首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to compare the effectiveness of dietary marine phospholipids (MPL) obtained from krill and soybean lecithin (SBL) on the rearing performance and development of seabream (Sparus aurata) larvae. Larvae were fed from 16 to 44 day posthatching (dph) five formulated microdiets with three different levels (50, 70 and 90 g kg–1) of phospholipids (PL) obtained either from an MPL or from a SBL source. Larvae‐fed MPL show a higher survival, stress resistance and growth than those‐fed SBL, regardless the dietary PL level. Overall, the increase in MPL up to 70 g kg–1 total PL in diet was enough to improve larval gilthead seabream performance, whereas even the highest SBL inclusion level (90 g kg–1 PL) was not able to provide a similar success in larval growth or survival. Inclusion of SBL markedly increased the peroxidation risk as denoted by the higher TBARs in larvae, as well as a higher expression of CAT, GPX and SOD genes. Moreover, SBL tends to produce larvae with a lower number of mineralized vertebrae and a lower expression of osteocalcin, osteopontin and BMP4 genes. Finally, increasing dietary MPL or SBL lead to a better assimilation of polyunsaturated fatty acids in the larvae, n‐3HUFA (especially 20:5n‐3) or n‐6 fatty acids (especially 18:2n‐6), respectively. In conclusion, MPL had a higher effectiveness in promoting survival, growth and skeletal mineralization of gilthead seabream larvae in comparison with SBL.  相似文献   

2.
The aim of the present study was to determine the optimum dietary levels of krill phospholipids (KPL) for sea bream (Sparus aurata) larvae, and its influence on larval development and digestive enzymes activity. Larvae were fed five formulated microdiets with five different levels of KPL. Complete replacement of live preys with the experimental microdiets for seabream larvae produced high survival and growth rates, particularly in fish fed the highest levels of KPL. In the present study, increase in dietary KPL up to 120 g kg?1 (100 g kg?1 total PL) significantly improved larval survival and growth, whereas further increase did not improve those parameters. An increase in alkaline phosphatase, trypsin and lipase activity with the elevation of KPL up to 120 g kg?1 was also found denoting a better functioning of digestive system. Besides, there was a linear substrate stimulatory effect of dietary KPL on phospholipase A2 activity. Finally, increasing dietary KPL lead to better assimilation of n‐3 HUFA especially eicosapentaenoic acid, reflected in the higher content of these fatty acids in both neutral and polar lipids of the larvae. In summary, KPL were found to be an excellent source of lipids for seabream larvae. Optimum inclusion levels of this ingredient in microdiets to completely substitute live preys at this larval age were found to be 120 g kg?1 KPL.  相似文献   

3.
The effects of dietary n‐3 highly unsaturated fatty acids [eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)] with α‐tocopherol on growth, non‐specific immune response and oxidative status were investigated in Caspian brown trout, Salmo trutta caspius, fry. Six experimental diets containing three different dietary levels of n‐3 HUFAs (low: 1 + 0.5% of total fatty acids, DHA+ EPA, medium: 2 + 1%, DHA + EPA, high: 4 + 2%, DHA + EPA) with two different levels of α‐tocopherol (low: 300 and high: 1000 mg kg?1 diet) were prepared and named: LL, LH, ML, MH, HL and HH (HUFA/α‐tocopherol) groups, respectively. Diets were fed to triplicate groups of 60 fry with an initial weight of 600 ± 25 mg for 10 weeks. Results showed that increase in dietary DHA and EPA up to high level improved fry growth in terms of the body weight and specific growth rate, particularly when dietary α‐tocopherol levels were high, suggesting a higher antioxidant protection value when these fatty acids are high. At all dietary n‐3 HUFA levels, increase in α‐tocopherol from low to high level enhanced the alternative complement (ACH50) activity. Fry fed diets medium and high n‐3 HUFA displaying significantly higher lysozyme activity (< 0.05). Moreover, fish fed medium or high levels of n‐3 HUFA had significantly lower prostaglandin E2 (PGE2) than those fed low n‐3 HUFA (< 0.05). Significant differences in antioxidant enzymes (catalase, glutathione peroxidase, glutathione S‐transferase, glutathione reductase and superoxide dismutase) activity were also observed between groups, with higher activity in high levels of n‐3 HUFA (< 0.05). Results of this study suggest that the effect of dietary n‐3 HUFA on examined non‐specific immunity parameters are not uniform; however, these impacts are closely related to the α‐tocopherol supplement and their interaction. In conclusion, increased dietary levels of n‐3 HUFA and α‐tocopherol would enhance growth performance and welfare of this species.  相似文献   

4.
A feeding experiment was conducted to investigate the effects of high dietary intake of vitamin E (supplied as dl ‐α‐tocopheryl acetate) and n‐3 highly unsaturated fatty acid (n‐3 HUFA) on the non‐specific immune response and disease resistance in Japanese flounder Paralichthys olivaceus. Nine practical diets were formulated to contain one of three levels of vitamin E namely, 0, 80 or 200 mg kg?1 (the total α‐tocopherol contents in the diets were 21, 97 and 213 mg kg?1 based on analysis), and at each vitamin E level with one of three n‐3 HUFA levels i.e. 0.5%, 1.5% or 2.0%. Each diet was randomly assigned to triplicate groups of Japanese flounder (initial body weight: 40.5±1.0 g, mean±SD) in a re‐circulation rearing system. Fish were fed twice daily to apparent satiation at 07:00 and 18:00 hours for 12 weeks. During the experimental period, water temperature was maintained at 18±1°C, salinity 31–35 g L?1, and pH 7.8–8.2. Dissolved oxygen was not less than 6 mg L?1, and there were negligible levels of free ammonia and nitrite. The results showed that the increase in dietary n‐3 HUFA from 0.5% to 1.0% significantly decreased muscle α‐tocopherol contents in fish‐fed diets with 21 and 97 mg α‐tocopherol kg?1 diet (P<0.05). In 1.0% HUFA groups, alternative complement pathway activity (ACH50) of fish fed the diet containing the 213 mg α‐tocopherol kg?1 diet was significantly higher than noted for fish fed the diet containing 97 mg α‐tocopherol kg?1 diet (P<0.05). Fish fed the diet with 213 mg α‐tocopherol kg?1 and 2.0% n‐3 HUFA had the highest lysozyme activity (131.7 U mL?1) among all the dietary treatments. Fish fed the diets containing 97 and 213 mg α‐tocopherol kg?1 with 1.0% n‐3 HUFA had significantly higher respiratory burst activity than those fed the diets containing 21 mg α‐tocopherol kg?1 with 0.5 and 1.0% n‐3 HUFA (P<0.05). In the disease resistance experiment, high intake of dietary vitamin E with 213 mg α‐tocopherol kg?1 significantly decreased cumulative mortality and delayed the days to first mortality after a 7‐day Edwardsiella tarda challenge (P<0.05). In addition, under the experimental conditions, dietary vitamin E and n‐3 HUFA had a synergistic effect on the non‐specific immune responses and disease resistance in Japanese flounder (P<0.05).  相似文献   

5.
The aim of the present study was to compare effects of dietary n-3 highly unsaturated fatty acids (HUFA) being incorporated in the phospholipid (PL) or in the neutral lipid (NL) fraction of the larval feed, on larval growth and histology of digestive organs in Atlantic cod ( Gadus morhua L.) larvae. Three isoproteic and isolipidic diets, labelled according to the percentage of n-3 docosahexaenoic acid and eicosapentaenoic acid contained in NL1 or in PL1 and PL3 of the diets, were fed to cod larvae from 17 days post hatching (dph) to 45 dph.
In the liver, hepatocytes and their nuclei were smaller in NL1 larvae compared with the PL larvae; the mitochondrial membrane structures were less dense and the amount of lipids observed in the liver was significantly higher in NL1 larvae compared with the PL3 larvae. The liver and gut size was related to larval size, with no differences between the larval groups. The results demonstrated that the essential fatty acids were more beneficial for cod larvae when they were incorporated in the dietary polar PL rather than in the NL, and that the n-3 HUFA requirements in cod larvae is possibly higher than that in the PL1 diet.  相似文献   

6.
Despite the interest of meagre (Argyrosomus regius) as a fast‐growing candidate for Mediterranean aquaculture diversification, there is a lack of information on nutrition along larval development. Importance of highly unsaturated fatty acids (HUFA) and the antioxidant vitamins E and vitamin C has not been investigated yet in this species. Six diets with two levels of HUFA (0.4% and 3% dw), two of vitamin E (1500 and 3000 mg kg?1) and two of vitamin C (1800 and 3600 mg kg?1) were fed to 15 dah meagre larvae. Larval growth in total length and dry body weight was significantly lowest in larvae fed diet 0.4/150/180 and showed few lipid droplets in enterocytes and hepatocytes and lower HUFA contents than the initial larvae. Increase in dietary HUFA up to 3%, significantly improved larval growth and lipid absorption and deposition. Besides, among fish fed 3% HUFA, increase in vitamin E and vitamin C significantly improved body weight, as well as total lipid, 22:6n‐3 and n‐3 fatty acids contents in the larvae. Thus, the results showed that 0.4% dietary HUFA is not enough to cover the essential fatty acid requirements of larval meagre and a high HUFA requirement in weaning diets is foreseen for this species. Besides, the results also pointed out the importance of dietary vitamin E and C to protect these essential fatty acids from oxidation, increase their contents in the larvae and promote growth, suggesting high vitamin E and C requirements in meagre larvae (higher than 1500 and 1800 mg kg?1 for vitamin E and vitamin C respectively).  相似文献   

7.
The impact of dietary α‐tocopherol on juvenile Chinese mitten crab Eriocheir sinensis was experimentally evaluated in a 10‐week study. Crab were fed with nine diets including three levels of α‐tocopherol (0, 100 and 300 mg kg?1 diet) and three levels of fish oil oxidation (fresh, moderate and high) in triplicates. Fresh and moderate oil oxidization enhanced weight gain, but moderate and high oil oxidization lowered survival and feed efficiency. The 100‐mg α‐tocopherol kg?1 diet resulted in higher hepatopancreas MDA than other α‐tocopherol diets. High oil oxidization led to the lowest serum superoxide dismutase (SOD) and glutathione peroxidase (GPH‐PX). The serum SOD and GPH‐PX activities in crab fed 100 mg α‐tocopherol were higher than in those fed other α‐tocopherol diets. The diet without α‐tocopherol addition lowered lysozyme and phenoloxidase (PO) activities compared to other α‐tocopherol diets. Fresh fish oil diet increased PO activity compared to oxidized oils. High oil oxidization caused significantly more mortality than fresh or moderate oxidization after 7‐d postchallenge with Aeromonas hydrophila. Supplementation with α‐tocopherol significantly enhanced resistance to bacterial infection. This study indicates that α‐tocopherol can protect lipid from peroxidation and enhance disease resistance.  相似文献   

8.
Precocious puberty is one of the major constraints to the further development of Chinese mitten crab (Eriocheir sinensis) farming industry. Although dietary phospholipids (PL) and highly unsaturated fatty acids (HUFA) supplementation have been shown to enhance the growth of larval E. sinensis in other studies, it is still unknown whether this also leads to a higher precocity rate for juvenile E. sinensis. This study was conducted to investigate the effects of dietary PL and HUFA on precocity, survival, growth and hepatic lipid composition of juvenile E. sinensis. Two diets were formulated with PL [3.95% dry weight (DW)] and HUFA (0.98% DW) supplementation (diet A) and without PL and HUFA supplementation (diet B) and fed to juvenile E. sinensis. Although dietary PL and HUFA levels did not significantly affect the survival and growth performance of juvenile E. sinensis, compared with crabs fed diet A, a higher precocity rate was found among juvenile E. sinensis fed diet B (P=0.051). A higher total lipid content, but significantly lower levels of HUFA and PL (P<0.05) were found in the hepatopancreas of crabs fed diet B than in those fed diet A. Meanwhile, the precocious females had significantly lower hepatosomatic index, arachidonic acid (20:4n‐6), eicosapentaenoic acid (20:5n‐3) and docosahexaenoic acid (22:6n‐3) contents in their hepatopancreas when compared with that of the normal immature juveniles (P<0.05). The results suggest that the occurrence of precocious puberty among farmed juvenile E. sinensis could be reduced by the inclusion of appropriate level of dietary PL and HUFA.  相似文献   

9.
This study was conducted to examine the effects of dietary ascorbic acid (AsA) and phospholipid (PL) and their interaction on growth, survival, and stress resistance in red sea bream larvae. Twenty‐six days old red sea bream were fed nine micro‐bound diets supplemented three levels of AsA (0, 800 and 1600 mg kg?1 diet) and PL (0, 20 and 40 g kg?1 diet) for 15 days. Dietary AsA and PL were both significant factors on survival rates. There was also an interaction between dietary AsA and PL on survival rate (P < 0.05). The larvae fed 800 or 1600 mg kg?1 AsA with 40 g kg?1 PL diets showed the highest survival rate, with values similar to those of the live‐food supplemented group. Stress resistance against low salinity exposure significantly increased with increased dietary level of AsA and PL. However, significant interaction of AsA and PL was not detected. The larvae fed 1600 mg kg?1 AsA with 40 g kg?1 PL diet showed the highest stress resistance among all diets, but it was not significantly different than that of larvae fed 800 mg kg?1 AsA with 40 g kg?1 PL diet. This study clearly demonstrated that combined use of AsA and PL can improve survival of 26–40 days posthatching red sea bream larvae. Moreover, the present study suggested that 800 mg kg?1 AsA with 40 g kg?1 PL in diet was needed for producing high quality seedling under the stressful conditions.  相似文献   

10.
The objective of this study was to determine the effect of dietary vitamin E on gilthead seabream (Sparus aurata) growth and survival, at two different highly unsaturated fatty acids (HUFAs) levels. Eighteen days old gilthead seabream larvae were fed four formulated experimental diets combining two different dietary levels of HUFAs (M: medium 2.5 + 1.5, DHA + EPA, H: high 5 + 2.5 DHA + EPA g per 100 g) with two different levels of vitamin E (M: medium 540 mg kg?1, H: high 2900 mg kg?1): MM, MH, HM, HH (HUFA/vitamin E). After 2‐week feeding trial, the average survival rate was 52.6% and there were no significant differences found among treatments. Increase in vitamin E up to high level markedly improved larval growth, particularly when dietary HUFA levels were lower, suggesting a higher protection value when these fatty acids are more limiting. At medium dietary HUFA levels, increase in vitamin E from medium to high level enhanced larval growth performance in terms of total length. Moreover, increase in vit E enhanced HUFAs content in the larval polar lipids denoting the anti‐oxidative effect of vitamin E.  相似文献   

11.
The aim of this study was to evaluate the effects of dietary phospholipids (PL) sources (fish gonad G‐PL and soybean lecithin S‐PL) and levels (50 and 90 g kg?1 dry matter) on the performances and fatty acid (FA) composition of pikeperch larvae. From day 10 to day 34 posthatching (p.h.), larvae were fed with three isoproteic and isolipidic microdiets. The best results of growth and skeletal development were related to a high phospholipid level regardless of their origin and FA profile. Jaw deformities seemed associated with high dietary highly unsaturated FA (HUFA) level. The optimal level of eicosapentaenoic acid and docosahexaenoic acid (EPA + DHA) for pikeperch larvae appeared to be around 12 g kg?1 (dry matter) associated with a PL level around 90 g kg?1. FA composition of diets and larvae revealed a better incorporation of arachidonic acid, EPA and DHA into PL fraction especially in larvae fed with soybean PL. Moreover, 34‐day‐old pikeperch larvae may have capability of converting 18 carbon n‐3 FA into the n‐3 HUFA. Hence, for pikeperch larvae, PL from plant origin were as efficient as those from marine fish origin.  相似文献   

12.
Dietary supplementation of phospholipids seems to be extremely important to promote growth and survival in fish larvae. Several studies also suggest the importance of n-3 highly unsaturated fatty acids (HUFA) rich phospholipids to further enhance larval performance. In the present study, four different diets were formulated in order to compare the effect of total dietary polar lipid contents, of soya bean lecithin supplementation and of feeding n-3 HUFA in the form of neutral or polar lipids on ingestion and incorporation of labelled fatty acids in gilthead seabream larvae. These diets were prepared including radiolabelled fatty acids from palmitoyl phosphatidylcholine, glycerol trioleate, free oleic acid (FOA) and free eicosapentaenoic acid (FEPA) and were fed to 25 day-old larvae. The results of these experiments showed that the elevation of the dietary polar lipid levels significantly improved microdiet ingestion, regardless of the origins of the polar lipids. This effect caused an improved incorporation of phosphatidylcholine fatty acids to the larval polar and total lipids (TL) as the dietary polar lipids increased. Nevertheless, a better incorporation of fatty acids from dietary polar lipids in comparison with that of fatty acids from dietary triglycerides into larval lipids was found in gilthead seabream, whereas a better utilization of dietary triglycerides fatty acids than dietary free fatty acids could also be observed. Besides, the presence of n-3 HUFA rich neutral lipids (NL) significanlty increased the absorption efficiency of labelled oleic acid from dietary triglycerides, but the presence of n-3 HUFA rich polar lipids, particularly improved the incorporation of FEPA. This fatty acid was preferentially incorporated into larval polar lipids in comparison with FOA.  相似文献   

13.
14.
This study was conducted to evaluate the dietary α‐tocopherol (vitamin E) requirement in juvenile sea cucumber, Apostichopus japonicus. Sea cucumbers averaging 1.48 ± 0.07 g (mean ± SD) were randomly distributed into 18 rectangular plastic tanks of 20 L capacity in a recirculating system (20 animals per tank). Six semi‐purified experimental diets with average protein and crude lipid levels (dry matter) of 29.7 ± 0.36% and 4.39 ± 0.23% (mean ± SD), respectively were formulated to contain 0 (E4), 15 (E12), 30 (E23), 60 (E44), 120 (E77) and 600 (E378) mg α‐tocopherol/kg diet, supplied as dl‐α‐tocopheryl acetate. Diets were analyzed for α‐tocopherol content by HPLC and the α‐tocopherol levels were 4.01, 12.4, 23.1, 44.3, 77.4 and 378 mg α‐tocopherol/kg diet for E4, E12, E23, E44, E77 and E378 diets, respectively. Casein and defatted fish meal were used as the protein sources in the diets while wheat flour was the carbohydrate source. Sea cucumbers were fed each of the six experimental diets in triplicate groups. At the end of the 14‐week feeding trial, weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) of sea cucumbers fed on E23, E44, E77 and E378 diets were significantly (P < 0.05) higher than those of animals fed on E4 and E12 diets. However, there were no significant differences in WG, SGR and FE among sea cucumbers fed on E23, E44, E77 and E378 diets or among those fed on E4 and E12 diets. Survival of sea cucumbers fed on E44, E77 and E378 diets were significantly higher than those of animals fed on E4, E12 and E23 diets. However, there were no significant differences among sea cucumbers fed on E4, E12 and E23 diets or among those fed on E44 and E77 diets. Whole‐body vitamin E concentration increased with α‐tocopherol content of the diets. Broken line analysis of WG showed an optimum dietary α‐tocopherol requirement of 41 mg α‐tocopherol/kg diet in sea cucumber. These results indicated that the optimum dietary α‐tocopherol requirement in sea cucumber in the form of dl‐α‐tocopheryl acetate could be higher than 23.1 mg α‐tocopherol/kg diet but lower than 44 mg α‐tocopherol/kg diet.  相似文献   

15.
The beneficial effects of feeding n−3 highly unsaturated fatty acids (HUFA ≥ 20 carbon fatty acids with three or more double bonds) to palmetto bass (striped bass × white bass) larvae, 4–30 days of age, were studied using Artemia diets enriched with six n-3HUFA levels. Dietary n-3HUFA concentrations were < 0.03% (control diet), 0.33%, 0.63%, 0.87%, 1.26%, and 2.27% of dry-wt Artemia. Larval n-3HUFA contents were reduced at a faster rate with decreasing dietary n-3HUFA intake, and were significantly different by 30 days posthatch (4–20 mg g−1 dry-wt fish). Starved larvae selectively conserved endogenous n-3HUFA reserves, indicating an essential role of n-3HUFA in larval development. Mass mortality in the control and 0.33% n-3HUFA diets occurred at metamorphosis (26–28 days posthatch). At harvest, all fish, except those fed the two highest n-3HUFA diets, suffered from handling stress (shock syndrome) with increasing severity (25 to 100%) at decreasing dietary n-3HUFA intake. Recovery from shock syndrome was 100% at the 0.63% and 0.87% n-3HUFA diets, 63% at the 0.33% n-3HUFA diet and 0% at the control diet. Post-harvest survival was similar among the four highest dietary n-3HUFA groups (64–73%), whereas the two lowest n-3HUFA groups differed significantly (0 and 37%). Growth promotion was evident with increased dietary n-3HUFA intake as fish fed the highest n-3HUFA diet were twice the size of those fed the control diet (99 vs 52 mg wet-wt). Final fish sizes at the three highest n-3HUFA diets were similar. Given similar culture conditions, a minimum dietary n-3HUFA intake of 1.26% of dry-wt Artermia is recommended to avoid handling stress and promote growth in larval palmetto bass.  相似文献   

16.
Early weaning of marine fish larvae with dry diets delays gut maturation and reduces growth rates. In juvenile and adult forms of several marine fish species, inclusion of dietary mannan oligosaccharides (MOS) improves gut integrity and functionality, but the effects of MOS inclusion in gilthead sea bream (Sparus aurata, L.) larval diets have not been addressed yet. Thus, this study assesses the effects of dietary MOS inclusion on survival, growth performance, gut morphology, feed acceptance and quality of gilthead sea bream larvae. For that purpose, 16 days post‐hatched gilthead sea bream larvae were fed four graded levels of MOS (Biomos®, Alltech, Nicholasville, KY, USA) in weaning diets as follows: 0 g kg?1 MOS, 0.5 g kg?1 MOS, 1.5 g kg?1 MOS and 2 g kg?1MOS. Dietary MOS did not affect feed acceptance in gilthead sea bream larvae (P > 0.05). MOS supplementation was correlated in a dose‐dependent way with higher larval survival (P = 0.026). After 15 days of feeding, dietary MOS increased whole larvae (P < 0.01) arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid. Gilthead sea bream larvae fed 2 g kg?1 MOS presented higher gut occupation with goblet cells after feeding compared with larvae fed the other dietary treatments. Overall, the results suggest that inclusion of MOS in early weaning diets for gilthead sea bream improves essential fatty acid utilization and may promote growth and final survival.  相似文献   

17.
This study was conducted to determine the effects of dietary highly unsaturated fatty acids (HUFA) on flame angelfish (Centropyge loriculus) reproduction, and egg and larval quality. In the experiment, formulated diets containing 1.8, 2.9 or 3.6% n‐3 HUFA were fed to flame angelfish broodstock (n = 4) for 5 months. Mean fecundity (daily egg production), egg fertilization rates and embryo viability were used as indicators of egg quality. In addition, mean egg diameter, oil globule diameter, per cent hatch, larval size at hatch, per cent survival to yolk exhaustion and larval size at yolk exhaustion were recorded for each treatment. Flame angelfish fed the diet containing 3.6% n‐3 HUFA exhibited significantly increased fecundity, fertilization rates and embryo viability than fish that were fed the other two formulated diets. Egg diameter, egg oil globule diameter, larval size at hatch, larval survival to yolk exhaustion and larval size at yolk exhaustion from the 3.6% n‐3 HUFA broodstock treatment group were not significantly different from those derived from the Control broodstock treatment. These data revealed that flame angelfish egg quality could respond rapidly (within weeks) to maternal dietary changes. Results from this study further support that dietary HUFA composition can significantly affect broodstock reproductive performance as well as subsequent performance of eggs and larvae.  相似文献   

18.
A 50‐day feeding trial was conducted to determine the effects of dietary oxidized fish oil (OFO) and vitamin C (VC) on growth and oxidative stress in juvenile red sea bream. Test diets were formulated with 2 degrees of peroxide value (23 and 29 meq kg?1) combined with 3 levels of VC (0, 400 and 800 ppm). No significant difference was found on growth performance between fish fed OFO with 400 or 800 mg VC and the control group that fed a diet with fresh fish oil after 50 days. However, fish fed OFO without VC supplement indicated significantly poor growth than the control group. Liver and muscle thiobarbituric acid reactive substances were reduced by increased VC intake of fish. Fish fed diets containing low OFO with 400 and 800 mg VC, high OFO with 800 mg VC, and fresh fish oil are allocated in the zone of high resistance against oxidative stress together with low oxidative stress condition. On the other hand, no VC supplemented group was under the highest oxidative stress condition. In conclusion, dietary oxidized lipid increased the oxidative stress condition of fish, but more than 400 mg VC kg?1 of dietary supplement improved growth and health of juvenile red sea bream.  相似文献   

19.
Three feeding studies were conducted to investigate whether dietary soybean lecithin (SBL) enhanced feed intake of non‐fish meal, SPC‐based diet, in yellowtail, and also to clarify which fraction of phospholipid (PL) was effective to enhance feed intake. In experiments 1 and 2, fish were fed SBL level at 0%–5%, and it was revealed that the daily feeding rate (DFR) of fish was significantly higher for SBL 2% than for SBL 0%, while a further increase of SBL in the diet did not additionally increase the DFR. Moreover, the DFR of fish fed a diet without feeding stimulants (FS) was the lowest among the dietary treatments, indicating that the SBL does not have an effect of enhancing feed intake in yellowtail. In experiment 3, fish were fed a diet with several products containing PL at 2%. Phosphatidylcholine and phosphatidylinositol concentrations in these products positively correlated to the DFR of fish. This result revealed that these two fractions in the SBL are effective for enhancing feed intake of yellowtail when FS is present in the diet.  相似文献   

20.
Fish tissues, particularly rich in n‐3 PUFA, are prone to lipid peroxidation that can damage cellular membranes, cause severe lesions and subsequently incidences of disease and mortality. However, fish possess antioxidant defences, such as vitamin E (VE) and antioxidant enzymes, to protect them against oxidative damage. This study investigated the effects of an increasing gradient of oxidized dietary lipid on the survival, growth performance, skeletogenesis and antioxidant defensive processes occurring in Senegalese sole (Solea senegalensis) larvae. Four groups of fish were fed live prey enriched with experimental emulsions containing an increasing gradient of oxidized oil: non‐oxidized, NO+VE, 34.5 nmol MDA g?1 w.w.; mildly oxidized, MO+VE, 43.1 nmol MDA g?1 w.w.; highly oxidized, HO+VE, 63.3 nmol MDA g?1 w.w. and highly oxidized without VE, HO‐VE, 78.8 nmol MDA g?1 w.w. The oxidation levels increased in enriched rotifers following the oxidation gradient of the emulsions, but were not affected in enriched Artemia metanauplii. The oxidation status of Senegalese sole larvae increased during development, but this was not related to the dietary treatments. The increasing dietary oxidation levels did not affect the fatty acid profile, survival, growth performance and metamorphosis processes of sole larvae. Senegalese sole seem to activate antioxidant defence mechanisms in response to the increasing amounts of dietary peroxidized lipids, in a manner efficiently enough to prevent detection of any alterations of these physiological processes. Antioxidant systems and detoxification mechanisms appeared to occur through the consumption of dietary α‐tocopherol, the activation of the antioxidant enzymes (catalase, superoxide dismutase, glutathione S‐transferase, glutathione reductase) and the retention of oxidized fat in the intestinal enterocytes for detoxification prior to their utilization. However, fish fed the highest oxidized diet presented a reduction in bone mineralization, but lower incidence of deformities in the vertebral and caudal regions than fish fed the other diets. This study exemplifies the importance of rearing Senegalese sole larvae on non‐oxidized diets during the early larval development to avoid detrimental consequences in older fish, most notably in the process of skeletogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号