首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This experiment was conducted to study the effects of different forms and levels of manganese (Mn) on the growth performance, antioxidant activities, tissue Mn content and cytosolic manganese superoxide dismutase (cMnSOD) gene expression of Litopenaeus vannamei. Treatments consisted of 0, 10, 20, 30, 40 and 60 mg Mn kg?1 from manganese sulphate (Mn‐S) and manganese methionine (Mn‐Met), providing the actual dietary value of 5.17, 15.62, 25.55, 34.22, 44.48 and 67.90 mg Mn kg?1 Mn‐S, and 5.17, 15.71, 25.36, 35.86, 45.16 and 65.06 mg Mn kg?1 Mn‐Met, respectively. Each diet was fed to triplicate groups of L. vannamei (initial body weight: 1.925 ± 0.002 g) in a recirculated fresh water rearing system for 8 weeks. Weight gain rate (WGR) increased in prawns provided with from 25.55 to 44.48 mg Mn kg?1 Mn‐S and 15.71 to 45.16 mg Mn kg?1 Mn‐Met and then declined above these levels. The lowest protein efficiency ratio (PER) and the highest feed conversion rate (FCR) were observed in prawns fed the control diet (< 0.05) and showed no significant differences among other treatments (> 0.05). Survival rate (SR) was not affected by the dietary treatments (> 0.05). Total SOD and Mn‐SOD activities were higher in the hepatopancreas of prawns fed with Mn‐supplemented diets from 15.71 to 44.48 mg Mn kg?1 (< 0.05). On the contrary, malondialdehyde (MDA) content was lower in the hepatopancreas of prawns fed the basal diet (< 0.05). Mn concentrations in the hepatopancreas and muscles increased with increasing levels of dietary Mn supplementation. Moreover, Mn accumulation was lower in the muscle than in the hepatopancreas of the prawns. The mRNA expression of cMnSOD gene in the hepatopancreas of prawns was upregulated with increasing dietary Mn levels of Mn‐S from 25.55 to 44.48 mg Mn kg?1, Mn‐Met from 15.71 to 45.16 mg Mn kg?1 and then plateaued above these levels. Broken‐line regression analysis of WGR indicated that the optimal dietary Mn requirements for juvenile L. vannamei were 32.26 mg Mn kg?1 Mn‐S and 23.90 mg Mn kg?1 Mn‐Met, respectively.  相似文献   

2.
This study was conducted to determine dietary thiamine requirement of juvenile Sclizothorax prenanti and evaluate the effect of dietary thiamine levels on growth performance, body composition and haemato‐biochemical parameters for this fish species. The seven experimental diets were formulated to contain the graded levels of thiamine (0, 10, 20, 30, 40, 60 and 100 mg kg?1 diet, respectively), providing the actual dietary thiamine values of 0.31 (control), 9.82, 21.49, 29.83, 41.66, 62.24 and 114.58 mg kg?1 diet, respectively. Each diet was assigned to three replicate groups of S. prenanti (initial body weight: 13.46 ± 0.28 g, means ± SD) for 60 days. Increasing dietary thiamine level up to 21.49 mg kg?1 diet increased weight gain rate (WGR), specific growth rate (SGR), feed efficiency (FE) and protein efficiency ratio (PER) (< 0.05), beyond which they remained nearly unchanged. Similarly, hepatic thiamine concentration and several serum biochemical parameters (transketolase activity, triglyceride and total cholesterol contents) increased with increasing levels of thiamine up to 21.49 mg kg?1 diet (< 0.05) and, thereafter, remained almost constant. However, no significant differences in body composition (moisture, protein, lipid and ash contents) were found among dietary thiamine treatments (P > 0.05). Analysis by the broken‐line regression of WGR, SGR, FE, PER, hepatic thiamine concentration and serum transketolase activity indicated that dietary thiamine requirements in juvenile S. prenanti were 18.45–25.91 mg kg?1 diet.  相似文献   

3.
Ethoxyquin (EQ) is the most common synthetic antioxidant used for preventing rancidity in fish foodstuffs. However, literature related to the effects of dietary EQ on performance of fish was limited. The present study was conducted to investigate the effects of EQ on performance and EQ residue in muscle of juvenile Japanese seabass Lateolabrax japonicus and to estimate the optimal EQ concentration in the diet. Graded levels [0 (control), 50, 150, 450 and 1350 mg EQ kg?1 diet] of EQ were added to the basal diet, resulting in five dietary treatments in the experiment. Each diet was fed to triplicate groups of seabass (initial body weight 8.01 ± 0.76 g) for 12 weeks in floating sea cages (1.5 × 1.5 × 2.0 m, 30 fish per cage). Survival ranged from 78.9 to 86.7%, and was irrespective of dietary EQ levels. The specific growth rate (SGR) of fish fed diets supplemented with ≤50 mg kg?1 EQ had significantly (< 0.05) higher SGR than fish fed diets supplemented with ≥150 mg kg?1 EQ, the highest SGR was observed in fish fed diet with 50 mg kg?1 EQ supplementation. Feed intake (FI) and feed efficiency (FE) were not significantly (> 0.05) different among dietary treatments. Fish fed diets with 50 and 1350 mg kg?1 EQ had a significant (< 0.05) lower body lipid content than fish in the control group. Muscle EQ level significantly increased when dietary EQ increased. Optimal EQ concentration estimated by polynomial regression based on maximum growth of juvenile Japanese seabass was 13.78 mg kg?1 diet.  相似文献   

4.
This study evaluated the effects of diet containing 0 (C: control), 75 (D1), 100 (D2), 125 (D3) and 150 (D4) mg kg?1 F. vulgare essential oil on growth and reproductive performance of C. nigrofasciatum. A total of 225 Convict cichlids female with mean weight (1.65 ± 0.02 g) were distributed into 15 glass aquaria (15 fish tank?1) in triplicate treatments. During 40 days of experimental period, fish fed at 3% of their body weight daily. At the end of experiment, growth indices, gonadosomatic index and reproductive indices were determined. The best feed conversion ratio was obtained in D4 (1.19 ± 0.03, < 0.05). The addition of F. vulgare essential oil did not have any statistical effects on other growth indices (specific growth rate, weight gain and condition factor). Total survival rates in all treatments and control were uniformly high, ranging from 93% to 97% (> 0.05). F. vulgare essential oil has no negative effect on survival rate of C. nigrofasciatum. There were no significant differences among protein content of fish body (> 0.05). The lowest value of fat content (26.5 ± 0.5%) was observed in D2, and it had significant difference with control and other groups (< 0.05). The ash percentage in treatments fed with F. vulgare essential oil were higher than control fish (< 0.05). The highest moisture content was detected in D4 (72.68 ± 0.19%) and D2 (71.23 ± 2%) groups. Among the used dosage, D4 was the most effective dosage that could significantly increase GSI (11.06 ± 1.55%), fecundity (340 ± 21) and hatching ratio (92.33 ± 1.63%). There were no significant differences in diameter of eggs among various treatments (> 0.05).  相似文献   

5.
To investigate the effects of niacin on growth, digestion and absorption capacity, and the potential mechanism for digestive and brush border enzyme activities, grass carp (Ctenopharyngodon idella) (256 ± 0.41 g) were fed diets containing 3.95 (basal diet group), 14.92, 24.98, 35.03, 44.97 and 55.01 mg niacin kg?1 diet for 8 weeks. Results indicated that percentage weight gain (PWG), feed intake and feed efficiency were the lowest in basal group (< 0.05). Similarly, niacin deficiency decreased hepatopancreas trypsin, chymotrypsin, lipase and amylase activities (< 0.05), intestinal Na+, K+‐ATPase, alkaline phosphatase, γ‐glutamyl transpeptidase and creatine kinase (CK) activities, the cholecystokinin (CCK) content in proximal intestine (PI) and growth hormone content in serum (< 0.05). Furthermore, niacin deficiency downregulated gene expression of hepatopancreas trypsinogen 1, trypsinogen 2, chymotrypsinogen and amylase, intestinal Na+, K+‐ATPase alpha subunit isoform 1, Na+, K+‐ATPase alpha subunit isoform 8 and CK, and target of rapamycin (TOR) and S6 kinase 1 (S6K1) of hepatopancreas and intestine (< 0.05), whereas upregulated eIF4E‐binding protein (4EBP) gene expression (< 0.05). The niacin requirement for young grass carp (256–689 g) based on PWG, hepatopancreas trypsin activity and Na+, K+‐ATPase in PI was 34.01, 35.10 and 42.08 mg kg?1 diet, respectively.  相似文献   

6.
To investigate effects of iron (Fe) on growth, haematological parameters, flesh quality and antioxidant status in muscle, young grass carp (Ctenopharyngodon idella) (292.0 ± 3.2 g) were fed graded levels of Fe (20.7, 38.4, 52.8, 79.3, 98.0 and 120.0 mg kg?1 diet) for 8 weeks. Per cent weight gain (PWG) and feed intake were improved with Fe levels up to 52.8 mg kg?1 diet. Serum Fe, erythrocyte counts, haemoglobin (Hb), haematocrit and mean cell haemoglobin increased with optimal Fe levels (38.4–79.3 mg kg?1 diet) (< 0.05). The muscle protein and lipid contents were increased by dietary Fe, whereas moisture, liquid loss, shear force and hydroxyproline contents followed opposite trends. Malondialdehyde and protein carbonyl contents in muscle were the lowest in fish fed the 52.8 or 79.3 mg Fe kg?1 diet, respectively, while superoxide dismutase, catalase, glutathione‐S‐transferase, glutathione peroxidase and glutathione reductase activities, and glutathione content were increased by Fe levels up to 52.8–79.3 mg kg?1 diet. Results indicated that the optimal Fe improved growth, flesh quality and muscle antioxidant defence of young grass carp. Dietary Fe requirements for PWG, serum Fe and Hb of young grass carp (292–695 g) were 73.5, 72.8 and 69.0 mg kg?1 diet, respectively.  相似文献   

7.
An 8‐week‐feeding trial was conducted to investigate the effect of dietary chitosan oligosaccharide complex with rare earth (COS‐REE) on growth performance and innate immune response of turbot, Scophthalmus maximus L. (Initial average weight was (12.1 ± 0.1) g) as well as disease resistance against Edwardsiella tarda. Six practical diets (approximately 53.01% protein and 12.57% lipid) were formulated to contain graded levels (0, 75, 150, 300, 600 and 1200 mg kg?1) of COS‐REE. Results of the present study showed that, compared to the control group (0 mg kg?1), the specific growth rate (SGR) was significantly higher in fish fed the diet with 300 mg kg?1 COS‐REE (< 0.05), while the feed conversion ratio (FCR) significantly decreased (< 0.05). The phagocytic index (PI) and the activity of super oxide dismutase (SOD) of serum in fish fed the diet with 300 mg kg?1 COS‐REE was significantly higher than fish fed the control diet (< 0.05), but no significant differences were observed in malondialdehyde (MDA) and hepatic metallothionein (MT) concentrations. After 8 weeks, fish were challenged by intraperitoneal injection with E. tarda, and COS‐REE‐treated fish demonstrated increased protection capability. These results suggested that COS‐REE could enhance growth, innate immunity and disease resistance in turbot, and the optimum dose was approximately 300 mg kg?1.  相似文献   

8.
A 75‐day experiment was conducted with juvenile gibel carp (Carassius auratus gibelio) (4.80 ± 0.01 g) to evaluate effects of dietary chitosan on fish growth performance, haematology, intestine morphology and immune response. Six isonitrogenous (crude protein: 383 g kg?1), isolipid (97.5 g kg?1) and isocaloric (gross energy: 16.7 kJ g?1) diets were formulated to contain 0, 1800, 4000, 7500, 10 000, 20 000 mg kg?1 chitosan, respectively. The results showed that the growth was depressed when the fish fed with 10 000 mg kg?1 chitosan. Serum cholesterol, triglyceride and low‐density lipoprotein decreased in 10 000 and 20 000 mg kg?1 chitosan. On day 75, blood leucocyte phagocytic activity respiratory burst and alternative pathway of complement haemolytic activity were enhanced in 4000 mg kg?1 chitosan. The number of goblet cell, intraepithelial lymphocyte of mid‐intestine and microvilli height of distal intestine increased at 4000 mg kg?1 dietary chitosan. Dietary chitosan modulated intestine microbiota, depressed pathogen bacteria Aeromonas veronii‐like and improved Cellulomonas hominis‐like, Bacillus oceanisediminis‐like and two uncultured bacterium‐like species on day 75. Dietary 7500 and 10 000 mg kg?1 chitosan enhanced the protection against Aeromonas hydrophila infection. In conclusion, oral administration of dietary 7500 mg kg?1 chitosan for 75 days is recommended for the survival of gibel carp.  相似文献   

9.
To evaluate the possible dietary application of live and heat‐inactivated probiotic Bacillus pumilus SE5 in grouper Epinephelus coioides, juveniles (14.6 ± 0.2 g) were fed either a basal control diet (without probiotic) or the basal diet supplemented with 1.0 × 108 CFU g?1 live (T1) and heat‐inactivated B. pumilus SE5 (T2). The heat‐inactivated probiotic significantly improved the final weight, weight gain (WG) and specific growth rate (SGR) at day 60 and significantly decreased the feed conversion ratio (FCR) at day 30 and 60, while the viable probiotic significantly decreased the FCR at day 60 (< 0.05). Phagocytic activity, serum complement C3 and IgM levels as well as SOD activity elevated significantly in fish fed the heat‐inactivated probiotic for 60 days (< 0.05). Furthermore, the heat‐inactivated probiotic remarkably up‐regulated expression of TLR2 and pro‐inflammatory cytokines (IL‐8 and IL‐1β) in head kidney (< 0.05), but the viable probiotic failed to do so. These results indicated that heat‐inactivated B. pumilus SE5 can effectively improve the growth performance and immune responses of E. coioides.  相似文献   

10.
Two experiments were conducted to quantify the dietary thiamin (experiment I) and pyridoxine (experiment II) requirements of fingerling Cirrhinus mrigala for 16 weeks. In experiment I, dietary thiamin requirement was determined by feeding seven casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) with graded levels of thiamin (0, 0.5, 1, 2, 4, 8 and 16 mg kg?1 diet) to triplicate groups of fish (6.15 ± 0.37 cm; 1.89 ± 0.12 g). Fish fed diet with 2 mg kg?1 thiamin had highest specific growth rate (SGR), protein retention (PR), RNA/DNA ratio, haemoglobin (Hb), haematocrit (Hct), RBCs and best feed conversion ratio (FCR). However, highest liver thiamin concentration was recorded in fish fed 4 mg thiamin kg?1 diet. Broken‐line analysis of SGR, PR and liver thiamin concentrations exhibited the thiamin requirement in the range of 1.79–3.34 mg kg?1 diet (0.096–0.179 μg thiamin kJ?1 gross energy). In experiment II, six casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) containing graded levels of pyridoxine (0, 2, 4, 6, 8 and 10 mg kg?1 diet) were fed to triplicate groups of fish (6.35 ± 0.37 cm; 1.97 ± 0.12 g). Fish fed diet containing 6 mg kg?1 pyridoxine showed best SGR, FCR, PR, RNA/DNA ratio, Hb, Hct and RBCs, whereas maximum liver pyridoxine concentration was recorded in fish fed 8 mg kg?1 dietary pyridoxine. Broken‐line analysis of SGR, PR and liver pyridoxine concentrations reflected the pyridoxine requirement from 5.63 to 8.61 mg kg?1 diet. Data generated during this study would be useful in formulating thiamin‐ and pyridoxine‐balanced feeds for the intensive culture of this fish.  相似文献   

11.
Piaractus mesopotamicus juveniles (total length 12 ± 0.5 mm) were exposed to different concentrations of ammonia‐N (un‐ionized plus ionized ammonia as nitrogen), using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7. The 24, 48, 72, 96 h LC50 values of ammonia‐N in P. mesopotamicus juveniles were 5.32, 4.19, 3.79 and 2.85 mg L?1 at 15°C; 4.81, 3.97, 3.25 and 2.50 mg L?1 at 20°C; and 4.16, 3.79, 2.58 and 1.97 mg L?1 at 25°C respectively. The 24, 48, 72, 96 h LC50 values of NH3‐N (un‐ionized ammonia as nitrogen) were 0.018, 0.014, 0.013, 0.009 mg L?1 at 15°C temperature; 0.023, 0.019, 0.016 and 0.012 mg L?1 at 20°C; 0.029, 0.026, 0.018 and 0.014 mg L?1 at 25°C. The temperature increase from 15 to 25°C caused an increase of ammonia‐N susceptibility by 21.80%, 9.55%, 31.92% and 30.87%, after 24, 48, 72 and 96 h exposure respectively. Furthermore, we found that exposure of fish to ammonia‐N caused an elevation in total haemoglobin and blood glucose with an increase of 2 mg L?1 concentration. Ammonia levels tolerated, especially in different temperatures levels, have important implications for the management of aquaculture.  相似文献   

12.
Argyrosomus regius (3.0 ± 0.9 g) were exposed to different concentrations of ammonia in a series of acute toxicity tests by the static renewal method at three temperature levels (18, 22 and 26°C) at a pH of 8.2. Low temperature clearly increased the tolerance of the fish to total ammonia nitrogen (TAN) and unionized ammonia (NH3) (P < 0.05). While the 96‐h LC50 values of TAN were 19.79, 10.39 and 5.06 mg L?1, the 96‐h LC50 of NH3 were 1.00, 0.70 and 0.44 mg L?1 at 18, 22 and 26°C respectively. The safe levels of NH3 for A. regius was estimated to be 0.10, 0.07 and 0.04 mg L?1 at 18, 22 and 26°C respectively (P < 0.05). This study clearly indicates that A. regius is more sensitive to ammonia than other marine fish species cultured on the Mediterranean and Eastern Atlantic coasts.  相似文献   

13.
The effects of dietary phosphorus (P) on growth, body composition and immunity of young taimen (Hucho taimen) were studied. Six purified diets contained graded levels (2.3‐control, 4.0, 5.6, 7.5, 9.1 and 10.8 g kg?1 diet) of available P. Each diet was fed to triplicate groups of 30 fish with an initial average weight (55.31 ± 0.38) g for 84 days. The weight gain, specific growth rate and feed conversion ratio were improved by dietary available P up to 4.35 g kg?1 (< 0.05) and then levelled off. Hepatosomatic index and body crude lipid content decreased significantly with increasing P levels, while ash contents and P concentrations in the whole body and vertebrae increased by dietary available P up to 4.36 and 4.44 g kg?1 and then levelled off respectively (< 0.05). Liver superoxide dismutase and glutathione peroxidase and plasma alkaline phosphatase activities in the treatment groups were significantly higher compared with the control group (< 0.05). Plasma IgM contents increased linearly with increasing dietary P from 4.0 to 9.1 g kg?1 group and then decreased. Dietary P supplementation reduced plasma triglyceride, malondialdehyde and liver malondialdehyde contents. There were no significant effects on plasma total protein, albumin, globulin, glucose, aspartate aminotransferase and alanine aminotransferase, catalase, lysozyme and liver catalase compared with the control group (> 0.05). Broken line regression analysis indicated that dietary available P requirement was 4.34 and 4.35 g kg?1, based on weight gain and P concentration in the whole body respectively.  相似文献   

14.
The synchronous effects of aqueous Na/K and dietary potassium (K+) on growth and physiological characters was studied on the Pacific white shrimp (Litopenaeus vannamei) reared in low‐salinity well water (4 ppt) for 8 weeks with initial weight of 0.28 ± 0.01 g. Three practical diets were formulated with supplement of 0, 0.3%, 0.6% K+ which contained 1.29 g/100 g, 1.60 g/100 g, 1.93 g/100 g K+ respectively. The supplement of K+ to the low‐salinity well water was 10, 20, 40 mg L?1 which formed Na:K ratios of 42:1, 33:1, 23:1 respectively. Results showed that when the aqueous Na:K ratio was 42 and dietary K+ was 1.93 g/100 g K+, the WGR and PER of L. vannamei were the highest and the FCR was lower than that of others (< 0.01). Supplement of K+ into well water and diets did not showed significant effects on haemolymph ammonia‐N, uric acid, urea content (> 0.05), but had a extremely significant effect on arginase activity and Cl? concentration (< 0.01). Moreover, similar results were observed in alkaline phosphatase (ALP), bacteriolytic activity (LSZ) and respiratory burst activity (O2?) (< 0.05). These results suggested that aqueous Na/K in the low‐salt well water and dietary K had significant synergistic effect on the growth, osmoregulation and immunity of L. vannamei. Concluded from the growth performance, nitrogen metabolism, osmoregulation and immunity, as the Na/K in the low‐salinity well water descended from 42 to 23, the requirement of dietary K+ was also decreased.  相似文献   

15.
An 8‐week growth trial was conducted to determine the effect of dietary selenium (Se) level on growth performance, body composition and hepatic glutathione peroxidase (GPx) activities of largemouth bass. Sodium selenite was added to the fish meal basal diet at 0, 0.2, 0.4, 0.6, 0.8 and 1.0 mg kg?1 Se providing 0.97, 1.17, 1.42, 1.60, 1.85 and 2.06 mg Se kg?1 diet respectively. Each diet was fed to triplicate groups of fish (initial mean body weight: 4.95 ± 0.03 g) in a closed indoor recirculating system. The Se concentration in the rearing water was not detectable during the whole experimental period. The highest weight gain was obtained in fish fed diets with 1.60 mg Se kg?1, which was significant higher (< 0.05) than the basal diet with 0.97 mg Se kg?1 and did not differ significantly (> 0.05) with the other treatments. Feed conversion ratio, protein efficiency ratio, protein productive value, apparent digestibility coefficients of dry matter and muscle composition were not significantly impacted (> 0.05) by dietary treatments. Fish fed diets with ≥1.42 mg Se kg?1 obtained higher liver lipid contents than treatments with lower dietary Se levels. Hepatic malondialdehyde (MDA) was unchanged (> 0.05) in relation to dietary Se concentration. Hepatic GPx and glutathione reductase (GR) activities markedly increased and decreased (< 0.05) with increasing dietary Se concentration, respectively, and both reached a plateau with ≥1.85 mg Se kg?1. Based on growth performance, hepatic MDA and enzymatic responses of GPx and GR, the highest Se concentration (2.06 mg kg?1) employed in our study was not harmful for largemouth bass, and the optimal dietary level should be 1.60–1.85 mg Se kg?1 from sodium selenite, at a dietary vitamin E level of 400 IU kg?1.  相似文献   

16.
The administration of antimicrobials to control bacterial pathologies in Chilean scallop hatcheries is a frequent practice, but their effects on these cultures remained unknown. This study was undertaken to obtain information on the effect of the administration of florfenicol and oxytetracycline on the growth, survival and bacterial content of scallop larvae under farming conditions. Florfenicol‐treated cultures exhibited high survival rates (44% after 17 days of culture), whereas cultures not treated or treated with oxytetracycline collapsed after 11 days of culture. Surprisingly, no significant differences in the heterotrophic (Tukey test; = 0.226) and Vibrio (Tukey test; = 0.666) concentrations between the oxytetracycline‐treated and untreated larval cultures were observed. Otherwise, florfenicol administered directly into rearing tanks produced significantly higher larval growth (Tukey test; = 0.0001) and survival (Tukey test; = 0.011) than bath treatment. When 2 and 4 mg L?1 of florfenicol were compared, no significant differences in growth (t‐test; = 0.4596) and survival (Tukey test; = 0.057) were observed, suggesting that a concentration of 2 mg L?1 is sufficient to ensure larval production. The present results demonstrate the efficacy of florfenicol‐based therapy to increase larval survival and growth at commercial scale and prompt the necessity to standardize its use in Chilean scallop hatcheries.  相似文献   

17.
Effluent discharges from aquaculture can reduce water quality in receiving water bodies and that strategies or practices to reduce this are necessary. One possibility is to reduce, or eliminate, water renewal in grow‐out ponds. In this study, we eliminated water renewal in grow‐out ponds associated with the culture of 40 individuals m?2 of Amazon river prawn (Macrobrachium amazonicum). At the end of the culture period it was, however, necessary to drain the pond to harvest the prawns. An experiment was performed in triplicate, in which the water supply characteristics and harvest water characteristics of ponds were evaluated. To reduce these concentrations of total N and P, an aquatic macrophyte (Eichhornia crassipes, water hyacinth) treatment system (CWs) was adopted. The water characteristics in the CWs were evaluated after 1, 3, 7, 14 and 21 days. The water supply of ponds presented the average concentrations of 0.67 ± 0.32 mg L?1 and 17.4 ± 14.7 μg L?1 of total‐N and total‐P respectively. The harvest effluent of ponds had elevated concentrations of different forms of nitrogen (4.44 mg L?1 of total‐N) and phosphorous (100.9 μg L?1 of total‐P). After 1 day of the experiment we found the following reductions in key nutrients in treatment system containing E. crassipes: 90%, 78% and 45% reductions in the concentrations of particulate matter, orthophosphates and nitrates respectively. We noted that after 3 days the nitrates had been reduced by 53%. We concluded that 3 days of this treatment was sufficient for the removal of the additional nutrients that had accumulated in the Amazon river prawn ponds.  相似文献   

18.
The marine centric diatom Chaetoceros muelleri has been widely used as live feed in fish and shellfish aquaculture due to its excellent nutritional properties. The growth of microalgae is affected by various nutritional and environmental parameters, and species specific optimization of these parameters is essential for the development of cost‐effective biomass production process. In this study, the growth of C. muelleri, was optimized using response surface methodology (RSM). The variables nitrate, phosphate, silicate, temperature, pH, salinity and agitation speed were initially screened for biomass production in C. muelleri using Plackett–Burman experimental design, and it was found that nitrate, phosphate, silicate, temperature and pH significantly influenced the biomass production. These variables were further optimized by central composite design of RSM for biomass production and nutrient composition, and the medium was re‐constituted accordingly to have 180 mg L?1 nitrate, 7.5 mg L?1 phosphate, 30 mg L?1 silicate, with optimum growth conditions of temperature at 31°C and pH 6.46. At the end of 10 days culture period under the above conditions, biomass, protein, lipid and carbohydrate significantly increased from 0.360 ± 0.01 mg L?1, 9.41 ± 0.02%, 18.11 ± 0.01%, 0.6 ± 0.02% to 1.16 ± 0.01 mg L?1, 11.02 ± 0.01%, 19.58 ± 0.01% and 0.77 ± 0.01% respectively. The biomass production of C. muelleri could be increased 3.2‐fold with an improved nutrient profile by modifying the growth factors, the study thus offering an optimized process for biomass production of C. muelleri.  相似文献   

19.
A 12‐week feeding trial was conducted to evaluate the optimum dietary inorganic copper (copper sulphate) in juvenile beluga, Huso huso. Eight semi‐purified diets containing 1.1 (Cu1.0), 3.5 (Cu4.0), 7.1 (Cu7.0), 9.7 (Cu10), 13.1 (Cu13), 25.1 (Cu25), 49.9 (Cu50) and 195 (Cu195) mg Cu kg?1 diet in the form of CuSO4.5H2O were fed to fish of initial body weight 8.49 ± 0.32 g and length 11.85 ± 0.66 cm (mean ± SD) in triplicate groups in a flow‐through system. Weight gain (WG) of fish fed Cu10 and Cu13 diets was significantly higher than that of fish fed Cu1.0, Cu4.0, Cu25, Cu50 and Cu195 diets (P < 0.05). Whole‐body and muscle crude protein increased with dietary Cu up to the supplementation level of 13.1 mg kg?1 diet and then decreased. Whole‐body lipid content was negatively correlated, while whole‐body ash was positively correlated with dietary copper concentration. Hepatic copper–zinc superoxide dismutase activity of fish fed Cu10 and Cu13 diets was significantly higher than that of fish fed Cu1.0, Cu4.0 and Cu195 diets. Hepatic thiobarbituric acid‐reactive substances of fish fed Cu13 diet was significantly lower than those of fish fed the other diets except for that of fish fed Cu10 diet. Aspartate aminotransferase, alanine aminotransferase and copper accumulation in tissues increased with dietary copper. Broken‐line analysis of WG suggested that the optimum dietary Cu level was 10.3 mg Cu kg?1 diet. Therefore, these results may indicate that the optimum dietary Cu levels could be greater than 10.3 mg Cu kg?1 diet but less than 13.1 mg Cu kg?1 diet in juvenile beluga, when copper sulphate is used as the dietary source of inorganic copper.  相似文献   

20.
To assess the effects of dietary astaxanthin on the growth and body colour of red discus fish (Symphysodon spp.), synthetic astaxanthin was added into the basal diet (beef heart hamburger) with the levels of 0 (control diet), 50, 100, 200, 300 and 400 mg kg?1 respectively. The six experimental diets were fed to discus fish with an initial body weight of 10.3 ± 0.8 g for 8 weeks. The results showed that the supplementation of 50–200 mg kg?1 astaxanthin had no significant effects on growth performance of discus fish, but the high supplementation of astaxanthin (300 or 400 mg kg?1) significantly reduced the weight gain and increased the feed coefficient ratio (< 0.05). After 4 or 8 weeks of feeding, the L* (lightness) values in astaxanthin‐supplemented groups were significantly lower, while a* (redness), b* (yellowness) and skin astaxanthin contents were significantly higher than the control group (< 0.05). When the astaxanthin supplementation reached 200 mg kg?1, skin redness and astaxanthin contents remained relatively stable. When b* was relatively stable, the supplemental astaxanthin was 300 (4 weeks) and 50 mg kg?1 (8 weeks) respectively. With the supplemental astaxanthin increasing, the astaxanthin retention rate significantly decreased and hepatic total antioxidant capacity was strengthened. The dietary astaxanthin also significantly increased the reduced glutathione level (< 0.05) when the astaxanthin inclusion was higher than 50 mg kg?1. The above results showed that dietary astaxanthin could effectively improve the skin pigmentation of red discus fish in 4 weeks and the supplementation level was suggested to be 200 mg kg?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号