首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Abstract – Fragmented populations of freshwater fish may develop genotypic and phenotypic differences as adaptations to local habitat conditions. These differences contribute significantly to biological diversity and may lead to speciation. In the Murray–Darling Basin, Australia, the Murray hardyhead Craterocephalus fluviatilis, listed as ‘endangered’ by the World Conservation Union, has a wide but fragmented distribution that is apparently related to salinity. To determine whether this pattern has a physiological basis, we compared osmoregulation in fish from two isolated populations in different salinity regimes (Wyndgate: 0.4–1.5‰; Disher Creek: c. 1.0–45‰). In laboratory trials, fish from both populations remained healthy at high salinities (5–65‰). The Disher Creek population maintained a significantly lower blood osmotic concentration than the Wyndgate population at salinities ≤1‰, suggesting that there is a physiological difference between them. The findings have implications for the conservation of C. fluviatilis and other fish populations whose distributions are fragmented by salinity.  相似文献   

2.
3.
  1. The paper ‘Biodiversity values of remnant freshwater floodplain lagoons in agricultural catchments: evidence for fish of the Wet Tropics bioregion, northern Australia’, published in Aquatic Conservation: Marine and Freshwater Ecosystems in 2015, has contributed in several ways to the integration of freshwater wetland science within new catchment management policies and practices for Great Barrier Reef (GBR) sustainability.
  2. The Tully–Murray biodiversity study developed novel protocols to sample larval, juvenile, and adult fish life‐history stages in floodplain lagoons using a combination of boat‐based backpack electrofishing and fyke netting. In addition, hydrological and hydrodynamic models were applied in a completely new way to quantify the timing, extent, and duration of water connectivity across floodplain streams, cane drains, and wetlands. Combining the two novel approaches enabled an analysis of lagoon fish assemblage patterns in relation to environmental gradients, especially floodplain hydrology, connectivity patterns, and measures related to agricultural land use.
  3. In demonstrating the importance of different levels of connectivity for different biodiversity outcomes in freshwater floodplain lagoons of the Tully–Murray catchment, the subject paper established that floodplain connectivity needs to be taken into consideration in wetland management practices.
  4. The timing of the subject publication was fortuitous. It coincided with the preparation of the evidence‐based 2017 Scientific Consensus Statement on land‐based water quality impacts on the GBR. As one of the few freshwater wetland ecology publications for the catchments of the GBR at that time, this paper played an important role in demonstrating freshwater wetland values, fish conservation options, and management imperatives to sustain wetland ecological health and services in GBR catchments.
  5. By advancing the understanding of factors driving biodiversity patterns, and the importance of connectivity and ecohydrological processes in freshwater floodplain wetlands of the GBR catchment, the Tully–Murray study helped to drive new policy directives for the protection and restoration of catchment, floodplain, and estuary functions, and connectivity, now embedded in the Reef 2050 Long‐Term Sustainability Plan 2018, an overarching strategy for managing the GBR over the next 35 years, and complementary Queensland environmental legislation.
  相似文献   

4.
Estuaries are unstable ecosystems and can be changed by the environmental and anthropogenic impact. The Murray Estuary and Coorong were degraded by drought and low freshwater input in the last decade and therefore transformed into the largest hyper-saline lagoon in Australia. This study evaluates the physiological stress of two estuarine fish species (small-mouthed hardyhead Atherinosoma microstoma and Tamar goby Afurcagobius tamarensis) to the induced salinity change in captivity. The test fishes were collected from the Coorong and transported to the laboratory in the water from the Coorong. Each fish species was exposed to different levels of salinity, and a number of enzymes were assessed to measure the stress response of fish to salinity change. The activity of reactive oxygen species was significantly increased with the salinity change in both fish species compared with the fish in the control. Significant salinity effect on superoxide dismutase activity was observed on Tamar goby but not on small-mouthed hardyhead. Conversely, the impact of salinity on catalase activity was detected on small-mouthed hardyhead but not on Tamar goby. The study reveals that the induction of physical stress by salinity changes occurred in both Tamar goby and small-mouthed hardyhead despite the varying response of antioxidant enzymes between fish species. The study provides an insight into the understanding of physiological adaptation in estuarine fish to salinity change. The results could improve our knowledge on stress response and resilience of estuarine fish to hypo- and hyper-salinity stress.  相似文献   

5.
  1. Pelagic spawning riverine fish (pelagophils) spawn in free‐flowing river habitats with downstream drift of eggs and larvae but the spatial scale is often unknown, and this constitutes a major ecological knowledge gap.
  2. In the arid Darling River in south‐eastern Australia, the present objectives were: (i) to determine the potential downstream dispersal distance of young golden perch (Macquaria ambigua); and (ii) to evaluate whether provision of environmental water enhanced dispersal of young fish from Menindee Lakes to the lower Darling River (LDR) while also cueing further spawning in downstream lotic reaches.
  3. Golden perch spawned in unregulated lotic tributaries on a flood pulse and larvae drifted or dispersed >1,600 km downstream and entered large ephemeral productive floodplain lake nursery habitats as fully scaled fingerlings.
  4. Planned releases of environmental water cued golden perch spawning in the LDR and enabled juvenile fish to disperse downstream from the Menindee Lakes nursery into receiving populations in the LDR, Great Darling Anabranch, and southern Murray River, with some fish potentially completing an active migration of >2,100 km by age 1 year.
  5. The Darling River case study highlights the need for a system‐scale approach to the conservation management of pelagophilic fish, along with multi‐year perennial flow strategies to improve ecosystem integrity in large rivers globally.
  相似文献   

6.
Abstract.— In South Carolina, studies have been conducted to develop rearing techniques for southern flounder Paralichthys lethostigma a candidate for aquaculture development and stock enhancement programs. To help define environmental tolerances, a variety of salinity studies were conducted with the early life stages of this species. Eggs were buoyant at 32 ppt and sank at 29 ppt with salinities of 30–31 ppt providing varying levels of suspension in the water column. Eggs incubated at 0 and 5 ppt all died, whereas 82.5% hatched at 10 ppt but larvae died shortly thereafter. At 63 h post-fertilization, there were no differences in hatch level for eggs incubated at salinities of 15 to 35 ppt (mean hatch level 98.5%). In a 72-h study, fish 3 wk post-metamorphosis (13.7 mm TL, 50-d-old) were acclimated to seven salinities ranging from 0–30 ppt. Fish held at 0 ppt salinity exhibited a statistically (P < 0.05) lower survival (20.0%) than those exposed to 5–30 ppt salinity concentrations. No differences were detected in survival (mean 99.1%) among fish held in the higher salinities. A second study examined the tolerance of older juveniles to lower salinities. Juvenile flounder (95.2 mm TL, 220-d-old) were acclimated to 0, 1,5 and 10 ppt salinities and reared for 2 wk. Results showed that fish could tolerate salinities of 0–10 ppt (100% survival). These data indicate that salinity tolerance of southern flounder increases with age. In addition to the short duration studies, a replicated 11-mo duration tank grow-out study was conducted at mean salinity 5.4 ppt and mean temperahue 22.6 C with an all male population. Flounder grew from a mean length of 100 mm to 213 mm TL and weight from 8.9 to 104.3 g. Growth of the cultured fish approximated that observed among male flounders in the wild.  相似文献   

7.
Two 12‐wk rearing experiments were conducted to examine the effect of rearing salinities of 10–35 ppt on the growth of 3‐ and 170‐g‐size tiger puffer, Takifugu rubripes. Fish were reared in a closed recirculation system without introducing fresh culture water at 23 C and were fed commercial pellet diet for tiger puffer twice or three times daily to apparent satiation each, almost everyday. Growth of 3‐g‐size fish seemed to increase with decreasing salinity; however, there were no significant differences in the specific growth rate and weight gain among treatments because of differences in initial body weight. Final body weight and length of fish reared at 10 ppt were significantly higher than those for fish reared at 30 ppt although initial sizes were similar. Differences were not found for the feed efficiency (FE) and daily feed consumption. Apparent relationships were not observed between salinity and blood characteristics or proximate compositions of muscle of the cultured fish. Differing from smaller fish, growth of 170‐g‐size fish tended to decrease with decreasing salinity from 30 to 10 ppt and with increasing salinity from 30 to 35 ppt. Similar trends for FE were observed.  相似文献   

8.
Although a stenohaline freshwater fish, the stinging catfish Heteropneustes fossilis, is also available in the freshwater fringes of the coastal areas of Bangladesh, the tolerance of this species to variable environmental salinity has not been thoroughly investigated. Based on median lethal salinity (MLS‐50 96 h), three sublethal salinity levels (3 ppt, 6 ppt and 9 ppt) and a control (0 ppt), each with three replications were selected to observe the effects of mildly brackish conditions on the fish for a period of 90‐day exposure. Better growth and survival were found up to 6 ppt compared with control. Salinity more than 6 ppt appeared unsuitable for H. fossilis fingerling due to increased mortality and reduced growth. To determine biochemical alterations, a few important physiological parameters were observed after 90 days of exposure. Glycogen level of liver and muscle in the fish reared at 9 ppt salinity decreased significantly (P < 0.05) as compared to the control. Glucose level in blood and liver was also found to be increased in fish with increase in salinity. ALP and ATPase activities were reduced significantly in both muscle and liver tissues at higher salinity, indicating the stress mitigation effect. However, all the biochemical parameters were found in normal condition up to 6 ppt compared with control. This evidence suggests that H. fossilis can sustain and grow well below 6 ppt and can be a potential candidate for culture in coastal areas after heavy downpour when the salinities level falls to 6 ppt or lower.  相似文献   

9.
The aim of this study was to evaluate the growth and survival of pacu, Piaractus mesopotamicus, larvae reared in different salinities and to determine the Artemia nauplii life span in freshwater and in saline water. First feeding 5‐d‐old pacu larvae were reared in freshwater or at 2, 4, 6, 8, 10, 12, and 14 ppt salinities. The larvae were reared in 1.5‐L aquaria at a density of 10 larvae/L with three replicates per treatment. After 10 d of rearing, significant differences (P < 0.05) were observed for growth and survival. Larval growth was higher at 2 and 4 ppt, and survival at 2 ppt was 100%. In freshwater and at 4, 6 and 8 ppt, the survival was 91.1, 93.3, 73.3, and 39.9%, respectively. At higher salinities, there was 100% mortality after 2 h (12 and 14 ppt) and 8 h (10 ppt) of exposure. The slightly saline water of at least 2 ppt increased the Artemia nauplii life span compared to the life span in freshwater. Later, in a second trial, 5‐d‐old pacu larvae were reared in freshwater and at 2 and 4 ppt salinities during the first 5 or 10 d of active feeding, and then the fish were transferred to freshwater. At the end of 15 d, larval growth was lower in freshwater (42 mg) than in treatments 2 and 4 ppt (59–63 mg). The abrupt transfer of fish from freshwater to slightly saline water and the return to freshwater did not affect the survival rates (89–97%). The larvae were able to adapt to these saline environments and handle abrupt changes in salt concentration. We concluded that salinity concentration of 2 ppt can be used for pacu larval rearing, allowing the Artemia nauplii lifetime to last longer and cause faster fish growth.  相似文献   

10.
11.
Sea bass, Lates calcarifer, fingerlings were acclimated to 0. 15, and 32 ppt, and the toxic effects of nitrite exposure were assessed. The 96-hour median lethal concentrations (96-hour LC50 for nitrite were estimated to be 14.5 mg/L at 0 ppt, 105 mg/L at 15 ppt and 93 mg/L at 32 ppt salinity. Chronic exposure to a nitrite concentration equivalent to 10% of the respective 96 hour LC50 resulted in marked growth reduction: growth being reduced in the order of 0 ppt > 32 ppt > 15 ppt. In nitrite-free water, growth rate for fish raised at a salinity of 15 ppt was higher compared to fish raised at salinities of 0 ppt and 32 ppt, a phenomenon which probably reflected the advantage of a reduction in osmoregulatory work in an iso-osmotic environment.  相似文献   

12.
The physiological responses of Senegalese sole to a sudden salinity change were investigated. The fish were first acclimated to an initial salinity of 37.5?ppt for 4?h. Then, one group was subjected to increased salinity (55?ppt) while another group was subjected to decreased salinity (5?ppt). The third group (control group) remained at 37.5?ppt. We measured the oxygen consumption rate, osmoregulatory (plasma osmolality, gill and kidney Na+,K+-ATPase activities) and stress (plasma cortisol and metabolites) parameters 0.5 and 3?h after transfer. Oxygen consumption at both salinities was higher than for the control at both sampling times. Gill Na+,K+-ATPase activity was significantly higher for the 55?ppt salinity at 0.5?h. Plasma osmolality decreased in the fish exposed to 5?ppt at the two sampling times but no changes were detected for high salinities. Plasma cortisol levels significantly increased at both salinities, although these values declined in the low-salinity group 3?h after transfer. Plasma glucose at 5?ppt salinity did not vary significantly at 0.5?h but decreased at 3?h, while lactate increased for both treatments at the first sampling time and returned to the control levels at 3?h. Overall, the physiological response of S. senegalensis was immediate and involved a rise in oxygen consumption and plasma cortisol values as well as greater metabolite mobilization at both salinities.  相似文献   

13.
  1. The catchments of the Great Barrier Reef (GBR) in Australia include more than one million ha of wetlands, which help to sustain the health and resilience of the reef.
  2. This article reviews the status, values, and threats of wetlands in the GBR catchments, as well as the management, protection, and challenges and opportunities for their restoration and rehabilitation.
  3. At present, wetlands in the GBR catchments have low rates of area loss and are generally well protected; however, they face major management challenges owing to the intensive land use of the catchments, especially for grazing, agriculture, horticulture, and mining. Major threats to these wetlands include water pollution, invasive species, changes in hydrology, and increasing temperature and salinity resulting from climate change.
  4. In recent years wetlands have been considered primarily for their role in improving water quality to ameliorate contaminated terrestrial run‐off to the GBR, with little attention given to their intrinsic value and other ecosystem services.
  5. Financial opportunities for wetland restoration in addition to government‐funded schemes include water pollution offsets, payment for ecosystem services, and nitrogen markets.
  6. Wetlands need to be protected, managed, and restored for the ecosystem services that they provide to the GBR, but also for their intrinsic value as significant features of coastal landscapes.
  相似文献   

14.
15.
The influence of three different environmental salinities (seawater, SW: 38 ppt salinity; brackish water, BW: 12 ppt; and low salinity water, LSW: 6 ppt salinity) on the growth, osmoregulation and metabolism of young gilthead sea bream (Sparus aurata L.) was studied over a period of 100 days. 480 inmature fish (20 g mean body weight) were randomly divided into six tanks of 2500 l (80 fish per tank) and maintained under three different salinities (38 ppt, 12 ppt and 6 ppt) in an open system. Every three weeks, 10 fish from each tank were anesthetized, weighed and lenghed. At the end of experiment, 10 fish from each tank were anesthetized, weighed and sampled for plasma, brain, gill and liver. Gill Na+, K+-ATPase activity, plasma osmolality, ions (sodium and chloride), glucose, lactate, protein and triglyceride, and hepatosomatic index were examined. In addition, levels of glycogen, lactate, ATP and activities of potential regulatory enzymes (hexokinase, pyruvate kinase, glycogen phosphorylase, and glucose 6-phosphate dehydrogenase) were assesed in liver, brain, and gill. BW-acclimated fish showed a better growth with respect to SW- or LSW-acclimated fish (12 > 38 > 6 ppt). The same relationship was observed for weight gain and specific growth rate. Osmoregulatory parameters in plasma (osmolality, Na+ and Cl levels) were similar in SW- and BW-acclimated fish but significantly higher than those of LSW-acclimated fish. Gill Na+, K+-ATPase activity showed lower values in intermediate salinity (6 > 38 > 12 ppt). No changes were observed in metabolic parameters analyzed in plasma, whereas only minor changes were observed in metabolic parameters of liver, gills and brain that could be correlated with the higher growth rates observed in fish acclimated to BW, which do not allow us to attribute the best growth rate observed at 12 ppt to lower metabolic rates in that salinity.  相似文献   

16.
  1. Environmental water management seeks to balance competing demands between the water needed to sustain human populations and their economic activities and that required to sustain functioning freshwater ecosystems and the species they support. It must be predicated on an understanding of the environmental, hydrological, and biological factors that determine the distribution and abundance of aquatic species.
  2. The Daly River of the wet–dry tropics of northern Australia consists of a perennially flowing main stem and large tributaries, as well as many small to large naturally intermittent tributaries, and associated off‐channel wetlands. Increased groundwater abstraction to support irrigated agriculture during the dry season threatens to reduce dry‐season flows that maintain perenniality and persistence of freshwater fishes.
  3. Fish assemblages were surveyed at 55 locations during the dry season over a 2‐year period with the goal of establishing the key landscape‐scale and local‐scale (i.e. habitat) drivers of fish species distribution.
  4. Longitudinal (upstream/downstream) and lateral (river/floodplain) gradients in assemblage structure were observed with the latter dependent on the position in the river landscape. Underlying these gradients, stream flow intermittency influenced assemblage composition, species richness, and body size distributions. Natural constraints to dispersal were identified and their influence on assemblage structure was also dependent on position within the catchment.
  5. Eight distinct assemblage types were identified, defined by differences in the abundance of species within five groups differing in functional traits describing body size, spawning requirements, and dispersal capacity. These functional groups largely comprised species widely distributed in northern Australia.
  6. The results of the study are discussed with reference to the environmental flow needs of the Daly River and other rivers of northern Australia. The findings may also be applied to environmental flow management in savannah rivers elsewhere.
  相似文献   

17.
Abstract.— Tko experiments were conducted to determine the effects of salinity on growth and survival of mulloway Argyrosomus japonicus larvae and juveniles. First, 6-d-old larvae were stocked into different salinities (5, 12.5, 20, 27.5 and 35 ppt) for 14 d. Larvae grew at all salinities, but based on results for growth and survival, the optimum range of salinity for 6-d-old to 20-d-old larvae is 5–12.5 ppt. During this experiment larvae held in all experimental salinities were infested by a dinoflagellate ectoparasite, Amyloodinium sp. Degree of infestation was affected by salinity. There were very low infestation rates at 5 ppt (0.2 parasites/larva). Infestation increased with salinity to 20 ppt (33.1 parasites/larva), then declined with salinity to 35 ppt (1.5 parasites/larva). For the second experiment, juveniles (6.1 ± 0.1 g/fish) were stocked into different salinities (0.6, 5, 10, 20 and 35 ppt) for 28 d. Juveniles were removed from freshwater 3 d after transfer as they did not feed, several fish died and many fish had lost equilibrium. However, when transferred directly to 5 ppt. these stressed fish recovered and behaved normally. Trends in final mean weight and food conversion ratio of juvenile mulloway suggest that fish performed best at 5 ppt. Although salinity (5 to 35 ppt) had no significant ( P > 0.05) effect on growth, survival, or food conversion ratio of juveniles, statistical power of the experiment was low (0.22). Based on these results we recommend that mulloway larvae older than 6 d be cultured at 5 to 12.5 ppt. Optimum growth of juveniles may also be achieved at low salinities.  相似文献   

18.
The effect of environmental salinity on hematological parameters of great sturgeon Huso huso juveniles was studied. Five-month-old juveniles (mean body weight 28.3 ± 2.1 g) were subjected to 0, 3, 6, 9, and 12 ppt salinities. The hematological parameters were assessed after a period of 20 days rearing at these salinities. After transfer from fresh water to brackish water, red blood cells, hematocrit, haemoglobin and mean corpuscular haemoglobin decreased, but mean corpuscular volume increased. Mean corpuscular haemoglobin concentration, white blood cells, monocyte counts, and eosinophil counts showed no significant variations with increase in environmental salinity. An increase was found in lymphocyte counts according to the increase of salinity from 0 to 12 ppt, while the fresh water control group maintained basal levels. Decrease in neutrophil counts was observed in great sturgeon with increase in environmental salinity. These data show significant effect of salinity on the blood parameters of great sturgeon.  相似文献   

19.
Failing to initiate first feeding during the transition from endogenous nutrition to exogenous feeding will lead to starvation of fish larvae. However, little is known about the mechanism of first feeding selection of fish. Golden mandarin fish larvae (3 d after hatch, 2.05 ± 0.03 mg) were fed with four different foods for 7 d, including the following: M – Megalobrama amblycephala (prey fish larvae as natural food); S – surimi of M. amblycephala; A – Artemia (zooplankton); and MA –mixed M. amblycephala with Artemia (mixed food). Larvae fed with the mixed food achieved an appropriate balance between high survival and good growth through elevating the expression of growth genes (GH, IGF‐I, and IGF‐II) and fatty acid synthesis genes (FAD and ELO). Growth performance of fish fed with MA reared at different salinities (0, 5, and 10 ppt) was examined. The salinity of 5 ppt produced the best growth performance of the three salinity levels tested. Fish larvae adapted to high‐ or low‐salinity environments through increasing the expression of lipolysis genes (HSL, LPL, and HL). Therefore, both food type and salinity affect the growth, survival, and lipometabolism of golden mandarin fish larvae during initial feeding stage, and mixed food and 5 ppt salinity improved its survival and growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号