首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Welfare in farmed fish got particular attention during the last decades from both governmental and public sides. In aquaculture context, welfare concerns are mainly related to handling procedures, water quality and stoking densities. In Europe, authorities had to clarify the threshold limits of stocking densities to maintain fish good welfare, including for organics aquaculture through the EC regulation 710/2009. However, effects of stocking density on fish welfare are complex and sometimes contradictory. Moreover, there is a lack of knowledge about the impact of density on fish welfare in organic aquaculture. Thus, the aim of the study is to asses welfare state of rainbow trout (Oncorhynchus mykiss) at two initial stocking densities (low density, LD: 12 kg/m3 and high density, HD: 17 kg/m3) fed using organic feed by combining the monitoring of growth performances, behaviour (swimming activity) and physiological indicators (i.e. cortisol, glucose, lactate, hematocrit, red blood cellule count and lysozyme). At the end of experiment, the stocking density reached 21 kg/m3 and 30 kg/m3 for the LD and HD respectively. Overall, growth performances, swimming activity and level of physiological indicators of stress and welfare were similar between HD and LD over the experiment duration. To conclude, we observed no alteration of fish welfare between the two stocking densities monitored. This study suggests that a final stocking density of 30 kg/m3 can be considered for organic aquaculture of rainbow trout respecting welfare.  相似文献   

2.
A high rate of sibling cannibalism is one of the principal obstacles in the rearing of larvae and juveniles of the African catfish Clarias gariepinus. This paper examines the underlying behavioural components of agonistic behaviour under culture conditions. Ten day old catfish larvae were stocked at 30 larvae l–1 in three tank designs with different surface areas and equal volumes. Stocking densities were 1.2, 0.6 and 0.3 fish cm–2 bottom surface. Growth did not differ between treatments. The highest mortality over 30 days was recorded at the medium density (0.6 larvae l–1). Fish stocked at this density showed the highest rate of aggression, while there was no difference in aggression between the highest and the lowest stocking densities. The results indicate that stocking density should be at least as high as 1.2 larvae cm–2 bottom surface area to obtain high production at best survival rates.  相似文献   

3.
Abstract. Observations of adult Atlantic halibut, Hippoglossus hippoglossus (L.), behaviour in cages were made with underwater camera and video recording equipment. Significantly more fish ( P < 0·01) were found on the cage bottom than in the water column, fish tending to congregate around the outside rather than in the centre of the cage. During rough weather, the cage bottom was observed to heave violently and proportionately fewer fish remained on the bottom, those which did adopting an arched body posture with heads and tails not in contact with the cage bottom. Around 25% of the caged fish were active at any time, most of the active fish remaining close to the cage surface or bottom, with little use being made of the remaining cage volume. Fish were observed to swim in a circular pattern close to the cage walls (mean velocity 0·53 m/s), maintaining such behaviour for periods of up to 5min with little change in swimming speed. Whilst all food types were ingested, items delivered directly lo the cage bottom were taken only if detected within the first minute or so. The implications for rearing Atlantic halibut in conventional cages are discussed.  相似文献   

4.
Abstract. The growth and survival of Clarias gariepinus (Burchell) fry was investigated at high stocking density. Significant increases in mean fry weight, and concomitant significant decreases in specific growth rate, were recorded over successive 5-day periods. Fry growth was negatively density dependent. Fry survival was in excess of 90% in all treatments. Increasing stocking density between 50 and 150 fish/l altered the pattern of mortality; non-cannibalistic deaths decreased significantly with increasing stocking density though cannibalism did not significantly increase. Periods of weaning fish onto larger feed particles were associated with temporarily increased rates of cannibalism.  相似文献   

5.
Cage design and stocking density are important aspects of aquaculture farm design, therefore understanding how fish behave at different stocking densities is critical information for farm managers. In this study, high resolution acoustic telemetry was used to investigate the swimming behavior of adult Atlantic cod, Gadus morhua, that were stocked at four densities (5, 10, 25, and 45 kg/m3). Acoustic tags were placed into the abdominal cavity of five fish per density treatment so their swimming behavior could be continuously monitored throughout the study. An array of hydrophones made it possible to calculate the position of each fish in three dimensions, at ~2–5 sec intervals, for 4–30 d. Three underwater cameras were used to obtain additional data about the distribution of fish in the cage during the daytime. At the lowest density, the cod spent the majority (64.3 ± 0.08%) of their time in the bottom third of the net pen. As density increased, the fish moved higher in the water column, and this behavior was most evident at night, at all densities. At no time throughout the entire study were there any obvious occurrences of schooling behavior, even at the highest density (45 kg/m3).  相似文献   

6.
Channel catfish Ictalurus punctatus farming is the largest component of aquaculture in the USA. Culture technologies have evolved over time, and little recent work has been conducted on the effects of stocking density on production characteristics and water quality. Twelve 0.1‐ha ponds were stocked with 13‐ to 15‐cm fingerlings (16 g) at either 8600, 17,300, 26,000, or 34,600 fish/ha in single‐batch culture with three replicates per treatment. Fish were fed daily to apparent satiation with a 32% floating commercial catfish feed. Nitrite‐N, nitrate‐N, total ammonia nitrogen (TAN), total nitrogen, total phosphorus, chemical oxygen demand (COD), Secchi disk visibility, chlorophyll a, chloride, total alkalinity, total hardness, pH, temperature, and dissolved oxygen (DO) were monitored. Ponds were harvested after a 201‐d culture period (March 26, 2003 to October 13, 2003). Net yield increased significantly (P < 0.05) as stocking density increased, reaching an average of 9026 kg/ha at the highest density. Growth and marketable yield (>0.57 kg) decreased with increasing stocking density. Survival was not significantly different among densities. Mean and maximum daily feeding rates increased with density, but feed conversion ratios did not differ significantly among treatments (overall average of 1.42), despite the fact that at the higher stocking densities, the feeding rates sometimes exceeded 112 kg/ha per d (100 lb/ac per d). Morning DO concentrations fell below 3 mg/L only once in a 34,600 fish/ha pond. Concentrations of chlorophyll a, COD, nitrite‐N, and TAN increased nominally with increasing feed quantities but did not reach levels considered problematic even at the highest stocking densities. Breakeven prices were lowest for the highest stocking density even after accounting for the additional time and growth required for submarketable fish to reach market size. While total costs were higher for the higher density treatments, the relatively higher yields more than compensated for higher costs.  相似文献   

7.
To test the effect of stocking density on growth, survival rates and size distribution of juvenile swordtails, Xiphophorus helleri Heckel, under different environmental conditions, fish were stocked at rates of 1, 3 and 6 fish I?1. Growth was monitored over a 14-week period. Fish were weighed in six groups of 20 fish per tank. Size variation was determined at the end of the growth period by measuring the total length of each fish to the nearest mm. Fish were stocked in two different systems at three stocking densities (1, 3, and 6 fish I?1) in replicate. The systems were an indoor aquarium system and a tunnel system under semicommercial conditions. In each system, increasing stocking rates resulted in a significant reduction of growth rates. In the aquarium system, survival rate was not related to stocking density, whereas in the tunnel system, fish at the highest stocking density had a lower survival rate than those kept at the two lower stocking densities. The number of marketable fish above a set size limit of 40 mm total length was not higher in fish stocked at 6 fish I?1 than at 3 fish I?1 at the end of the study. Therefore, a stocking rate of 3 fish I?1 would be optimal. At the end of the study, fish were categorized into males, females and immature fish. Fish with a clearly visible gonopodium were classified as males, those with typical female characteristics as females, and small fish that were not yet differentiated as immature fish. The ratio of females to males was highly skewed in both systems, favouring a higher percentage of females. As stocking density increased, the female:male ratio was significantly reduced, which would result in a greater number of saleable pairs at increased stocking density. The implications of these results for the management of intensive production of swordtails are discussed.  相似文献   

8.
The welfare of fish is receiving increasing attention and attempts have been made to control welfare in farmed fish through regulation of management practices, including stocking density. However, there is little published information on the influence of stocking density on welfare of fish in marine cages. This present study examined welfare in Atlantic salmon (Salmo salar) in cages on a commercial marine farm, exposed to densities ranging from 9.7 to 34 kg m−3. On three occasions over a period of 10 months, fish were sampled from each cage, weighed and measured; their fin condition assessed and blood samples taken for measurement of glucose and cortisol. A multivariate analysis was used to combine four commonly used measures of fish welfare (condition of body and fins and plasma concentrations of glucose and cortisol) into a single welfare score. As well as objectively reflecting a coherence within the data, this score was consistent with the evaluation of welfare by experienced farmers. A generalized linear model indicated that the median welfare score for each cage was significantly related to sampling period, to stocking density (mean over the previous 3 months) and to location of the cage. A model with all the data from individual fish proved to be more robust and also identified sample period, stocking density (mean over 3 months) and position of the cage as significant predictors of the welfare score. There was no significant association between the welfare score and the length of time since grading or lice treatment. Further analysis of the relationship between stocking density and the welfare score suggested that there was no trend up to an inflection point ca. 22 kg m−3, after which increasing stocking density was associated with lower welfare scores. This study suggests that, while stocking density can influence the welfare of Atlantic salmon in production cages, this is only one influence on their welfare and on its own cannot be used to accurately predict or to control welfare.  相似文献   

9.
Applied ethology can help to improve Litopenaeus vannamei aquaculture. Our purpose was to demonstrate an influence of stocking density on behaviour. The shrimp were first distributed in aquaria and observed via an ad libitum observational method to construct an ethogram of social and feeding behavioural categories. The resulting ethogram consisted of retreat, cannibalism, getting to the feeding tray, occupying the feeding tray and getting feed. We then kept shrimp in aquaria at densities of 50, 75 and 100 animals m?2 and observed them via a behavioural sampling method using our ethogram as well as focal animal sampling of behaviours derived from the literature. These literature‐derived behaviours consisted of inactivity, feeding, crawling, exploration, burying, swimming and cleaning. We found that stocking density affects the behaviour of the shrimp. Optimal searching and feeding and a low frequency of crawling and swimming occurred at a density of 50 animals m?2, indicating a higher potential for growth and welfare at this density.  相似文献   

10.
An experiment was conducted to measure swimming activity of rainbow trout (254.0±33.7 g) held in outdoor tanks under three culture conditions with stocking density used to generate differences: 27 (Culture Density 1, CD1), 80 (CD2) and 136 kg m−3 (CD3). Fish were fed dry pellets at 1% of tank biomass from 9h00 to 13h00 with automatic feeders. Using acoustic telemetry, fish positions were monitored every 5 s during 48 h for nine fish (three in each treatment). Swimming behaviour was analysed in terms of trajectories: they varied between (i) holding position (high turning angles), (ii) chaotic trajectories (equal use of all turning angles) and (iii) circular swimming (average turning angle of 60°). Space utilisation differed for each culture condition: CD3 conditions induced a prolonged residence time in the central zone of the tank. Rainbow trout swimming activity patterns and levels differed depending on both day–night alternation and culture conditions. All fish reared at CD1 and one reared at CD2 were day-active. All the other fish showed high activity pattern variability and a higher swimming level was observed under CD3. These results illustrate that monitoring fish swimming activity is feasible even under high densities and provide relevant insights on fish activity which can lead to behavioural welfare indices in relation to constraints imposed by culture conditions.  相似文献   

11.
Rainbow trout Oncorhynchus mykiss (Walbaum) are usually cultured at high densities to maximize production, but little is known about the physiological and behavioural consequences of high‐density fish culture. The purpose of this study was to develop quantitative correlates of activity for fish held under conditions of increasing density. Fifteen hatchery‐reared rainbow trout (mean fork length = 432.3 ± 9.2 mm) were implanted with activity (electromyogram; EMGi) transmitters and randomly assigned to each of three replicate tanks. Original tank densities (15 kg m?3) were then increased to 30 and finally to 60 kg m?3 at weekly intervals by adding additional fish. Remote telemetry signals indicated that activity increased with increasing stocking density. Fish were relatively inactive during the middle of the day, with diel activity patterns not differing among treatments. Fish were more active during periods of darkness, with activity increasing with increasing stocking density. Relationships between swimming speed, EMGi activity and oxygen consumption were developed using a respirometer and used to estimate oxygen consumption of the fish in the density treatments. Average oxygen consumption estimates increased with increasing density treatments as follows: low density = 75.6 mg kg?1 h?1; medium density = 90.0 mg kg?1 h?1; and high density = 102.6 mg kg?1 h?1. Telemetry permits quantification of the effects of increasing density on fish activity. Physiological telemetry devices may provide a useful tool for remotely monitoring animal welfare correlates under controlled conditions for fish exposed to different husbandry conditions and may prove a valuable tool for the aquaculture industry.  相似文献   

12.
The effects of time restricted feeding, possibility of bottomfeeding and stocking density on the growth of Arctic charr(Salvelinus alpinus L.) were examined in fish held at lowtemperature (<2 °C). Fish fed for a restricted time (1 h) hadsignificantly (p < 0.05) lower specific growth rate (0.15 vs0.32% per day) than those fed the same ration over an extendedtime period (12 h). Increasing stocking densities had a positive andsignificant effect (p < 0.05) on growth with SGR increasing from 0.27to 0.52% per day at 2–30 kg m-3. Fish withaccess to feed on the tank floor had a significantly higher (p <0.05) growth rate (0.3 vs 0.13% per day) than those without thepossibility to feed from the bottom. When fish were held underconditions without access to the bottom a doubling of the feed rationdid not result in a significant (p > 0.05) increase in growth rate(0.13 vs 0.12%percnt; per day).  相似文献   

13.
Abstract.— A 12-wk experiment was conducted to test the effects of 50, 100, 200, and 300% stocking densities (ventral fish area to bottom tank area ratio) on growth, survival, and aggressive behavior in 2-moold juvenile winter flounder Pseudopleuronectes americanus . Over the course of the experiment, there were no differences ( P > 0.05) in growth between treatments at any given week. Survival decreased in all treatments over time, however, proportionately more fish died in the high (200 and 300%) density treatments. At the end of 12 wk, the 300% treatment had significantly lower survival ( P < 0.05). There were no differences in the degree of caudal fin damage between any of the treatments ( P > 0.05) suggesting that aggressive behavior. such as fin nipping, was not affected by stocking density. However, fish size was inversely related to caudal fin damage. When fish were sorted by length, the two smallest size categories (<2 cm and 2-3 cm) suffered the greatest fin nipping compared to each other ( P < 0.001) and all larger size categories ( P < 0.001). These results indicate that 50 to 300% stocking densities do not affect growth or aggressive behavior in juvenile winter flounder. Although survival was affected by density, the final yield (weight per treatment) at higher densities was still greater than at lower densities. Our hatchery recommendations are to stock at ≥200% but to monitor fish health carefully. Size grading should be employed to minimize aggression between fish size classes.  相似文献   

14.
Series of trials in which mackerel (Scomber scombrus L.) were confined in keepnets at different stocking densities are described. From simple confinement trials it was found that 50% of the fish died after 48 h at a stocking density of 30 fish m−3, equivalent to 6.5 kg m−3. Trials in which fish were held at stocking densities, and for a duration, comparable to those experienced in a “dried up” purse seine prior to “slipping”, showed that up to 90% of “slipped” fish died within 48 h of release. The primary cause of death was probably physical damage, particularly skin loss, caused by abrasion, although there is some evidence that mackerel have a healing process which can accommodate minor skin abrasions. A tagging trial showed a small but significant increase in mortality due to the tagging procedure.  相似文献   

15.
Artificial photoperiods that postpone sexual maturation and increase growth are now widely used in the Atlantic salmon Salmo salar L. farming industry. Few studies have been carried out to examine the effect of this treatment on fish behaviour and welfare in production cages. In this study, echo‐integration was used to observe the swimming depth and fish density of salmon in 20‐m‐deep production cages illuminated by lamps mounted above the water surface (SURF) or submerged in the cage (SUBS). From January to May, SUBS swam at a greater depth (5–11 m) than SURF (1–3 m) at night. SURF descended and SUBS ascended at dawn, but SUBS were still swimming at greater depth than SURF during the day from January to March. The difference in swimming depth resulted in SURF swimming at a median fish density about twice as high as SUBS at night and up to five times the calculated fish density. SURF increased the utilization of the cage volume as the biomass increased, but fish swimming at the highest density did so at up to 20 times the calculated fish density. The results suggest that salmon position themselves in relation to the artificial light gradient to maintain schooling behaviour and that the use of submersible lights may be a precaution to secure the welfare of caged salmon.  相似文献   

16.
Abstract –  The efficiency of a Passive Integrated Transponder (PIT)-tag detection system was tested during a 23-day experiment using a permanent digital video to record the passage of fish through multiplexed antennas. Coupling video to the PIT system allowed the detection of error sources and the correction of erroneous data. The efficiency of the detection system and its variation were investigated according to fish swimming speed, direction of movement and individual fish behaviour. Influence of time and environmental conditions on detection results were also checked. The PIT tag system was 96.7% efficient in detecting fish. Upstream movements were better detected (99.8%) than downstream movements (93.7%). Moreover, results showed that efficiency rate was not stable over the experiment; it was reduced on stormy days. Several sources of errors were identified such as sub-optimal orientation of the PIT tag relative to the antenna plane, the influence of fish swimming speed, individual fish behaviour and influence of environmental conditions.  相似文献   

17.
18.
To quantitatively define relationships among stocking densities, feeding rates, water quality, and production costs for channel catfish, Ictalurus punctatus, grown in multiple‐batch systems, twelve 0.1‐ha earthen ponds were stocked at 8,600, 17,300, 26,000, or 34,600 fingerlings/ha along with 2,268 kg/ha of carryover fish. Fish in all ponds were fed daily to apparent satiation using 32% protein floating feed. Temperature and dissolved oxygen in each pond were monitored twice daily; pH weekly; nitrite‐N, total ammonia nitrogen, and Secchi disk visibility every 2 wk; nitrate‐N, chlorophyll a, total nitrogen, total phosphorus, and chemical oxygen demand monthly; and chloride every other month. The costs of producing channel catfish at different stocking densities were estimated. There were no significant differences (P > 0.05) as a result of stocking density among treatment means of (1) gross or net yields, (2) mean weights at harvest, and (3) growth or survival of fingerlings (24–36%) and carryover fish (77–94%). Mean and maximum daily feeding rates ranged from 40 to 53 kg/ha/d and 123 to 188 kg/ha/d, respectively, and feed conversion ratios averaged 1.75. There were no differences in any feed‐related parameter as a result of density. Water quality variables showed few differences among densities at samplings and no differences when averaged across the production season. Yield of fingerlings increased as stocking density increased with significant differences between the two highest and the two lowest stocking densities. Breakeven prices were lower at the higher stocking densities as a result of the higher yield of understocked fish and similar mean individual fish weights produced at these higher stocking densities. Overall, varying stocking densities of fingerlings in multiple‐batch systems had little effect on production efficiency and water quality. Additional research on managing the population structure of carryover fish in commercial catfish ponds may be warranted.  相似文献   

19.
We evaluated the relationship of stocking density to survival, growth performance and fin condition of European perch Perca fluviatilis with hand feeding and self-feeders. Hand-fed perch (body weight 19.1 ± 5.1 g and total length 107 ± 9 mm) were reared at 0.5, 1.0, 1.5 and 2.0 fish/L. Self-feeding perch (body weight 25.4 ± 3.9 g and total length 128 ± 7 mm) were reared at stocking densities of 0.6, 1.0 and 1.4 fish/L. Pond-reared perch served as a comparison group for fin damage assessment. We found no differences in survival rate among stocking densities with either feeding method. Hand-fed fish displayed the highest weight gain and SGR at stocking density of 0.5 fish/L. The self-feeding fish showed a non-linear association of weight gain with stocking density with the highest growth at 1.0 fish/L. Fin length was noticeably greater in pond-reared fish compared with RAS-reared fish regardless of feeding method. In both experiments, fin length relative to standard length showed a negative relationship with stocking density, with pectoral fins showing the greatest effect. Fin condition deteriorated with increasing stocking density, and growth was highest at 0.5 and 1.0 fish/L in hand-fed and self-feeding fish, respectively.  相似文献   

20.
Growout production of the camouflage grouper, Epinephelus polyphekadion (Bleeker), in a 10-m3-capacity fibreglass tank culture system was evaluated, using hatchery-produced fingerlings (56-59 g initial weight) at stocking densities of five, 15 and 45 fish m?3. During the first 9 months of a 12-month growout period, the fish were fed twice a day with a moist pellet feed containing 40.9% protein. From month 10 onwards until harvest, the fish were fed moist pellets in the morning and trash fish in the evening at a 1:1 ratio. The final weight of fish at harvest was up to 900 g, with mean weights of 544.6 ± 170.72 g at five fish m?3, 540.2 ± 150.82 g at 15 fish m-?3 and 513.3 ± 134.52 g at 45 fish m?3. The results showed no significant differences (P > 0.05) in growth rate and fish size between the different stocking densities tested. The average daily growth rate ranged from 0.62 to 3.38 g fish?1 day?1, with mean weights of 1.49 ± 0.74 g fish?1 day?1 at five fish m?3 through 0.53 to 2.38 g fish?1 day?1, 1.32 ± 0.57 g fish?1 day?1 at 15 fish m?3 to 0.48-3.32 g fish?1 day?1 and 1.31 g fish?1 day?1 at 45 fish m?3 stocking density. Although up to 100% survival was observed at the lowest stocking density, the survival rate significantly decreased (P < 0.05) with increasing stocking density. The food conversion ratio (FCR) significantly decreased (P <0.05) with increasing stocking densities, showing efficient feed utilization with increasing stocking densities of E. polyphekadion. The FCR averaged 2.1 at a stocking density of 45 fish m?3. The yield in terms of kg fish produced m?3 of water used in the culture system significantly increased (P < 0.001) from five to 45 fish m?3. The yield averaged 17.3 ±0.53 kg m?3 at a stocking density of 45 fish m?3. The present results show that the present tank culture system could sustain more biomass in terms of increasing fish stocking densities. The growth performance of E. polyphekadion observed during this investigation has been reviewed with other grouper species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号