首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 153 毫秒
1.
  1. Conservation of riverine fish often aims to improve access to spawning grounds and restore longitudinal connectivity by removing migration barriers, and involves substantial investments. However, these investments also enable non‐native predators to invade upstream into spawning areas and potentially adversely affect the recruitment of threatened freshwater fish through egg or fry predation.
  2. Detecting egg predation is often challenging. Visual inspections of fish gut contents may underestimate predation of soft materials such as eggs and fry, which limits the discovery of predators preying upon these life‐stages. DNA‐based detection assays may offer a more sensitive tool to assess predation of soft materials.
  3. A conservation issue was confirmed by developing and applying a species‐specific DNA‐based detection assay: invasive round goby (Neogobius melanostomus) prey on the eggs or fry of the threatened common nase (Chondrostoma nasus) in Switzerland.
  4. DNA‐based detection assays were also developed for five other valuable native fish species, including endangered salmonid and cyprinid river spawners. The applicability of the assays was confirmed in a series of laboratory and field feeding experiments involving eggs and fish tissue. In addition, this work provides a guiding framework for conservation managers regarding the use and applicability of different DNA‐based detection approaches for gut content analysis.
  5. The results of this study could inform local conservation measures – such as temporary reductions in the density of round goby at spawning sites prior to spawning – and demonstrate how targeted application of species‐specific molecular markers may advance freshwater fish management.
  相似文献   

2.
Lactococcus garvieae is recognized as an emerging pathogen in fish. Several PCR‐based methods have been developed for the detection and identification of L. garvieae; however, the sensitivity of these methods is still in question regarding the discrimination of this organism from other closely related species. Two primers, ITSLg30F and ITSLg319R, were designed from the sequence in the 16S–23S internal transcribed spacer (ITS) region and used for the specific detection of L. garvieae. L. garvieae strains including fish isolates were positive by this method. In contrast, previously developed PCR methods showed false‐positive results with non‐L. garvieae species. Our results indicate that a PCR method using the newly designed ITS primer set provides a sensitive and efficient tool for the detection of L. garvieae in fish and aquaculture environments.  相似文献   

3.
A multiplex nested-polymerase chain reaction (PCR)-based (m-nested PCR) method was developed for simultaneous detection of four important freshwater/marine fish pathogens in subtropical Asia, including Aeromonas hydrophila, Edwardsiella tarda, Photobacterium damselae and Streptococcus iniae . The specificity of the oligonucleotide primers used for PCR detection was confirmed to generate specific amplicons for the corresponding pathogens. Moreover, non-specific amplicons were observed when the primers were tested using pure DNA extracted from 31 related bacterial strains belonging to 23 species or tissue homogenates of infected tilapia. This m-nested PCR approach could detect 19 colony forming unit (CFU) for A. hydrophila , 62 CFU for E. tarda , 280 CFU for P. damselae subsp. piscicida and 179 CFU for S. iniae in infected tilapia kidney homogenates, consistent with the results derived from bacteriological methods. The assay described in this paper is a sensitive and effective method for simultaneous detection of multiple fish pathogens.  相似文献   

4.
ABSTRACT:   One of the biggest and long-standing difficulties in investigation of larval ecology in the field is species-level identification. In the present study, we developed polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) analysis based on the large subunit (LSU) rRNA gene (rDNA) D1/D2/D3 region for identification of multiple species of bivalve larvae using 14 species of bivalve collected from Maizuru Bay. The LSU rDNA D1/D2/D3 region of all analyzed species could be amplified by PCR using bvD1f/bvD3r primers, and RFLP analysis by Hae III digestion on the PCR products showed species-specific fragment patterns. Furthermore, this analysis applied to single bivalve larvae in Maizuru Bay revealed efficient amplification of the target region and the species-specific pattern from 80% of the larvae, 75% of which showed a pattern that matched a certain pattern of the adult bivalves. In addition, the analysis of inter- and intraspecies variation of the LSU rDNA D1/D2/D3 region using the sequence data of the genus Crassostrea from the DDBJ database showed high applicability of this RFLP analysis on closely related species. Because of the wide applicability and technical simplicity, this method can become the standard for the identification of bivalve larvae species once the sequence data of the LSU rDNA D1/D2/D3 region of many bivalve species have been accumulated.  相似文献   

5.
Immunological detection of yolk protein was used to assess predation by pelagic amphipods (gammarid and hyperiid), mysids, and euphausiids on eggs and yolk-sac larvae of walleye pollock Theragra chalcogramma during 1988 and 1989. Consumption estimates were made on the basis of frequency of positive immunoassays, assay detection times (gut clearance time), predator abundance, and spatial overlap of predators and prey. From our results gammarid amphipods and euphausiids were important predators on eggs and yolk-sac larvae, respectively. Gammarid amphipods alone consumed about 14% of the standing stock of pollock eggs in 1989. These results were compared with those from clearance rate experiments of predators feeding on pollock eggs in 300-1 bags. In general, clearance rate estimates of egg consumption were lower than those determined from gut contents.  相似文献   

6.
Abstract –  Rates of annual food consumption and biomass were modeled for several fish species across representative rivers and lakes in eastern North America. Results were combined to assess the relative potential of fish predation to impact zebra mussels ( Dreissena polymorpha ). Predicted annual food consumption by fishes in southern waters was over 100% greater than that in northern systems because of warmer annual water temperatures and presumed increases in metabolic demand. Although generally increasing with latitude, biomasses of several key zebra mussel fish predators did not change significantly across latitudes. Biomasses of some less abundant fish predators did increase significantly with latitude, but increases were not of the magnitude to offset predicted decreases in food consumption. Our results generally support the premise that fishes in rivers and lakes of the southern United States (U.S.) have inherently greater potential to impact zebra mussels by predation. Our simulations may provide a partial explanation of why zebra mussel invasions have not been as rapid and widespread in southern U.S. waters compared to the Great Lakes region.  相似文献   

7.
ABSTRACT:   The attacking potential of the scavenging amphipod Scopelocheirus onagawae on artificially injured hatchery-raised Japanese flounder Paralichthys olivaceus juveniles was investigated in relation to the degree of injury on the fish. All injured flounder juveniles were attacked by amphipods regardless of the degree of injury, while non-injured juveniles were not attacked. The attack by amphipods on the juveniles generally depended on the amount of glycine, a main feeding stimulant for the amphipod, released from the injury opening. The swimming ability of flounder juveniles was important to avoid the attack of amphipods. Furthermore, an area of injury allowing the amphipods to cling to the fish affects to the vulnerability of juveniles against the predation of amphipods. This study suggests that scavenging amphipods are potentially involved in the rapid reduction of the number of hatchery-raised juveniles.  相似文献   

8.
ABSTRACT:   Fast skeletal muscles of Japanese flounder Paralichthys olivaceus and red sea bream Pagrus major were examined for quantitative and qualitative changes of mitochondrial ATP synthase (FoF1-ATPase) in association with rearing temperatures. The specific activities of FoF1-ATPase from Japanese flounder reared at 10°C, 15°C and 25°C for 4 weeks were determined to be 81 ± 11, 74 ± 13 and 83 ± 11 nmol/min·mg mitochondrial protein, respectively. The corresponding activity from red sea bream reared at 8°C for 5 weeks was determined to be 65 ± 9 nmol/min·mg mitochondrial protein, which was higher than 33 ± 9 nmol/min·mg mitochondrial protein in fish reared at 23°C. The contents of α- and β-F1-ATPase in total mitochondrial proteins were not significantly different between fish reared at different temperatures for the two fish species. However, the contents of β-F1-ATPase in the total fast skeletal muscle extracts, prepared from Japanese flounder reared at 10°C, were 2.1- and 2.9-fold higher than those for fish reared at 15°C and 25°C, respectively. The corresponding content from red seabream reared at 8°C was 2.2-fold higher than that for fish reared at 23°C. Therefore, the changes in FoF1-ATPase depending on rearing temperatures were species-specific.  相似文献   

9.
ABSTRACT:   The visual acuity, visual axis and visual accommodation of pointhead flounder, slime flounder, and red halibut were determined to obtain basic knowledge for developing appropriate fishing gear and fishing methods for sustainable fisheries. Each of these species has a different ecotype in terms of habitat, depth and prey species. Thus, it was hypothesized that they may differ in terms of visual acuity, visual axis and visual accommodation. Few studies have compared these characters in flatfishes from different ecotypes. We used histological methods to determine visual acuity (i.e. cone cell density) and visual axis (i.e. cone cell distribution) in each of these species. The maximum visual acuity was 0.127 in pointhead flounder (total length, TL 344 mm), 0.092 in slime flounder (TL 372 mm) and 0.109 in red halibut (TL 336 mm). Based on the cone cell distribution in the retina, the visual axis was upward and forward in pointhead flounder, forward and downward in slime flounder, and downward in red halibut. Finally, the mean angle of lens movement was −2° in pointhead flounder, −13° in slime flounder and −32° in red halibut. This measurement of lens movement indicated that the average near-point distance was 0.87 × TL in pointhead flounder, 0.65 × TL in slime flounder and 1.02 × TL in red halibut. At similar TL (336–355 mm), the visual acuity of these species differs depending on the direction in which they are looking.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号