首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Bioassays in static water (mean ± SD; temperature, 20–22 C; pH, 8.2–8.4; alkalinity, 205 ± 10 mg/L CaCO3; total hardness, 220 ± 10 mg/L CaCO3) were used to determine median lethal concentrations (LC50) of un-ionized ammonia (NH3-N) for striped bass Moronc saxatilis and hybrid striped bass M. saxatilis × M. chrysops. The 96 h LC50 for striped bass was 1.01 ± 0.24 mg/L NH3-N3 and was significantly higher than the LC50 for hybrid striped bass (0.64 ± 0.05 mg/L NH3-N). The effects of sublethal ammonia were evaluated after fish were exposed for 96 h to 0.0, 0.25, or 0.5 mg/L NH3-N or to additional exposure to oxygen depleted water (about 2.0 mg O2/L). Plasma ammonia of striped hass did not change as sublethal ammonia increased, but exposure to oxygen depletion caused a decrease in plasma ammonia. In contrast, plasma ammonia of hybrid striped bass increased as environmental ammonia increased, and increased further after exposure to oxygen depletion. Plasma cortisol levels of striped bass were significantly higher and more variable than cortisol levels of hybrid striped bass; additional exposure to oxygen depletion increased this variability, but these responses may be due to the stress of handling and confinement. Mean differences also existed between species for hemoglobin and hematocrit, while differences in variability occurred for osmolality and oxygen depletion rates. Striped bass tolerated ammonia better than hybrid striped bass but were more susceptible than hybrid striped bass to the additional stress of oxygen depletion. Most changes in physiological characteristics were relatively independent of environmental ammonia, but they were affected by oxygen depletion challenge.  相似文献   

2.
False clownfish, Amphiprion ocellaris, is one of the most commercialized fish species in the world, highly produced to supply the aquarium market. The high stocking densities used to maximize fish production can increase ammonia and nitrite to toxic levels. In this study, A. ocellaris juveniles (1.20 ± 0.34 g) were exposed to six concentrations of ammonia ranged from 0.23 to 1.63 mg/L NH3-N and eight concentrations of nitrite (26.3–202.2 mg/L NO2 ?-N). The LC50- 24, LC50-48, LC50-72 and LC50-96 h were estimated to be 1.06, 0.83, 0.75 and 0.75 mg/L for NH3-N and 188.3, 151.01, 124.1 and 108.8 mg/L for NO2 ?-N. Analysis of gill lesions caused by sublethal concentrations of these nitrogenous compounds showed that both nitrogenous compounds induced tissue lesions such as hyperplasia of epithelium cells, hypertrophy of chloride cells and lamellar lifting to all concentrations tested. However, histopathological alterations were more conspicuous accordingly the increase of ammonia or nitrite in fish exposed to 0.57 mg/L NH3-N or 100 mg/L NO2 ?-N. Based on our results, we recommend to avoid concentrations higher than 0.57 mg/L of NH3-N and 25 mg/L of NO2-N in water.  相似文献   

3.
Static-renewal bioassays were performed to evaluate the acute toxicity of ammonia to Eriocheir sinensis (H. Milne-Edwards) at three growing stages, namely zoea-I, zoea-II, and juvenile (0.06 g wet weight per crab). The 24 h LC50 values were 13.3, 20.2, and 109.3 mg (NH3+ NH4+) 1?1 (0.47, 0.71, and 3.10 mg NH3 I?1), the 48 h LC50 values being 6.8, 10.3, and 60.9 mg (NH3+ NH4+) 1?1 (0.24, 0.36, and 1.73 mg NH31?1), while the 72 h LC50 values were 5.7, 7.6, and 45.3 mg (NH3+ NH4+) 1?1 (0.20, 0.27, and 1.29 mg NH3 1?1) for zoea-I, zoea-II, and juveniles, respectively. The 96 h LC50 value for juveniles was 31.6 mg (NH3+ NH4+) 1?1(0.90 mg NH31?1). It was evident that the tolerance to ammonia increased during the same exposure time as the larvae developed to juveniles and decreased with prolonged exposure time. Compared with larvae, juveniles were more sensitive to the fluctuation of ambient ammonia concentrations in the certain range within which partial kills took place. The ‘safe level’ of ammonia based on the 96 h LC50 value and an application factor of 0.1 was 3.16 mg (NH3+NH4+)1?1 (0.09 mg NH3 1?1) for juveniles and those for zoea-I and zoea-II were 0.57 and 0.76 mg (NH3+ NH4+) 1?1 (0.02 and 0.03 mg NH3 1?1) based on 72 h LC50 values.  相似文献   

4.
The aim of this study was to assess the mean lethal concentration (LC50) of dissolved oxygen in high ammonia concentration and also the LC50 of ammonia under hypoxic conditions for juveniles of dourado, Salminus brasiliensis. In the first experiment, the non‐ionized ammonia (NH3) concentrations were: 0.026, 0.447, 0.612, 0.909, and 1.334 mg/L, and the dissolved oxygen concentration was maintained at approximately 1.65 mg/L. In the second experiment, the dissolved oxygen concentrations were: 1.64, 1.99, 3.33, 5.10, and 7.77 mg/L, and the non‐ionized ammonia concentration was kept at approximately 0.927 mg/L. The mean lethal concentrations of non‐ionized ammonia varied from 0.584 to 0.577 mg/L, indicating that LC50 values were almost unaffected by exposure time. The estimated LC50 of dissolved oxygen varied from 4.02 to 5.02 mg/L, indicating a slight increase in the mean lethal concentrations as the exposure time increased. Results from this study indicate that interaction between these two parameters increases mortality and also suggest that dourado is susceptible to the combination of high ammonia with low dissolved oxygen concentrations.  相似文献   

5.
The aim of this study was to assess the effects of different dietary fibre concentrates (DFC: Mucilage = MG; pectin = PN or β‐glucan+mannan = βg+M), on biochemical parameters, stress and immune response and skin mucus of jundiá (Rhamdia quelen). The fish (7.16 ± 0.06 g) were fed with Control diet (0 g/kg of DFC); diet supplemented with 5 g/kg of commercial prebiotic (CP 5) or diets supplemented with 5 or 10 g/kg of MG; PN or βg+M. After 8 weeks of the feeding trials, biochemical parameters (cholesterol, glucose, albumin and total protein), cortisol, immunoglobulin IgM and mucoproteins of skin mucus were assessed. Results demonstrated that supplementation with PN increased cholesterol levels (p<.05). After application of the stressor, most fish, except those in the PN and 10 g/kg MG groups, showed significant increases (p<.05) in cholesterol, glucose and albumin levels. The jundiás showed no difference in cortisol levels after application of the stressor (p>.05). IgM levels were significantly high in fish supplemented with DFC (p<.05). However, the concentration of mucoproteins in skin mucus was not influenced in the different treatments (p>.05). The results showed that supplementation with DFC promoted beneficial effects on the metabolism of jundiá.  相似文献   

6.
Argyrosomus regius (3.0 ± 0.9 g) were exposed to different concentrations of ammonia in a series of acute toxicity tests by the static renewal method at three temperature levels (18, 22 and 26°C) at a pH of 8.2. Low temperature clearly increased the tolerance of the fish to total ammonia nitrogen (TAN) and unionized ammonia (NH3) (P < 0.05). While the 96‐h LC50 values of TAN were 19.79, 10.39 and 5.06 mg L?1, the 96‐h LC50 of NH3 were 1.00, 0.70 and 0.44 mg L?1 at 18, 22 and 26°C respectively. The safe levels of NH3 for A. regius was estimated to be 0.10, 0.07 and 0.04 mg L?1 at 18, 22 and 26°C respectively (P < 0.05). This study clearly indicates that A. regius is more sensitive to ammonia than other marine fish species cultured on the Mediterranean and Eastern Atlantic coasts.  相似文献   

7.
The aim of this study was to evaluate the use of synthetic fibre as a biological support for the adhesion of nitrifying bacteria in an aquaculture recirculation system (RAS). It was developed from three assays over 120 days. In the first assay, the synthetic fibres used as biological support were introduced in tanks of biological filtration of the system for posterior respirometry analysis and scanning electron microscopy (SEM). Respirometry and SEM were performed 10 days after inoculation with nitrifying microorganisms. Water quality parameters were monitored daily, and the respirometry showed that the bacteria in this assay were consuming the following amounts of ammonium: concentrations [C1]35.369 mg NH3/L, R2 = 0.9912; [C2]51.628 mg NH3/L, R2 = 0.9883; [C3]79.494 mg NH3/L, R2 = 0.986; and [C4]215.225 mg NH3L, R2 = 0.9934. In the second assay, a 1920-L tank was stocked with 120 Nile tilapia, Oreochromis niloticus, with an initial weight 32.11 ± 7.6 g and a biomass of 3.8 kg. After 60 days, the tank and its contents were assessed to evaluate zootechnical parameters and physical–chemical parameters of water quality. From these results, a third assay was developed in which the biomass of fish was increased to challenge the recirculation system. The tank was stocked with 480 jundiá Rhamdia quelen (initial weight 11.34 ± 2.4 g and biomass 5.4 kg) for 60 days. In both the tilapia and jundiá assays, the fish were fed four times per day with a commercial diet of 35% crude protein and 42% crude protein, respectively, at 5% of each individual fish’s body weight. At the end of the zootechnical assays, the synthetic fibres used showed efficient biological support for bacterial growth, as confirmed by scanning electron microscopy. The fibres also demonstrated maintenance of the water quality, which allowed good fish growth in the recirculating aquaculture system, and the maintenance of up to 11.19 kg/m³ of biomass of fish.  相似文献   

8.
This study aimed to evaluate the tolerance of common snook Centropomus undecimalis larvae and juveniles exposed to acute concentrations of un-ionized ammonia for 96 h at 35g L?1 salinity, after 24 h starvation. For that, 10 larvae (20.85 ± 1.46 mm) of 47 days post hatch (DPH) per experimental unit (1.5 L) were exposed to 0.00 ± 0.00, 0.65 ± 0.04, 1.29 ± 0.09, 2.59 ± 0.18, 3.88 ± 0.27, 5.17 ± 0.34, and 6.47 ± 0.43 mg L?1 NH3, in triplicates, at 26.72 ± 0.08°C, dissolved oxygen at 5.72 ± 0.10 mg L?1 and pH 8.45 ± 0.06. During this period, no mortalities were observed. Another trial was performed with five juveniles (20.35 ± 6.10 g, 13.90 ± 1.75 cm) per experimental unit (60 L) exposed to 0.00 ± 0.00, 2.26 ± 0.07, 2.68 ± 0.11, 3.20 ± 0.13, 3.68 ± 0.17, and 4.27 ± 0.16 mg L?1 NH3, in triplicates, at 21.90 ± 0.76°C, dissolved oxygen at 6.27 ± 0.21 mg L?1 and pH at 8.38 ± 0.04. Fish mortality increased as ammonia concentrations increased at each day, and LC50 96 h was 3.52 mg L?1 NH3. Larvae were less sensitive than juveniles, demonstrating that the environmental toxicity of ammonia to common snook is influenced by age. Sublethal exposition to ammonia caused histological damages in gills of common snook juveniles and variation on glucose levels, hematocrit, and red blood cells number, showing negative effects on fish homeostasis. Moreover, compared to other species, the common snook has great resistance to ammonia.  相似文献   

9.
Piaractus mesopotamicus juveniles (total length 12 ± 0.5 mm) were exposed to different concentrations of ammonia‐N (un‐ionized plus ionized ammonia as nitrogen), using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7. The 24, 48, 72, 96 h LC50 values of ammonia‐N in P. mesopotamicus juveniles were 5.32, 4.19, 3.79 and 2.85 mg L?1 at 15°C; 4.81, 3.97, 3.25 and 2.50 mg L?1 at 20°C; and 4.16, 3.79, 2.58 and 1.97 mg L?1 at 25°C respectively. The 24, 48, 72, 96 h LC50 values of NH3‐N (un‐ionized ammonia as nitrogen) were 0.018, 0.014, 0.013, 0.009 mg L?1 at 15°C temperature; 0.023, 0.019, 0.016 and 0.012 mg L?1 at 20°C; 0.029, 0.026, 0.018 and 0.014 mg L?1 at 25°C. The temperature increase from 15 to 25°C caused an increase of ammonia‐N susceptibility by 21.80%, 9.55%, 31.92% and 30.87%, after 24, 48, 72 and 96 h exposure respectively. Furthermore, we found that exposure of fish to ammonia‐N caused an elevation in total haemoglobin and blood glucose with an increase of 2 mg L?1 concentration. Ammonia levels tolerated, especially in different temperatures levels, have important implications for the management of aquaculture.  相似文献   

10.
Four successive life stages (zoea-III, zoea-IV, zoea-V and megalopa) of the Chinese mitten-handed crab, Eriocheir sinensis (H. Milne-Edwards), were exposed to ammonia in a series of short-term bioassays with the static-renewal method at 22°C, pH 8.0 and 25%o salinity. The greatest sensitivity was observed in the zoea-III stage. The 24-h LC50 values for zoea-III, zoea-IV, zoea-V and megalopa were 32.8, 73.1, 84.0 and 90.1 mg L?1 for NH3+ NH4+, and 1.11, 2.36, 2.77 and 3.18 mg L?1 for NH3, respectively. The 72-h LC50 values for zoea-III, zoea-IV and zoea-V were 11.9, 23.6 and 38.2 mg L?1 for NH3+ NH4+, and 0.40, 0.76 and 1.26 mg L?1 for NH3, respectively. The 96-h LC50 values for megalopa were 37.3 mg L?1 for NH3+ NH4+ and 1.31 mg L?1 for NH3. It was found that ammonia tolerance increased with larval development from zoea-III to megalopa, especially from zoea-III to zoea-IV and from zoea-IV to zoea-V. A comparison of safe levels of ammonia among the different life stages indicated that all stages were significantly different with respect to safe levels of ammonia (P < 0.05) except zoea-V and megalopa, which had the highest safe levels. In general, both the larvae and juveniles of E. sinensis are less resistant to ammonia than those of other crustacean species studied so far.  相似文献   

11.
This study evaluated the toxicity of ammonia and nitrite to different larval stages of Macrobrachium carcinus. Three replicated groups of larvae in the zoea stages II, V, and VIII (hence named Z2, Z5, and Z8, respectively) were exposed separately to five ammonia (5, 10, 20, 40, and 80 mg total ammonia nitrogen [TAN]/L) and six nitrite concentrations (5, 10, 20, 40, 80, and 160 mg NO2‐N/L), plus a control treatment with no addition of ammonia and nitrite, at a salinity of 20 g/L. The ammonia LC50 values at 96 h for Z2, Z5, and Z8 were 8.34, 13.84, and 15.03 mg TAN/L (0.50, 0.71, and 0.92 mg NH3‐N/L), respectively, and the nitrite LC50 values at 96 h for Z2, Z5, and Z8 were 3.28, 9.73, and 34.00 mg NO2‐N/L, respectively. The estimated LC50 values for NO2‐N were lower than those for TAN in most of the stages evaluated. This observation suggests that M. carcinus larvae are more tolerant to ammonia, except at Z8, in which larvae had a higher tolerance to nitrite. Based on the lethal concentrations at 96 h, it may be concluded that the tolerance of M. carcinus to ammonia and nitrite increases with larval development. Safe levels were estimated to be 0.834 mg TAN/L (0.05 mg NH3‐N/L) and 0.328 mg NO2‐N/L; therefore, efforts should be made to maintain lower concentrations of these compounds throughout the larval rearing of M. carcinus.  相似文献   

12.
急性氨氮暴露对大弹涂鱼炎性反应相关基因表达的影响   总被引:3,自引:0,他引:3  
宋美泽  黎明  李健  袁莉霞  王日昕  石戈 《水产学报》2018,42(11):1704-1710
为研究急性氨氮胁迫对大弹涂鱼炎性反应相关基因表达的影响,实验挑选初始体质量为(15.14±0.05) g的健康大弹涂鱼幼鱼180尾,进行96 h的急性氨氮胁迫实验。结果显示,大弹涂鱼96 h氨氮半致死浓度为8.99 mg/L总氨氮(0.11 mg/L非离子氨,T-AN);氨氮胁迫后TNF基因的mRNA表达量分别于12和96 h时显著上调,96 h时表达量达到0 h时的2倍;IL-1基因的mRNA表达量12 h时显著上调,为0 h时表达量的6倍;氨氮胁迫后IL-6基因的mRNA表达量分别于12和96 h时显著上调,表达量达到0 h时的1.5倍;氨氮胁迫后IL-8基因的mRNA表达量在24 h时出现显著下调。研究表明,大弹涂鱼96 h氨氮半致死浓度为8.99 mg/L总氨氮;半致死浓度的氨氮胁迫48 h后,TNF、IL-1、IL-6和IL-8基因的mRNA表达量持续升高,推测过度炎性应激可能是导致鱼类氨中毒死亡的原因之一。  相似文献   

13.
Ammonia is a metabolite of aquatic organisms which might reach deleterious levels in intensive fish farms. The aim of the present study was to determine median lethal concentrations (96‐h LC50) of total ammonia nitrogen (TA‐N) on marbled spinefoot rabbitfish (Siganus rivulatus) and chronic effects of TA‐N on survival, growth and behaviour of juvenile rabbitfish over a 50 day period. In the first experiment, fish were exposed to 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 mg L?1 TA‐N for 96 h and survival evaluated. In the second experiment, 12 fish were stocked per 50‐L tank and treated with one of 0, 2, 4, 6, 8, 10 and 12 mg L?1 TA‐N with three replicate tanks per treatment. Survival and growth were determined and histopathological alterations of gills due to chronic ammonia exposure were studied by light and electron microscopy. The 96‐h LC50 values were 16–18 mg L?1 TA‐N. In the chronic exposure experiment, fish reared in water with 0 mg L?1 TA‐N had 100% survival and had 50% weight increase in 50 days. Fish at 2 and 4 mg L?1 TA‐N all died whilst fish in 6, 8, 10 and 12 mg L?1 TA‐N survived and grew albeit less than in treatment 0 mg L?1. Gills from ammonia treated fish displayed severe histological and ultrastructural alterations including hyperplasia, hypertrophy and fusion of secondary lamellae, aneurysms and presence of pleomorphic altered cells. Chronic exposure to ammonia is deleterious to marbled spinefoot rabbitfish and low concentrations of ammonia appear to kill the fish in <50 days whilst fish can survive for more than 50 days at concentrations between 6 and 12 mg L?1 TA‐N.  相似文献   

14.
This study investigated the secondary stress responses of Paralichthys orbignyanus exposed to ammonia and nitrite and after recovery. Fish were exposed to 0.12, 0.28, and 0.57 mg NH3‐N/L, or 5.72, 10.43, and 15.27 mg NO2‐N/L for 10 d followed by the same time length for recovery. Ammonia‐ and nitrite‐free water was used as a control treatment. Blood samples were collected after 1, 5, and 10 d of exposure and after recovery. Fish exposed to ammonia presented lower and higher glucose levels after 10 d of exposure and recovery, respectively. Ammonia induced initial and transient ionic disturbances and metabolic alkalosis. Nitrite exposure caused hyperglycemia, increased plasma K+ levels, and respiratory alkalosis, whereas metabolic acidosis was observed after recovery. Increased proportion of monocytes and/or granulocytes and reduced number of lymphocytes were demonstrated in fish exposed to 0.28 mg NH3‐N/L (Day 1) and 10.43 mg NO2‐N/L (Day 5) and after recovery in the 0.28 and 0.57 mg NH3‐N/L treatments. Exposure to ammonia decreased the proportion of granulocytes on Day 5. In conclusion, exposure to concentrations at 0.12 mg NH3‐N/L and 5.72 mg NO2‐N/L provoked physiological disorders in Brazilian flounder. Nonetheless, fish exposed to 5.72 mg NO2‐N/L following a 10‐d recovery period showed complete resumption of homeostasis.  相似文献   

15.
The present study evaluated the physiological responses of matrinxã, Brycon cephalus (Günther) submitted to transport stress under the influence of sodium chloride. Different salt concentrations (0.0%, 0.1%, 0.3% and 0.6%) were added to four 200-L plastic tanks. Each tank was stocked with 30 fish (mean weight 1.0 ± 0.2 kg) and transported for 4 h. Blood was sampled prior to transport and immediately after and 24 and 96 h after transport. Plasma cortisol and glucose and serum sodium and potassium, plasma chloride and ammonia were analysed. Changes in plasma cortisol were observed immediately after transportation, except in fish transported in 0.3% and 0.6% salt. Twenty-four hours later, this hormone had returned to its initial level in all fish. Blood glucose was not changed in fish treated with 0.6% salt immediately after transport, and returned to the initial level within 96 h after the other treatments. All treatments resulted in lower levels of plasma chloride after transport, except for fish treated with 0.6% salt, with fish treated with 0.0% and 0.3% salt recovering 24 h later. Serum sodium decreased immediately after transport only in the control fish, returning to the initial level 24 h later. The results indicate that treatment with 0.6% NaCl reduces most of the physiological responses of matrinxã to the stress of transport.  相似文献   

16.
Sea bream, Sparus aurata, is one of the most important fish species that is commonly cultured in the Mediterranean and the eastern coasts of the Atlantic Ocean. The life cycle of sea bream in its natural habitat passes through hyposaline and hypersaline lagoons. It is important to determine the tolerance of the fish to nitrogenous compounds for aquaculture at maximum stocking densities. In the present study, a series of acute experiments were performed to evaluate the effect of salinity on ammonia and nitrite toxicity to sea bream. The fish were exposed to different ammonia and nitrite concentrations according to the static renewal methodology at three different salinities (10, 20, and 30 ppt) and at a temperature of 20 C and a pH of 8.2. The toxic effect of total ammonia nitrogen (TAN) and nitrite nitrogen (NO2‐N) decreased with increasing salinity levels (P < 0.001). Acute toxicity (96‐h lethal concentration 50 [LC50]) values of TAN were determined to be 5.93, 11.72, and 19.38 mg/L at 10, 20, and 30 ppt salinity, respectively. The 96‐h LC50 values of NO2‐N were determined to be 370.80, 619.47, and 806.33 mg/L at 10, 20, and 30 ppt salinity, respectively. Results indicate that sea bream is less tolerant to ammonia but more tolerant to nitrite compared with some other fish species.  相似文献   

17.
Optimal water quality is considered as being a restriction for marine copepod cultures for live feed. There is a lack of knowledge on the water‐quality conditions in copepod cultures and the effect on copepods. Few studies have investigated the effect of ammonia on copepods, and fewer reports No Observed Effect Concentrations (NOEC) and Lowest Observed Effect Concentrations (LOEC), which provides safety levels before cultures are affected. This study investigates the tolerance of Acartia tonsa nauplii and adults to ammonia, using mortality as the endpoint after 24, 48 and 72 h of exposure. Nauplii were exposed to levels from 0 to 5127 μg NH3 L?1 and adults to levels from 0 to 8481 μg NH3 L?1. Nauplii NOEC was 30 μg NH3 L?1 and LOEC was 81 μg NH3 L?1. Adult NOEC was 477 μg NH3 L?1 and LOEC was 1789 μg NH3 L?1. 50% Lethal Concentrations (LC50) for nauplii of 48 and 72 h was 1257 and 220 μg NH3 L?1. LC50 for adults was 2370 (24 h), 972 (48 h) and 770 (72 h). Combining NOEC with excretion rates of NH4/NH3 a model was developed to calculate densities in batch cultures. We recommend that for batch cultures of A. tonsa, NH3 is kept below NOEC for nauplii and that levels of NH3 together with pH are monitored weekly.  相似文献   

18.
This study evaluated the median lethal concentration values (LC50) and the histopathological effects of un‐ionized ammonia (NH3‐N) on juvenile maroon clownfish Premnas biaculeatus. After 96 h of exposure to different concentrations of ammonia, juveniles were sampled for histopathological evaluation. The 24 and 96 h LC50 values of NH3?‐N determined were 1.68 and 0.89 mg L?1 respectively. Maroon clownfish exposed to different ammonia concentrations displayed histopathological alterations in the gills, kidney, liver and brain. Gill tissue damage included lamellar hyperplasia, lamellar shorting and hyperplasia and hypertrophy of mucous cells. The kidney showed hyperanaemia, enlarged sinusoids within an apparently decreased amount of haematopoietic tissue, oedema on tubular cells and tubular necrosis, and an enlarged Bowman's capsule. The liver presented dilatation of hepatic sinusoids, fatty deposition in hepatocytes and Mallory bodies. Examination of the brain revealed a proliferation of glial cells, and the Virchow‐Robin space indicated a severe perivascular oedema and signs of neuronal suffering with satellitosis. The results of this study indicate that juvenile maroon clownfish are relatively sensitive to ammonia and particular attention must be given to this toxic compound in culture systems.  相似文献   

19.
While the effects of ammonia on fish and prawn larvae are well documented, little is known of its effect on mud crab (Scylla serrata) (Forsskål, 1755) larvae. Two experiments were conducted in 5 L hemispherical plastic bowls, containing 3 L of ultra‐filtered and settled seawater and various larval stages of mud crab to (1) determine the acute median lethal concentration (LC50) of unionized ammonia and (2) to determine the chronic effects of unionized ammonia on survival and percentage moulting to zoea and megalop stages. The larval stages that exhibited the highest tolerance to ammonia over 24 h were zoea 1 (LC50 of 4.05 mg L?1 of unionized ammonia) and zoea 5 (LC50 of 6.64 mg L?1 of unionized ammonia). The megalop stage had the lowest total ammonia LC50 at both 24 and 48 h, making it the larval stage most susceptible to total ammonia. Exposure to 6.54 mg L?1 of unionized ammonia resulted in 100% death of all larvae within 24 h. The tolerance of S. serrata larvae to total ammonia did not appear to increase with ontogenetic development. The results indicate that the concentrations at which total ammonia produces an acute or chronic response in mud crab larvae are far higher than those experienced in current larval production systems (0–0.5 mg L?1 of total ammonia) used as industry standards in Australia.  相似文献   

20.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号