首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
2.
I Qin  D A Culver  N Yu 《Aquaculture Research》1995,26(12):911-920
Alfalfa meal as a source of organic fertilizer was used in a series of pond, enclosure and laboratory experiments to determine its effect on bacteria, algae and water quality. Bacteria and flagellate algae were increased, whereas nonflagellate algae were not significantly affected by organic loadings. Bacterial and algal turnover rates we re 1.9-2.7 times daily and 0.18-0.22 times daily at 20-25oC, respectively. Oxygen consumption rates were enhanced by increasing organic input or temperature. Dissolved oxygen in ponds with organic fertilizer was significantly lower than that in ponds without organic input. Because of low N and P content and high oxygen consumption, organic fertilizer alone is unlikely to provide adequate nutrients for algae and sufficient oxygen for fish. To stimulate the growth of food organisms for fish in aquaculture ponds, a combined use of inorganic and organic fertilizer is recommended, but the amount of organic fertilizer should be determined with care to avoid water quality deterioration. The amount of 10mg alfalfa 1?1 wk?1 is considered the upper safety limit for organic fertilization. The nitrogen and phosphorus ratio should be kept weekly at 20:1 by weight to promote the development of food organisms in ponds.  相似文献   

3.
The effects of introducing common carp (CC) and of adding artificial feed to fertilized rohu ponds on water quality and nutrient accumulation efficiency were studied. All ponds were stocked with 15 000 rohu ha?1. Treatments included ponds with rohu alone, rohu plus 5000 common carp ha?1 and rohu plus 10 000 CC ha?1. A comparison was also made between supplementally fed and non‐fed ponds. The overall highest nitrogen (N) and phosphorus (P) concentrations were observed in ponds with 5000 CC ha?1, followed by ponds with 10 000 and 0 CC ha?1. The largest fractions of N and P inputs accumulating in fish, phytoplankton and zooplankton were observed in ponds with 5000 CC ha?1, followed by ponds with 10 000 CC ha?1 and subsequently ponds without CC. Relatively more nutrients accumulated in benthic organisms in ponds without than in ponds with CC. A smaller fraction of the nutrient input was retained in fish, plankton and benthic organisms in ponds without CC compared with ponds with CC. Compared with 5000 CC ha?1, stocking 10 000 CC ha?1 can be considered as overstocking, because this leads to lower fish production and relatively less nutrients retained in plankton and benthic organisms.  相似文献   

4.
In aquaculture, ponds with high loads of organic inputs, organic matter accumulates at the bottom over time. Uneaten feed, senescent phytoplankton and faeces are the principal sources of accumulated material, but quantifications are scarce. The sedimented organic matter develops into a flocculent layer in which different processes transform the material into inorganic forms. A better understanding of factors influencing organic matter accumulation/decomposition in the sediment is needed to better understand and manage the dynamics of nitrogen in fish ponds. In this study, the rate of mineralization of organic nitrogen and the nitrogen flux between the sediment and the water column were measured. Organic matter accumulation in fish ponds was quantified, and the data were used to construct, calibrate and validate a dynamic simulation model of organic matter deposition/decomposition in fish ponds. The accumulating material consisted of dead phytoplankton, fish faeces and uneaten feed. Through model calibration, the proportion of these materials in the total accumulated organic matter was determined. In the model, gross photosynthetic rate was estimated from an empirical relationship with feed input. After calibration, the model was validated using independent data. The model simulated well the concentrations of organic carbon and nitrogen in the sediments but it may be developed further, especially by considering the effects of resuspension.  相似文献   

5.
Four different fertilization frequencies, namely twice per week, once per week, twice a month and once a month, were used in ponds to assess their effects on nutrient release, pond productivity and fish biomass. All ponds received the same total fertilizer inputs during the experimental period of 60 days (cow dung 208.3 kg ha?1 week?1, TSP 9.8 kg ha?1 week?1, urea 6.0 kg ha?1 week?1). Studies have revealed that the highest values of fish biomass, specific growth rate (SGR), net primary productivity (NPP), plankton population and nutrients were observed in the ponds that were fertilized twice a month. A strong and significant correlation of fertilization frequency was observed with dissolved oxygen, biochemical oxygen demand (BOD), alkalinity, nutrient release, NPP, plankton density (no. L?1), fish biomass and SGR. The linear relationship between NPP and fish biomass/SGR for all the ponds was strong (r2= 0.88). Sediment chemistry revealed that O‐PO4, NO3‐N, organic carbon and electrical conductivity (EC) increased significantly (P<0.05) with a decrease in the frequency of fertilization, while alkalinity and calcium were high in ponds that were fertilized twice a month.  相似文献   

6.
Microbial mineralization rates in sinking particles, bottom sediments and seawater were determined in a coastal fish (red sea bream Pagrus major) culturing area to clarify the mineralization process of organic matter (OM) in the entire water column. The mineralization rates of 14C‐labelled glutamate and glucose per unit volume were highest in the sinking particles and were 131–572 and 7–49 times higher than those of the seawater and bottom sediments respectively. The turnover time of glutamate tended to be shorter than that of glucose at all three sites of the water column. Bacteria appeared to prefer amino acids to monosaccharides because amino acids could be utilized as both energy and nitrogen sources. The sedimentation rate of particulate organic carbon (POC) derived from phytoplankton accounted for 9–61% of the total POC, and it was particularly high in early summer (61% and 50% at fish cage and non‐cage stations respectively). The present study clearly shows that sinking particles serve as an important site of microbial mineralization process of OM within the water column, and that phytoplankton production was another serious cause of organic pollution of the seafloor in addition to the organic wastes directly discharged from fish farms.  相似文献   

7.
The magnitude of nitrogen fixation in an inorganic fertilized and cereal fed system (fish pond) was measured by an in situ application of the acetylene reduction method. The effects of inorganic fertilization were intensively examined. In comparison with natural lakes, the fish ponds exhibited a relatively low fixation rate. The midday nitrogen fixation rate was usually less than 30 μg at N·m?2·h?1. The total income was equal to 5.7 kg N·ha?1 or 0.575 g N·m?2 for the growing season. Fish-induced bioperturbation and nitrogen fertilization, in the form of inorganic and organic fertilizers and foods, are considered to be the major regulatory factors in nitrogen fixation.  相似文献   

8.
The knowledge of geochemical processes in fishponds is important in defining farming strategies and the carrying capacity of these systems, and is therefore essential for the management and sustainability of semi‐intensive aquaculture in earth ponds. The main purpose of the present work, developed in the Aquaculture Research Station located in Ria Formosa, was to study the geochemical changes in semi‐intensive earth ponds of white seabream Diplodus sargus L. during a production cycle, and relate it to farming conditions (fish biomass and feeding rate). Settled material and sediment samples were collected in a fish production pond and in a non‐fish production pond during 2 years. The results obtained showed that particle‐settling rates (S, g m−2 day−1) increased linearly with time (t, days): S=0.7t–34, in the fishpond. Increasing deposition of particulate material increased the organic matter content of bottom sediments, particularly during the second production year. Organic matter mineralization, during periods of high temperatures, led to high nutrient concentrations in porewater (NH4+, 965 μM; NO3, 40 μM; HPO42−, 39 μM) and subsequently to an increase in benthic primary production in the fishpond. The geochemical similarities between fishpond sediments and shallow coastal system's sediments, along with the high fish survival rate (94%), suggest that for the assayed farming conditions there were no environmental constraints within the pond. However, some impact on bottom sediments, namely, an increase in settled material, organic matter deposition, nutrients in porewater and microphytobentos production, was evident above a fish biomass of 500 g m−3 and a feeding rate of 150 kg month−1, indicating that pond environmental conditions should be carefully monitored from this point on.  相似文献   

9.
Tremendous variation in survival and growth of percid fry stocked in ponds was addressed through manipulation of amounts and kinds of fertilizers added and stocking densities of fish. Ponds were filled with water from nearby eutrophic lakes less than one week prior to stocking. Survival in these ponds averaged 64%. whereas ponds filled one month before stocking averaged only 14%. Optimal inorganic fertilization was identified as weekly restoration to 600µg N/L (NH4 +NO3) and 30µg P/L as PO4 -3. Organic fertilization gave variable results and water qualities. In one experiment, low organic fertilization alone (28 kg alfalfa meal/ha/week) provided survival and growth comparable to optimal fertilization with inorganic nutrients. Although similar in results, inorganic fertilization was more cost effective than the alfalfa meal. Low fish predation from low stocking or survival allowed Daphnia to overgraze algae. This resulted in a crash in both algae and zooplankton in the ponds. Doubling the initial stocking density increased harvests from 150.000 to 300,000 fish/ha and increased yield from 45 to 100 kg/ha.  相似文献   

10.
This study quantified the accumulation of nitrogen (N) in the water column, sediments, fish and seepage water during a production cycle of Colossoma macropomum. By combining estimates of the deposition rates of uneaten feed, faeces and dead phytoplankton with measurements of N accumulation in the sediment, the rate of decomposition of organic matter in the sediment was estimated. The first‐order rate constant for organic matter decomposition was 0.237±0.019 day?1. Total N recovery during the first weeks of the experiment was about 65%. Later, the N recovery was close to 100%. The cumulative recovery at the end of the experiment was almost 100%, meaning that the N budget in the system studied can be fully explained without consideration of N volatilization, due to either denitrification or ammonia volatilization. In the beginning of the growth cycle, the major flux of N was sedimentation. Intensive microbial degradation process occurred about 3–4 weeks later, leading to a release of inorganic N and an approach towards a steady state as to the accumulation of organic N. Feed was irregularly applied during the experiment but fish growth was constant, showing that the fish utilized detrital or planktonic feed during periods of low feeding. Nitrogen accumulated in the pond during periods of excessive feeding and was utilized by the fish during periods of low feeding. This cycling should be further studied and may be an important pond management technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号