously recovered from red tilapia, Oreochromis sp., exhibiting columnaris‐like disease in Thai farms, and the phenotypic and genetic characteristics were described. The objective of this study was to determine the virulence of two morphotypes (rhizoid and non‐rhizoid colonies) of F. columnare and to determine their ability to adhere to and persist in red tilapia fry. The results showed that the typical rhizoid isolate (CUVET1214) was a highly virulent isolate and caused 100% mortality within 24 h following bath challenge of red tilapia with three different doses. The non‐rhizoid isolate (CUVET1201) was avirulent to red tilapia fry. Both morphotypes adhered to and persisted in tilapia similarly at 0.5 and 6 h post‐challenge as determined by whole fish bacterial loads. At 24 and 48 h post‐challenge, fry challenged with the rhizoid morphotype exhibited significantly higher bacterial loads than the non‐rhizoid morphotype. The results suggested that an inability of the non‐rhizoid morphotype to persist in tilapia fry may explain lack of virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号