首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
基于15N稳定同位素技术的斜生栅藻对硝氮和氨氮吸收研究   总被引:2,自引:0,他引:2  
硝氮(NO3--N)和氨氮(NH4+-N)是水体中无机氮的主要形态。利用15N稳定同位素技术研究了斜生栅藻(Scendesmus obliquus)对NO3--N和NH4+-N的吸收特征。结果显示,在相同浓度条件下,斜生栅藻对NH4+-N的吸收速率显著高于对NO3--N的吸收率,在180min的试验中,对15NH4+-N的吸收速率为0.62~1.15μmol/(g·min);对15NO3--N的吸收速率为0.08~0.15μmol/(g·min)。在NO3--N和NH4+-N2种形态氮源同时存在的混合组中,斜生栅藻对NO3--N的吸收速率[0.12~1.00μmol/(g·min)]显著低于NO3--N作为唯一氮源的单一组[0.78~1.23μmol/(g·min)],表明NH4+-N的存在对藻类吸收NO3--N有抑制作用。在14NO3--N和15NO3--N同时存在时,斜生栅藻优先吸收14NO3--N,产生同位素分馏效应,但不同形态氮对藻类氮吸收的影响远远大于同位素的影响。  相似文献   

2.
为探讨适宜大型海藻芋根江蓠(Gracilaria blodgettii)栽培的生态条件,分别测定了在不同总无机氮浓度(48μmol·L^-1、96μmol·L^-1、144μmol·L^-1、192μmol·L^-1、240μmol·L^-1、288μmol·L^-1和336μmol·L^-1)和不同氮磷比(N/P)(1/1、5/1、10/1、50/1和100/1)的培养条件下,芋根江蓠藻体的相对生长速率(RGR)和生化组分的变化。结果表明,最适总无机氮浓度为192μmol·L^-1,最适N/P为10/1。芋根江蓠适宜在氨氯(NH4^+-N)比例较高的海水中生长,3种无机氮最适合质量比值是m[硝氮(NO3^--N)]∶m(NH4^+-N)∶m[亚硝氮(NO-2-N)]=1∶10∶5和m(NO3^--N)∶m(NH4^+-N)∶m(NO-2-N)=5∶10∶1。在最适宜的营养盐因子环境条件下,芋根江蓠在生化组分(光合色素及可溶性蛋白)和抗氧化能力等方面都表现较好;而在海水总无机氮浓度过低、N/P过高以及NH4^+-N在总无机氮中所占比例较低等条件下,都不利于藻体正常生长,会导致藻体营养不良、生长缓慢。  相似文献   

3.
波吉卵囊藻对养殖水体溶解态氮吸收规律的研究   总被引:1,自引:0,他引:1  
利用15N稳定同位素标记物,研究在不同盐度下波吉卵囊藻(Oocystis borgei)对溶解态氮的吸收速率和选择性。结果表明:盐度对波吉卵囊藻氮吸收速率影响显著(P<0.05)。当盐度为15时,波吉卵囊藻对氨氮(NH4+-N)、亚硝酸盐氮(NO2--N)、硝酸盐氮(NO3--N)等均有较大的吸收速率,分别为1.69、0.112、0.028μgN/(g.h);盐度为30时,对尿素氮(Urea-N)有较大的吸收速率,为0.074μg N/(g.h)。不同盐度下,波吉卵囊藻对4种溶解性氮的选择性吸收的先后顺序为:氨氮>亚硝酸盐氮>尿素氮>硝酸盐氮。因此,可通过在对虾养殖环境中接种波吉卵囊藻,以吸收水体中过高浓度的氨氮和亚硝酸盐氮,改善虾池养殖水质,促进健康生态养殖。  相似文献   

4.
温度、盐度和光照强度对鼠尾藻氮、磷吸收的影响   总被引:9,自引:0,他引:9  
在实验室条件下,研究了不同的温度和盐度组合,温度和光照强度组合对鼠尾藻(Sargassum thunbergii)氮、磷吸收速率的影响.结果表明,上述3个环境因子对鼠尾藻氮、磷吸收速率均有显著影响.其中,温度和盐度对鼠尾藻氮、磷吸收速率有极显著影响(P<0.01),二者交互作用也极显著(P<0.01).在盐度20、温度25℃条件下和盐度30、温度30℃条件下,鼠尾藻对氮有较高吸收速率,分别为11.26μmol/[g(dw)·h]和11.01 μmol/[g(dw)·h];在盐度40、温度15~30℃范围内对磷的吸收速率较大,达到1.5μmol/[g(dw)·h]以上.温度和光照对鼠尾藻氮、磷吸收速率均有极显著影响(P<0.01),二者交互作用极显著(P<0.01).在温度15℃和光照强度140~180μE/(m2·s)以及温度20~25℃和光照强度60~100 μE/(m2·s)条件下,鼠尾藻对氮有较高吸收速率,均在9.60 μmol/[g(dw)·h]以上;在温度25℃和光照强度60μE(m2·s)条件下,鼠尾藻对磷的吸收速率达到最大,为1.30 μmol/[g(dw)·h].本研究结果表明,鼠尾藻总体上对水体中的氮、磷均具有较高的吸收速率,且能较好地同时吸收NH4+-N和NO3--N,显示了它对海水环境中营养盐具有较强的吸收能力.  相似文献   

5.
真江蓠对氨氮去除效率与吸收动力学研究   总被引:5,自引:0,他引:5       下载免费PDF全文
以真江蓠(Gracilaria asiatica)为实验材料,在实验室水平上测定了真江蓠培养密度对NH4-N去除效率和吸收速率的影响,比较了真江蓠在氮半饥饿和氮饱和状态下的氨氮吸收动力学特征以及不同起始浓度NH4-N对其吸收速率的影响.结果表明:真江蓠密度为2~24 g·L-1时,5 h内随着藻体密度增大和实验时间延长,真江蓠去氨氮能力也增强.当藻体密度为24g·L-1时,真江蓠在5 h内去除氨氮效率最高,达到99.77%.各种藻体密度在起始阶段保持较高吸收速率(30~41 μmol·g-1·h-1),随后藻体密度与吸收速率呈反比关系,其最低藻体密度组(2 g·L-1)在3 h和5 h吸收速率最大,分别为28.33 μmol·g-1·h-1和18.85μmol·g-1·h-1.在起始浓度梯度实验中,氮半饥饿和氮饱和真江蓠吸收氨氮的最大吸收速率和半饱和常数在1 h均达到最高值,分别为116.47、159.40μmol·g-1·h-1和439.70、913.61 μmol·g-1·h-1.之后随着培养时间的延长而降低.氮半饥饿和氮饱和真江蓠对NH4-N的吸收差别不显著;当氨氮浓度为300~500μmol·L-1时,氮半饥饿的真江蓠在起始1 h内有一个快速吸收阶段(40.7~102.1μmol·g-1·h-1),吸收速率与NH4-N浓度几乎成正比,此时不符合米氏动力学饱和方程,而在低N浓度下(100~200μmol·L-1),藻体对NH4-N的吸收则没有出现这种现象;随着培养时间延长,直到NH4-N浓度达到一定限度时,吸收速率可达到一极大值而符合米氏动力学饱和方程.该研究结果为大规模栽培真江蓠净化水体和生态修复提供了理论依据.  相似文献   

6.
以大型红藻真江蓠Gracilaria asiatica、脆江蓠Gracilaria chouae、蜈蚣藻Grateloupia filicina大型褐藻鼠尾藻Sargassum thunbergii、海黍子Sargassum pallidum为实验材料,研究了在10~25℃不同温度下这几种海藻对硝氮(NO3-N)的吸收和生长情况。结果表明,几种大型海藻对水体中NO3-N的吸收效果明显,其中真江蓠和脆江蓠的吸收速率15℃时最高,为0.507±0.136和0.448±0.095μmol/g·h,蜈蚣藻和鼠尾藻在20℃时最高,为0.614±0.033和0.289±0.019μmol/g·h,海黍子在25℃时吸收速率最高,为0.748±0.015μmol/g·h。结合去除效率常数来看,海黍子对NO3-N有更好的去除效果。温度变化对大型海藻的生长具有显著的影响,在20℃下大部分海藻相对生长速率达到最高,其中以脆江蓠最高,达到4.79%±0.45%/d。  相似文献   

7.
本文利用^15N-NH4^+氧化法对湄洲湾近岸水体的硝化作用进行深入研究.结果表明,湄洲湾近岸水体硝化速率范围在0.51~ 4.60 μmol·L-1·d-1.养殖区附近较高的硝化速率,有利于海水对NH4^+-N污染物的自净作用,当水体硝化作用强烈时,水中的NO3^-的浓度也随之升高,表明海水中NO3^-主要来自于细菌的硝化作用.湄洲湾海水NH4^+-N的周转时间在1~9d,表层水体的NH4^+-N转化时间高于底层水.硝化作用转化NH4+为NO2^-,并最终转化为NO3^-,减少了NH3-N及NH4^+-N对近岸养殖系统中生物的危害.  相似文献   

8.
营养盐因子对孔石莼和繁枝蜈蚣藻氮、磷吸收的影响   总被引:3,自引:0,他引:3  
采用混合均匀试验设计方法,考察氮、磷营养盐浓度及其交互作用对孔石莼和繁枝蜈蚣藻氮、磷吸收的影响。试验结果表明,在适宜的范围内,2种海藻对氮、磷营养盐的吸收均随着营养盐浓度的升高而增加;NO3-N×NH4-N交互作用影响2种海藻对NO3-N的吸收;NO3-N×PO4-P交互作用影响孔石莼对3种氮、磷营养盐的吸收,还影响繁枝蜈蚣藻对NH4-N的吸收;NH4-N×PO4-P交互作用影响孔石莼对磷的吸收;藻质量对2种海藻营养盐的吸收有一定的作用,但是作用不是很显著。  相似文献   

9.
于高温多雨季节对广东省清远市鳜(Siniperca chuatsi)养殖基地的6个鳜及饵料鱼养殖池塘发病、用药情况及水质进行调查分析。结果表明,单独施用抑菌类药物,鳜出血病容易复发,而同时施用增强动物免疫力与减少应激行为药物及抑菌类药物,鳜出血病不易复发。鳜及饵料鱼塘发病期间,水中氨氮(NH4+-N)质量浓度始终高于1.0 mg.L-1,亚硝酸盐氮(NO2--N)质量浓度高于0.18 mg.L-1,氮磷比(N/P)也有偏高的情况发生,而所调查的6个池塘硝酸盐氮(NO3--N)质量浓度均随养殖时间延长而逐渐下降。NH4+-N与NO2--N质量浓度过高可能预示鳜的细菌性疾病即将发生。可按实际情况种植浮萍等植物吸收过量NH4+-N;开增氧机保持水中高溶解氧(DO)以降低NO2--N质量浓度或投放减少动物应激行为的药物。N/P过高可适当释放磷肥以调节水质。  相似文献   

10.
养殖水体沉积物中氮的形态、分布及环境效应   总被引:8,自引:1,他引:8  
养殖水体沉积物中的氮可分为有机态氮和无机态氮,以有机态氮为主(70%~90%)。无机态氮主要有NO3--N、NO2--N和NH4 -N,其中以NH4 -N为主。各形态的氮含量在水平方向上的分布随距污染源的远近而有小到大变化;垂直方向上的分布则是:NH4 -N随沉积深度的增加含量增大,NO3--N随沉积深度的增加含量减小,而NO2--N随沉积深度的变化不明显。  相似文献   

11.
采用灰色系统关联度分析方法,以空间理论数学为基础,依规范性、偶对称性、整体性和接近性原则,计算并分析了在人工控制条件下澧县王家厂水库13个生态因子(透明度、水深、水温、溶解氧、酸碱度、电导率、氨氮、硝酸盐氮、总磷、总氮、氮磷比、浮游动物和浮游植物)的关联度,南河关联序结果为:氮磷比〉总氮〉硝酸氮〉氨氮〉浮游植物〉浮游动...  相似文献   

12.
溶解无机氮加富对海带养殖水体无机碳体系的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
通过室内模拟实验,研究了在海带养殖水体中添加不同浓度的无机氮(NO-3-N和NH+4-N)对海水无机碳体系的影响。结果表明,无机碳体系各组分的变化趋势与无机氮添加浓度和无机氮形态有关。当NO-3-N和NH+4-N浓度范围分别在(4.73~52.78)μmol/L和(2.56~34.66)μmol/L时,DIC、HCO-3和pCO2均随着营养盐浓度的增加呈下降趋势,其中以NO-3-3和NH+4-3组变化最为明显,均达到最低值,分别为2 054、2 112μmol/L,1 776、1 869μmol/L,86、114μatm;而当NO-3-N和NH+4-N浓度范围分别为(52.78~427.29)μmol/L、(34.66~268.33)μmol/L时,DIC、HCO-3和pCO2随着营养盐浓度的增加,其下降幅度逐渐减弱,但实验结束时DIC、HCO-3和pCO2仍低于对照组。NO-3-N对海带养殖水体无机碳体系的影响较NH+4-N明显,加NO-3-N组对水体的固碳能力显著高于加NH+4-N组。当NO-3-N和NH+4-N浓度分别为52.78μmol/L、34.66μmol/L时,海带的光合固碳能力达到最大,过高或者过低均会降低海带对水体无机碳的吸收固定。  相似文献   

13.
精养虾池主要生态因子变化特点与相关性分析   总被引:2,自引:0,他引:2  
2011年4月至7月,对海南省儋州市排浦对虾养殖场3口凡纳滨对虾(Litopenaeus vannamei)精养池塘水体中的叶绿素a(Chl-a)、浮游动物、异养细菌、弧菌、活性磷(PO34--P)等16项环境因子进行全程定期测定,分析养殖过程中主要生态因子的变化特点及其相互关系。结果显示,养殖过程中水体的溶解氧(DO)、pH和透明度呈现缓慢下降的趋势,悬浮物(TSS)、化学耗氧量(COD)、亚硝酸盐氮(NO2--N)、氨氮(NH4+-N)、浮游动物、异养细菌和弧菌则呈现出逐渐增加的趋势。ρ(Chl-a)的变化特征表现为养殖前期低,中后期逐渐升高;Chl-a与硝酸盐氮(NO3--N)呈极显著的正相关,与PO34--P呈负相关。桡足类密度与TSS呈极显著的正相关,与异养细菌、弧菌、轮虫密度呈显著正相关,与Chl-a、COD呈正相关,但不显著。异养细菌与COD呈极显著的正相关,与TSS呈显著的正相关,与透明度呈显著的负相关;弧菌与TSS呈极显著的正相关,与COD呈显著的正相关,与pH、DO呈显著的负相关。  相似文献   

14.
微型浮游植物(粒径2-20μm,这里把范围扩至2-50μm)多样性在很大程度上决定着海洋环境的稳定性。其多样性指数(H')的变化受多种因素影响。利用计算相关性指数的方法研究了H'与多种环境因子之间的关系,结果表明,在5-27℃温度范围内,H'与水中营养盐结构尤其是NO-3-N/NH+4-N比值相关性显著。2006-2007年对威海沿岸6个海湾进行了4次调查,调查中发现,当水温16℃(16-27℃)时,H'与NO-3-N/NH+4-N值呈显著负相关:2006年7月相关性指数R=-0.526(n=14);2007年10月相关性指数R=-0.575(n=19)。当水温12℃(5-12℃)时,H'与NO-3-N/NH+4-N值呈高度正相关:2006年12月相关性指数R=0.665(n=15);2007年4月相关性指数R=0.415(n=25)。这种规律显示出微型浮游植物在不同的温度条件下对海域中氮源的种类要求可能是有选择的。当水温12℃时(冬季、春季),多数浮游植物优先吸收NO-3-N;而当水温16℃时(夏季、秋季),多数浮游植物优先吸收NH+4-N。  相似文献   

15.
以龙须菜(Gracilaria lemaneiformis)为试验材料,分别研究了温度和营养盐协迫对其生长及氨氮吸收速率的影响。结果表明,2个环境因子对龙须菜生长和吸收氨氮速率均有显著影响。龙须菜在20℃条件下生长较其在10℃和30℃条件下生长快速(P〈0.01);营养盐含量过高和过低均不利于龙须菜的生长;营养盐水平越...  相似文献   

16.
水浮莲对水产养殖排放水体净化的初步研究   总被引:1,自引:3,他引:1  
研究了水浮莲(Pistia stratiotes)在可控条件下对水产养殖排放污水中的氨氮、亚硝酸氮、硝酸氮、总氮、总磷、化学耗氧量等水质指标的去除效果。试验结果表明,水浮莲对水体中的氨氮、亚硝酸氮、硝酸氮、总氮、总磷和COD均有一定的净化效果,各水质指标的含量均有不同程度的降低,其最大去除率分别为42.4%、47.5%、23.2%、5.80%、51.5%和25.9%。  相似文献   

17.
为了解在不同pH和滤料条件下硝化细菌对氨氮(NH_4~+-N)和亚硝酸盐氮(NO_2~--N)的去除效果,通过试验,探讨了5.0~10.0等6个pH梯度以及陶环、珊瑚石、生物刷和生物球等4种滤料的消氨效果。在pH 8.0~9.0时,至试验第7天氨氮去除率分别达99.86%、98.95%,明显高于pH 6.0、7.0和10.0组(去除率分别为66.18%、71.43%和70.51%)。在pH 7.0~9.0时,亚硝酸盐氮浓度的增加小于氨氮浓度的下降,特别是在pH 9.0时两者浓度变化差异明显。生物刷、陶环、珊瑚石和生物球分别在试验的第3、4、6、7天,氨氮去除率达100%。陶环组和珊瑚石组,NO_2~--N质量浓度在达到最高值(9.60 mg/L和10.00 mg/L),之后开始逐步下降。生物刷组和生物球组在达到最高值(9.55 mg/L和11.00 mg/L)之后基本维持不变。结果表明:硝化细菌适宜碱性的环境条件(pH 8.0~9.0),水体pH 9.0最有利于硝化细菌对NH_4~+-N和NO_2~--N的去除。不同滤料对硝化细菌去除NH_4~+-N和NO_2~--N有不同的影响。陶环对硝化细菌去除NH_4~+-N和NO_2~--N都有良好效果,生物刷只对去除NH_4~+-N有良好效果,珊瑚石只对去除NO_2~--N有良好效果。多种滤料配合使用有利于产生优势互补的效果。  相似文献   

18.
蛋白分离器对循环水养殖水质理化因子的调控作用   总被引:1,自引:0,他引:1  
通过测定5个关键水质理化因子,研究蛋白分离器对南美白对虾养殖水质的调控作用。结果表明:使用蛋白分离器后,水体的pH值维持在8.0~8.3,养殖水体中氨氮最高达到0.917mg/L,亚硝酸盐最高达到0.324mg/L,DO含量在3.775~6.300mg/L,COD含量峰值为14.27mg/L。  相似文献   

19.
蔡葆青 《福建水产》2012,34(1):16-20
本实验通过水体与育苗池消毒、合理投喂、科学防病以及育苗池水质理化因子(DO、pH、NH 4+-N、NO 2--N、COD)和病原生物(弧菌、WSSV等)的实时监测,对凡纳滨对虾高健康育苗模式做了一定的探索。实验结果显示,整个育苗期间育苗池水溶解氧保持在4.2~5.8mg/L(平均5.01±0.63mg/L),pH保持在8.04~8.38(平均8.13±0.11);NH 4+-N控制在0.15~1.21mg/L(平均0.51±0.40mg/L),NO 2--N控制在0.15~1.21mg/L(平均0.05±0.02mg/L),COD控制在1.56~7.02mg/L(平均4.75±2.18mg/L)。异养细菌数200~91000cfu/mL,弧菌0~6980cfu/mL。投放无节幼体4600×104尾,收获虾苗1280×104尾,成活率达27.8%,且虾苗体质健康,活力旺盛,无携带病毒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号