首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The effects of feed intake level on energy and nitrogen partitioning were studied in juvenile Atlantic cod (250 g) fed two fish meal based diets differing in protein and lipid content (54:31 and 65:16) at 10 °C. Replicate groups of cod were feed deprived for 32 days or fed one of the two diets at 25, 50, 75 or 100% of group satiation for 60 days. Feed intake and oxygen consumption were measured daily and weights and chemical composition of carcass, liver, viscera and whole body were measured at start and end. Diet digestibilities were assessed in a separate experiment.

The whole body and carcass growth rates at a given feed intake did not differ between dietary groups, but the liver grew faster in the fish fed the low protein diet, resulting in higher hepatosomatic indices at the end of the experiment in the groups fed this diet.

The efficiency of utilisation of digestible nitrogen for growth (kDNg) was higher for the low protein diet (0.73 ± 0.02) than for the high protein diet (0.53 ± 0.05), resulting in higher nitrogen retention at a given nitrogen intake. No difference in percentage nitrogen retention was seen in full-fed fish however (31.2 ± 2.5 and 28.4 ± 1.6% for the low protein and high protein diets, respectively). This can be explained by higher nitrogen intake in the fish fed the high protein diet, resulting in a smaller proportion of the intake being used for maintenance.

There was no difference in energy utilisation between dietary groups. The digestible energy requirement for maintenance (DEmaint) was 53.8 ± 0.9 kJ kg− 1 d− 1 (42.3 ± 0.7 kJ kg− 0.8 d− 1) and the utilisation efficiency for growth (kDEg) was 0.80 ± 0.02. The energy retention in full-fed fish was 31.3 ± 3.5 and 31.7 ± 1.0% for the low protein and high protein diets, respectively. The deposited energy was distributed in approximately equal proportions in the liver and carcass, whereas viscera accounted for a minor proportion. At a given energy intake, the fish fed the high protein diet deposited more energy in the carcass and less in the liver than did those fed the low protein diet.  相似文献   


2.
This study examined the efficacy of bithionol as an oral treatment for Atlantic salmon Salmo salar affected by amoebic gill disease (AGD). The current commercial management strategy of AGD is a costly 3 h freshwater bath. It is labour intensive and the number of baths needed appears to be increasing; hence, there is an effort to identify alternative treatments. Efficacy was examined by feeding AGD-affected Atlantic salmon twice daily to satiation with bithionol, an antiprotozoal, at 25 mg kg− 1 feed. Three seawater (35‰, 17 °C) re-circulation systems were used each consisting of three tanks containing 32 Atlantic salmon smolts with an average (± SEM) mass of 90.4 g (± 5.2). Three feeds were examined in the trial including bithionol, plain commercial control and oil coated commercial control. Feeding commenced 2 weeks prior to exposure to Neoparamoeba spp. at 300 cells L− 1 and continued for 28 days post-exposure. Efficacy was determined by examining gross gill score and identifying percent lesioned gill filaments twice weekly for 4 weeks post-exposure. Bithionol when fed as a two-week prophylactic treatment at 25 mg kg− 1 feed delayed the onset of AGD pathology and reduced the percent lesioned gill filaments by 53% and halved the gill score from 2 to 1 when compared with both the plain and oil controls during an experimental challenge. There were no palatability problems observed with mean feed intake of bithionol over the trial duration with fish consuming higher levels of the bithionol diet compared to both the oil and plain controls. This study demonstrated that bithionol at 25 mg kg− 1 feed, when fed as a two-week prophylactic treatment for Neoparamoeba spp. exposure, delayed and reduced the intensity of AGD pathology and warrants further investigation as an alternative to the current freshwater bath treatment for AGD-affected Atlantic salmon.  相似文献   

3.
Growth performance and food conversion efficiency (FCE) were investigated in juvenile spotted wolffish (Anarhichas minor Olafsen), mean (S.D.) initial weight 15.7 (4.8) g, reared at four levels of carbon dioxide (CO2(aq)) for 10 weeks at 6 °C and 33‰. CO2 levels averaged 1.1 (control), 18.1 (low), 33.5 (medium) and 59.4 (high) mg l−1, with corresponding pH values of 8.10, 6.98, 6.71 and 6.45, respectively. In addition, kidneys from sampled fish were examined macroscopically for gross signs of calcareous deposits, i.e. nephrocalcinosis, at the start and end of the experiment. Growth was significantly reduced at the highest concentration (P<0.0001), as compared to all other groups, while no overall differences in growth rate or mean weight were seen in the range of 1.1–33.5 mg CO2 l−1 at the end of the experiment. Daily feeding rates and total food consumption were reduced at the highest concentration (P<0.001), whereas food conversion efficiency did not vary significantly between groups. Plasma chloride levels displayed a significant decrease with increasing CO2 levels, from 151.3 mmol l−1 (1.1 mg CO2 l−1) to 128.3 mmol l−1 (59.4 mg CO2 l−1) at the end of the experiment, whereas plasma osmolality in the high CO2 group was significantly higher compared to the control group at the end of the experiment (371.4 and 350.8 mOsmol kg−1, respectively). Nephrocalcinosis was observed in all groups at the end of the experiment, but was most pronounced in the medium and high CO2 group.  相似文献   

4.
Temperature is recognized to be the most important environmental factor affecting growth in fish. Barramundi are cultured over a wide range of temperatures some of which approach the upper thermal tolerance for this species. A growth trial was conducted on juvenile barramundi to examine the effects of high temperatures ranging from the minimum optimal temperature (27 °C) for growth efficiency to the extreme upper thermal limits (39 °C) for feed intake, growth and growth efficiency. Juveniles (4.87 ± 0.32 g) were held at four different temperatures 27, 33, 36 and 39 °C and fed twice daily to satiation (503.5 g kg− 1 crude protein, 182.5 g kg− 1 lipid, 150.1 g kg− 1 ash, 20.52 GE MJ kg− 1). Feed intake (g·day− 1) and SGR (%·day− 1) increased with increasing temperature up to 36 °C. At 39 °C feed intake, growth, feed efficiency ratio, protein efficiency ratio and productive energy value were significantly lower than at the other temperatures. This demonstrates that growth was optimized at temperatures from 27 to 36 °C and that barramundi have a much wider range for maximum growth efficiency than previously thought.  相似文献   

5.
Rainbow trout (Oncorhynchus mykiss) maintained in crowded (100 kg m− 3) and uncrowded (20 kg m− 3) conditions were fed 42 days with five experimental diets having different levels of vitamin E (25.6 and 275.6 mg kg diet− 1), C (0 and 1000 mg kg diet− 1) and HUFA (highly unsaturated fatty acids, 12.5 and 320.5 g kg diet− 1): −E−HUFA, −E+HUFA, +E−HUFA, +E+HUFA, −C+E+HUFA. Cortisol, plasma metabolites, tissue glycogen, fish composition, and tissue fatty-acid profile were evaluated at the end of the experimental period. In general, no changes in cortisol levels were associated with crowding, although +E+HUFA and −C+E+HUFA fish showed higher levels (mean ± SE, 55.5 ± 11.1 and 78.0 ± 11.3 ng ml− 1) as a consequence of a possible interaction between chronic crowding and diet composition. Protein and glucose con-centration in plasma displayed no effect of crowding, but liver glycogen showed a general tendency to decrease in −E−HUFA, −E+HUFA, +E−HUFA, +E+HUFA, −C+E+HUFA crowded groups (70.2 ± 2.1, 52.1 ± 2.5, 73.4 ± 7.4, 91.7 ± 3.3, 74.2 ± 8.4 mg g− 1 tissue, respectively) compared to uncrowded groups (108.9 ± 14.2, 82.7 ± 8.8, 92.4 ± 10.7, 99.1 ± 10.0, 103.5 ± 15.6 mg g− 1 tissue, respectively), thus proving significant in −E+HUFA fish. Variations in total lipids, triglycerides, total cholesterol and HDL as well as LDL cholesterol in plasma were manifested under crowding conditions, displaying a certain influence of vitamin E and HUFA dietary content. Final body composition, in general, showed no change attributable to fish density, but some differences associated with diet composition were found in lipid and moisture percentages of crowded fish. Liver and muscle fatty-acid profile revealed a clear effect of the dietary lipid source that was more evident in muscle than in liver at normal fish density, and in some cases this effect was modulated by dietary vitamin E and C content and fish-culture conditions.  相似文献   

6.
Pingguo He   《Fisheries Research》2003,60(2-3):507-514
Swimming behaviour of winter flounder (Pleuronectes americanus) was recorded near baited hooks on natural fishing grounds using an underwater video camera. Winter flounder were observed to stay on or very close to the seabed, never rising to more than 0.6 m off bottom during 1 month of observation. Winter flounder were recorded to take bait actively at temperatures as low as −1.2 °C. Movement of winter flounder was characterised by a period of swimming off seabed followed by a period of resting on the seabed. The proportion of time swimming off seabed as opposed to resting on the seabed was positively related to water temperature. Flounder spent an average of 32% of time in swimming when at −1.2 °C compared with 67% when at 4.4 °C. Voluntary swimming speed of the flounder during the period of swimming was lower at lower temperatures. An average swimming speed of 0.52 body lengths per second (L s−1) at −1.2 °C was recorded compared with 0.95 L s−1 at 4.4 °C. Overall rate of movement was reduced by three-fold when water temperature fell from 4.4 to −1.2 °C. The reduced rate of movement at lower temperatures is discussed in relation to potential fishing area of fixed fishing gears such as gillnets.  相似文献   

7.
A hydraulically integrated serial turbidostat algal reactor (HISTAR) for the mass production of microalgae was designed, constructed and preliminarily evaluated. The 9266-l experimental system consists of two enclosed turbidostats hydraulically linked to a series of six open continuous-flow, stirred-tank reactors (CFSTRs). The system was monitored and controlled using GENESIS process control software. A production study was preformed using Isochrysis sp. (C-iso) to assess system stability and production potential under commercial-like conditions. The study was performed at the following target system parameters: system dilution rate of 0.49 per day, pH 7.6, NITROGEN=10 mg l−1, PHOSPHORUS=2 mg l−1, and artificial illumination (photosynthetic photon flux density) from 1000 W metal halide LAMPS=800 μmol s−1 m−2. At steady state conditions, daily harvested algal paste was 1454 g (wet), mean areal system PRODUCTIVITY=47.8±3.04 g m−2 per day (17.1±1.09 g C m−2 per day) and mean CFSTR6 DENSITY=105.5±6.71 mg l−1.  相似文献   

8.
Juvenile greenlip abalone, Haliotis laevigata, (mean whole weight 4.48±1.9 g, mean±s.d., n=953) were highly sensitive to ammonia as indicated by depressed growth rate and food consumption measured over 2–3 months in bioassay tanks. For growth rate expressed on a whole weight basis, the EC5 and EC50 values (5 and 50% growth reductions) were 0.041 mg FAN l−1 (Free Ammonia–Nitrogen) and 0.158 mg FAN l−1, respectively. Shell growth rates declined over the entire experimental range (0.006–0.188 mg FAN l−1). At the end of the bioassay, groups of abalone were transferred to respiratory chambers. Oxygen consumption rate increased to a maximum of 188% of control values at 0.235 mg FAN l−1 and decreased slightly at the highest concentration of 0.418 mg FAN l−1.  相似文献   

9.
Behavioral and ventilatory parameters have the possibility of predicting the stress state of fish in vivo and in situ. This paper presents a new image-processing algorithm for quantifying the average swimming speed of a fish school in an aquarium. This method is based on the alteration in projected area caused by the movement of individual fish during frame sequences captured at given time intervals. The image enhancement method increases the contrast between fish and background, and is thus suitable for use in turbid aquaculture water. Behavioral parameters (swimming activity and distribution parameters) and changes in ventilation frequency (VF) of tilapia (Oreochromis niloticus) responded to acute fluctuations in dissolved oxygen (DO) which were monitored continuously in the course of normoxia, falling DO level, maintenance of hypoxia (three levels of 1.5, 0.8 and 0.3 mg l−1) and subsequent recovery to normoxia. These parameters responded sensitively to acute variations in DO level; they displayed significant changes (P < 0.05) during severe hypoxia (0.8 and 0.3 mg l−1 level) compared with normoxic condition, but there was no significant difference under conditions of mild hypoxia (1.5 mg l−1 level). There was no significant difference in VF between two levels of severe hypoxia 0.8 and 0.3 mg l−1 level during the low DO condition. The activity and distribution parameters displayed distinguishable differences between the 0.8 and 0.3 mg l−1 levels. The behavioral parameters are thus capable of distinguishing between different degrees of severe hypoxia, though there were relatively large fluctuations.  相似文献   

10.
Levels of glucose, lactate, pO2, pCO2, HCO3, TCO2, Na+, K+, Cl, protein, and oxyhemocyanin in the hemolymph and its osmolality and pH were measured when tiger shrimp, Penaeus monodon (13.5 ± 1.5 g body weight), were individually injected with saline or dopamine at 10 8, 10 7, or 10 6 mol shrimp 1. Results showed that hemolymph glucose, lactate, pCO2, HCO3, and TCO2 values increased from 2 to 4 h; hemolymph osmolality, Na+, and total protein had increased at 2 h; and hemolymph K+ decreased from 2 to 8 h after the dopamine injection. All physiological parameters returned to the control values 4–16 h after receiving dopamine. The dopamine injection also significantly decreased the oxyhemocyanin/protein ratio of P. monodon which occurred at 2 h, resulting from an elevation of hemolymph protein and a slight decrease of oxyhemocyanin. These results suggest that stress-inducing dopamine caused a transient period of modulation of energy metabolism, osmoregulation, respiration, and the acid–base balance in P. monodon in adapting to this environmental stress.  相似文献   

11.
Cobia Rachycentron canadum is a fast-growing, pelagic marine species that has recently attracted aquaculturists in both the research and commercial sectors. The typical method of grow-out for this species is in outdoor systems where production is limited to locations and seasons conducive for adequate growth and survival. Expanding the culture of cobia to indoor recirculating aquaculture systems (RAS) would allow for the production of fingerlings throughout the year and extend production to cooler regions. Two rearing trials were conducted to examine the growth and survival of cobia from hatching through 4 (trial 1, T1) or 35 (trial 2, T2) g in RAS. Cobia larvae were reared in circular tanks placed in a raceway to control water temperature and quality. During early juvenile grow-out, fish were transferred without grading to a second raceway on 29 dph (T1) or over a period of grading from 29–43 dph (T2). Larval growth (1–22 dph) measured as standard length was similar for both trials ranging from  3.9 to 14.7 mm. However, larval growth measured as wet weight (0.033 g, T1; 0.026 g, T2) or dry weight (5.7 mg, T1; 3.9 mg, T2) was significantly greater on 22 dph during T1 as was the ratio between myotome height and standard length. These differences may have resulted from an increase in initial densities from 8.7 larvae l− 1 (T1) to 14.7 larvae l− 1 (T2) which apparently caused an increase in food competition and overall aggression. During juvenile grow-out, cobia reached 4.0 g on 43 dph in T1 and 35.4 g on 71 dph in T2 matching weights achieved during grow-out in outdoor ponds. Over the course of both trials, survival was similar to that reported in outdoor ponds. Mean survival (± S.D.) during the early rearing phase (hatching through 29 or 43 dph) averaged 13.2 ± 3.2 % and 10.4 ± 3.2 % corresponding to final densities of 0.9 ± 0.2 and 1.2 ± 0.4 fish/l for T1 and T2, respectively. During the first grow-out phase (29–43 dph), survival of fish moved into the open raceway was 64.5% in T1 and 88.7 % in T2. Survival of cobia during the second grow-out phase (43–71 dph) for T2 was 92.5%. The results of this study indicate that cobia can be successfully cultured in indoor systems from hatching through at least 35 g without negatively affecting growth or survival.  相似文献   

12.
This study evaluated the effect of low water temperature (10 ± 1 °C) on viral infection and replication of white spot syndrome virus (WSSV) in crayfish, Procambarus clarkii, under standardized conditions. Crayfish were (i) maintained at 24 ± 1 °C before challenge and 10 ± 1 °C afterwards, or (ii) maintained at 10 ± 1 °C before challenge and 24 ± 1 °C afterwards. No mortality was observed when crayfish were held at 10 ± 1 °C after challenge, but mortality reached 100% when they were transferred to 24 ± 1 °C. Competitive PCR showed that viral levels at 10 ± 1 °C rose from 106 to 108 copies/mg of gill tissues, while at 24 ± 1 °C levels increased from 106 to 1010 copies/mg of gill tissues during the same time interval. These results showed that a low water temperature of 10 ± 1 °C could reduce viral replication when compared to 24 ± 1 °C but could not prevent it.  相似文献   

13.
Filtration rates of hatchery-reared king scallop (Pecten maximus L.) juveniles, fed a single species alga diet (Pavlova lutheri (Droop) Green), were measured at a range of temperatures (6–21 °C). Weight specific filtration rate (ml min−1 g−1 (live weight)) of juveniles of a selected size range of 17–19 mm shell height (0.26–0.36 g live weight) increased with temperature above 16 °C and decreased below 11 °C, but was not significantly different between these two temperatures. Measurements at 16 °C using juveniles with a wider size range of 10–25 mm shell height (0.05–0.8 g live weight) gave the allometric equation: filtration rate (ml min−1)=12.19×weight (g)0.887. Filtration rate decreased significantly when the cell concentration was greater than 200 cells μl−1 (4.25 mg (organic weight) l−1). With six other algae food species, filtration rates similar to those with P. lutheri were only achieved with Chaetoceros calcitrans (Paulsen) Takano. All other algae species tested were cleared from suspension at significantly lower rates. Experiments with diet mixtures of P. lutheri and these other algae suggested that this was usually a reflection of lowered filtration activity, rather than pre-ingestive rejection of cells. In experimental outdoor nursery rearing systems, the filtration rate was inversely proportional to the concentration of cells in the inflow, in the range 5–210 cells μl−1. It was not affected by flow rate (2–130 l h−1, equivalent to 0.12–28.38 l h−1 g−1 (live weight)) with scallop juveniles stocked from 2 to 62 g l−1. The results are discussed in relation to on-growing scallops at field sites.  相似文献   

14.
The nutritional response of Litopenaeus schmitti larvae to substitution of Chaetoceros muelleri by Spirulina platensis meal (SPM) was evaluated. The substitution levels (S) were 0%, 25%, 50%, 75% and 100%, dry weight basis. Final larval length (FL) ranged from 1.98 to 3.16 mm for the different substitution levels. There was a significant relationship between S and FL, described by the following quadratic equation: FL = 2.853 + 0.01598S − 0.000233S2. The substitution level (S) yielding maximum FL was 34.2%. Development index (DI) values ranged from 2.84 to 3.93 and were dependent on substitution level. The corresponding equation was DI = 3.799 + 0.00945S − 0.000189S2 (P < 0.01). Maximum DI was obtained at 25.0% substitution. Survival was high (82–87%) and no significant differences were found between treatments. Protein digestibility of either microalgae was high, with 92% for SPM and 94% for C. muelleri, with no significant differences between them. The results in this study indicate that an adequate balance of nutrients in relation to the requirements of the species is critical. To simultaneously improve FL and DI, a 30% substitution of C. muelleri by SPM is suggested. This is equivalent to feeding 0.15 mg larvae− 1 day− 1 dry weight basis of a 70% C. muelleri/30% SPM diet, representing 0.078 mg protein larvae− 1 day− 1, 0.026 mg lipids larvae− 1 day− 1 and 2.732 J larvae− 1 day− 1.  相似文献   

15.
The effects of body weight, water temperature and ration size on ammonia excretion rates of the areolated grouper Epinephelus areolatus and the mangrove snapper Lutjanus argentimaculatus were investigated. Under given experimental conditions, L. argentimaculatus had a higher weight-specific ammonia excretion rate than E. areolatus. Weight-specific ammonia excretion rates of fasted individuals of both species showed an inverse relationship with body weight (W, g wet wt.), but a positive relationship with water temperature (t, °C). The relationships for total ammonia nitrogen (TAN) were: E. areolatus: TAN (mg N kg−1 d−1)=21.4·exp0.11t·W−0.43 (r2=0.919, n=60); L. argentimaculatus: TAN (mg N kg−1 d−1)=121.5·exp0.12t·W−0.55 (r2=0.931, n=60). Following feeding, the weight-specific ammonia excretion rate of E. areolatus increased, peaked at 2 to 12 h (depending on temperature), and returned to pre-feeding levels within 24 h. A similar pattern was observed for L. argentimaculatus, with a peak of TAN excretion being found 6 to 12 h after feeding. Stepwise multiple regression analysis indicated that weight-specific TAN excretion rates of both species increased with increasing temperature and ration (R, percent body wt. d−1): E. areolatus: TAN (mg N kg−1 d−1)=22.8·t−28.8·R−378.2 (r2=0.832, n=24); L. argentimaculatus: TAN (mg N kg−1 d−1)=22.9·t−25.4·R−216.4 (r2=0.611, n=24). The effect of body weight on weight-specific postprandial TAN excretion was not significant in either species (p>0.05). This study provides empirical data for estimating ammonia excretion of these two species under varying conditions. This has application for culture management.  相似文献   

16.
The potential of bacteriophage therapy to control bacterial disease in farmed fish was tested using, as an example, furunculosis of Atlantic salmon, caused by Aeromonas salmonicida subsp. salmonicida.

In vivo testing with Atlantic salmon and rainbow trout (Oncorhynchus mykiss Walbaum) showed no adverse effects, with bacteriophage generally cleared within 96 h of administration by either intraperitoneal (i.p.) injection or oral in-feed.

Juvenile Atlantic salmon were administered a combination of bacteriophage O, R and B (1.9 × 108 pfu fish− 1) by i.p. injection, after they had been challenged with A. salmonicida subsp. salmonicida 78027, also by i.p. injection. The fish that were injected with bacteriophage immediately after challenge died at a significantly slower rate then those that were either not treated with bacteriophage, or treated 24 h post-challenge. However, the end result (100% mortality) was not affected.

In further experiments the effects of oral (1.88 × 105 pfu g− 1 fish− 1 daily for 30 days), bath (1.04 × 105 ml− 1 daily for 30 days) and i.p. (6.25 × 107 pfu fish− 1) phage treatment to control furunculosis in experimentally infected Atlantic salmon were compared with antibiotherapy (treatment with 10 mg kg− 1 bw− 1 day− 1 oxolinic acid for 10 days), using an indirect cohabitation challenge. No protection was offered by any of the bacteriophage treatments, compared to the positive challenge group, although significant protection was offered by the oxolinic acid treatment. Analysis of samples taken from the trials demonstrated that bacteriophage were correctly administered to the fish and, on occasion, were isolated from fish that had succumbed to furunculosis. It was also shown that bacteriophage resistant A. salmonicida subsp. salmonicida isolates could be recovered from mortalities in all the treatment groups.

The results suggest that, although there were no safety problems associated with the approach, furunculosis in Atlantic salmon is not readily controllable by application of bacteriophage.  相似文献   


17.
The 96-h LC50 of ammonia-N and the effects of dietary vitamin C on oxygen consumption, ammonia-N excretion and Na+/K+ ATPase activity of Macrobrachium nipponense exposed to ambient ammonia were investigated. The results showed that the 96-h LC50 of ammonia-N was 36.6 mg l−1 for the freshwater prawn, M. nipponense, at pH 8.0. When prawns were exposed to high ambient ammonia-N concentrations, the oxygen consumption rate increased and ammonia excretion decreased. Dietary vitamin C supplementation led to higher oxygen consumption and lower ammonia excretion. Na+/K+ ATPase activity increased with increased ambient ammonia-N exposure in the range of 0–18.3 mg l−1, and then was reduced at ambient ammonia-N 36.6 mg l−1. Na+/K+ ATPase activities of prawns fed a vitamin C-supplemented diet were significantly lower than those of prawns fed a diet which was not supplemented with vitamin C.  相似文献   

18.
All seahorse species worldwide have been placed under CITES Appendix II since 2004, because they have been over-exploited for traditional Chinese medicine and aquarium trades. Aquaculture has been recognized as a long-term solution for sustaining the seahorse trade while minimizing wild collection. In this study, we evaluated the breeding and juvenile culture of an important aquarium seahorse species, the lined seahorse Hippocampus erectus, Perry 1810. Pairing, mating and copulation behavior were observed. Gestation time and brood size were 17.33 ± 2.94 days and 272.33 ± 66.45 individuals/brood, respectively. Growth rates differed among juveniles from different broods. Effects of temperature on the growth rates and survivorship of the juveniles during the first two weeks were compared. The highest growth rate and survivorship of the juveniles occurred at 28–29 °C among the temperatures tested (24–33 °C). Growth rate and survivorship of the juveniles during the first 9 weeks at 28 °C were investigated. The final standard length and survivorship of the juveniles were 6.32 ± 0.52 cm and 71.11 ± 10.18%, respectively, and the relationship between the wet weight and the standard length of the juvenile seahorses can be expressed as: W = 0.0034 L2.5535 (r2 = 0.9903, n = 12, P < 0.01). These findings suggest that H. erectus is a good candidate for commercial aquaculture.  相似文献   

19.
Profiles of changes in physiological parameters of freshwater giant prawns, Macrobrachium rosenbergii, exposed to various dissolved oxygen (DO) levels of 7.75, 4.75, 2.75, and 1.75 mg l−1 are reported. The parameters involved in osmoregulation and oxygen transport were monitored for a 6-day period. Notable depressions in hemolymph osmolality, Na+, K+, and Cl contents were observed within 24 h after exposure to hypoxia at 2.75 and 1.75 mg O2 l−1, and thereafter remained at rather steady levels, which were significantly lower than those under normoxic conditions (4.75–7.75 mg O2 l−1). The extent of depression of osmotic-related constituents, hemolymph osmolality and Cl in particular, increased with decreased DO.

Oxyhemocyanin constituted 65.46–65.84% of total hemolymph proteins under the various DO levels examined; both hemolymph oxyhemocyanin and proteins showed notable elevations 24 h after exposure to hypoxic conditions, and reached the highest and constant level by 48 h after exposure. The compensatory responses of prawns to reduced O2 were manifested by increased O2 uptake through augmentation of hemocyanin, which results in enhancement of oxygen binding capacity of the hemolymph. In the same period, a significant surge of the respiratory products, PCO2 and HCO3, was also demonstrated 6 h after exposure to hypoxic conditions which resulted in hemolymph alkalosis. These processes likely resulted in an increase in water influx and consequent declines in hemolymph osmolality and ion composition. Furthermore, hyperventilation and respiratory alkalosis, indicated by increased oxyhemocyanin and pH, respectively, were found to be predominant responses of M. rosenbergii to hypoxic stress.  相似文献   


20.
The ability of Loligo opalescens paralarvae to resist and recover from starvation was examined by measuring their survival, growth rate and RNA/DNA ratios during starvation and refeeding. Paralarvae were fed Artemia sp. nauplii, zooplankton and mysid shrimp. Fourteen days after hatching they were separated into five feeding treatments: a control treatment (food was always available) and treatments starved for 2, 3, 4 and 5 days, and then refed. Each day, 5–7 paralarvae from each treatment were anesthetized to measure mantle length and wet weight (WW), and then RNA and DNA were extracted using an ethidium bromide fluorometric technique. Paralarvae did not survive 4 and 5 days of starvation, showing that at 15 days of age and at 16 °C the limit to recovery was 3 days of starvation. Paralarvae starved for 2 and 3 days showed compensatory growth that mitigated the effects of starvation, in that at the end of the experiment (10 days), they attained mean final body weights similar to the control treatment. Differences in the RNA/DNA ratios between control and starved paralarvae were detected within 2 days of food deprivation. For paralarvae starved 2 and 3 days, it took 1 day after refeeding to attain RNA/DNA ratios not significantly different from the control treatment. Additionally, RNA/DNA ratios were highest during the day (0800, 1200, 1600 h) and lowest at night (0000, 0400 h), suggesting daytime feeding activity. Growth rates ranged from − 14% to 21% WW day− 1 and the resulting equation between RNA/DNA ratio and growth rate (GR) of paralarvae was GR = 1.74 RNA/DNA − 11.79 (R2 = 0.70). After starvation, there was a reduction in growth variability in all starved treatments, while growth variability remained high in the control treatment. Findings from the present study indicate that nucleic acids are a valid indicator of nutritional condition and growth in squid paralarvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号