首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Pacific and Atlantic herring populations (genus Clupea) commonly experience episodic collapse and recovery. Recovery time durations are of great importance for the sustainability of fisheries and ecosystems. We collated information from 64 herring populations to characterize herring fluctuations and determine the time scales at low biomass and at high and low recruitment, and use generalized linear models and Random Survival Forests to identify the most important bottom‐up, top‐down and intrinsic factors influencing recovery times. Compared to non‐forage fish taxa, herring decline to lower minima, recover to higher maxima and show larger changes in biomass, implying herring are more prone to booms and busts than non‐forage fish species. Large year classes are more common in herring, but occur infrequently and are uncorrelated among regionally grouped stocks, implying local drivers of high recruitment. Management differs between Pacific and Atlantic herring fisheries, where at similarly low biomass, Pacific fisheries tend to be closed while Atlantic fisheries remain open. This difference had no apparent effect on herring recovery times, which averaged 11 years, although most stocks with longer recovery periods had not yet recovered at the end of the observation period. Biomass recovery is best explained by median recruitment and variability in sea surface height anomalies and sea surface temperatures—higher variability leads to shorter recovery times. In addition, the duration of recruitment failure is closely linked with low biomass. While recovery times rely on the nature of the relationship between spawning biomass and recruitment, they are still largely governed by complex and uncertain processes.  相似文献   

2.
We tested whether variations in stock characteristics (spawner and smolt abundance) and biotic conditions (prey variability, predation, competition) during the early marine period explained variations in the return of sockeye salmon (Oncorhynchus nerka) to Great Central and Sproat lakes, adjacent lakes on the west coast of Vancouver Island. There are two freshwater age groups in each lake; fish spend 1 or 2 yrs in freshwater after hatching. We tested the influences of stock and biotic factors on the return of each of the two age groups from each of the two lakes. Results of regression analyses showed that prey biomass variability best explained the variation in return for all lake‐age groups. Euphausiid (Thysanoessa spinifera) and cladoceran (Evadne) prey biomass variability explained between 0.75 and 0.95 (adjusted R2) of the variation in return. There appear to be instances of a mismatch between the seasonality of prey productivity and the apparent critical period of feeding for juvenile sockeye.  相似文献   

3.
Following the 1989 MV Exxon Valdez oil spill (EVOS) and subsequent herring population collapse in Alaska's Prince William Sound (PWS), the Pacific herring (Clupea pallasii) fishery was closed. In the 25 yr since EVOS, herring and several herring‐dependent marine bird species have failed to reach pre‐spill population levels. One hypothesis is that intense predation pressure may be inhibiting herring recovery. To inform herring modeling efforts, this study estimated marine bird consumption of juvenile and adult herring in PWS for 10 winters over an 18‐yr period (1989–90 through 2006–2007). Total estimated herring consumption by wintering marine birds averaged 2409 ± 950 t, indicating that avian consumption represents a substantial and inter‐annually variable source of herring mortality. Common murre (Uria aalge) consumed the greatest portion (16–80%) of herring in all years among marine bird species. Juvenile herring biomass consumed annually by common murre was greater than murre consumption of adult herring biomass. Time lag analyses showed that marine bird consumption of adult herring is negatively correlated with the amount of herring spawn observed in subsequent years, but such effects were not observed more than 2 yr. Our models indicate that during years in which herring recruitment is low or bird populations are particularly large, marine birds can consume up to 10% of the annual adult herring biomass. Our results highlight the importance of herring to wintering PWS birds. We propose that future management of herring stocks seeks to reduce negative impacts on marine birds that prey on herring.  相似文献   

4.
Explaining recruitment variation in fish is essential for successful fishery management and is consequently under constant review, with an increasing focus on how maternal factors, relative to environmental influences, operate at the level of individual female spawners and extend from the spawning stock through to recruitment. We estimate total egg production (E) in Icelandic summer‐spawning herring (Clupea harengus) from 1963 through 1999 by using sequential population analyses (SPA) and their estimates of stock biomass and recruitment, various size and maturity metrics, and individual fecundity estimates that rely on total length and the condition of the spawners. Generalized linear models indicate that maternal effects are of significance in explaining SPA‐based recruitment‐at‐age‐3 (R). The best model explained 64% of the variation in R and incorporates E constrained to the repeat spawners (40%), the NAO winter index (18%) and ocean temperature (6%). The latter two represent the winter and spring periods subsequent to year‐class formation. Recruit spawner contributions to E were of no significance in explaining variation in R despite the fact that they could contribute as much as 55% of E when their contribution to E was consistently underestimated by a factor of ~ 2, based only on their contribution to spawning stock biomass. We conclude that the spawning potential of the repeat spawners should replace total spawning stock biomass for determining recruitment potential in stock assessment. In addition to the incorporation of oceanographic factors, this would provided a more cautious and risk‐adverse approach.  相似文献   

5.
This paper investigates environmental drivers of U.S. West Coast petrale sole (Eopsetta jordani) recruitment as an initial step toward developing an environmental recruitment index that can inform the stock assessment in the absence of survey observations of age‐0 and age‐1 fish. First, a conceptual life history approach is used to generate life‐stage‐specific and spatio‐temporally specific mechanistic hypotheses regarding oceanographic variables that likely influence survival at each life stage. Seven life history stages are considered, from female spawner condition through benthic recruitment as observed in the Northwest Fisheries Science Center West Coast Groundfish Bottom Trawl Survey (age‐2 fish). The study area encompasses the region from 40 to 48°N in the California Current Ecosystem. Hypotheses are tested using output from a regional ocean reanalysis model outputs and model selection techniques. Four oceanographic variables explained 73% of the variation in recruitment not accounted for by estimates based exclusively on the spawning stock size. Recruitment deviations were (a) positively correlated with degree days during the female precondition period, (b) positively correlated with mixed‐layer depth during the egg stage, (c) negatively correlated with cross‐shelf transport during the larval stage, and (d) negatively correlated with cross‐shelf transport during the benthic juvenile stage. While multiple mechanisms likely affect petrale sole recruitment at different points during their life history, the strength of the relationship is promising for stock assessment and integrated ecosystem assessment applications.  相似文献   

6.
Pacific saury (Cololabis saira) has a short life span of 2 years and tends to exhibit marked population fluctuations. To examine the importance of sea surface temperature (SST) and mixed layer depth (MLD) as oceanographic factors for interannual variability of saury recruitment in early life history, we analyzed the relationship between abundance index (survey CPUE (catch per unit of effort)) of age‐1 fish and the oceanographic factors in the spawning and nursery grounds of the previous year when they were born, for the period of 1979–2006, in the central and western North Pacific. Applying the mixture of two linear regression models, the variability in the survey CPUE was positively correlated with previous year's winter SST in the Kuroshio Recirculation region (KR) throughout the survey period except 1994–2002. In contrast, the survey CPUE was positively correlated with the previous year's spring MLD (a proxy of spring chlorophyll a (Chl‐a) concentration) in the Kuroshio‐Oyashio Transition and Kuroshio Extension (TKE) during 1994–2002. This period is characterized by unusually deep spring MLD during 1994–1997 and anomalous climate conditions during 1998–2002. We suggest that saury recruitment variability was generally driven by the winter SST in the KR (winter spawning/nursery ground), or by the spring Chl‐a concentration (a proxy of prey for saury larvae) in the TKE (spring spawning/nursery ground). These oceanographic factors could be potentially useful to predict abundance trends of age‐1 saury in the future if the conditions leading to the switch between SST and MLD as the key input variable are elucidated further.  相似文献   

7.
Relationships between abundance of post‐larval and juvenile carangid (jacks) fishes and physical oceanographic conditions were examined in the northern Gulf of Mexico (GoM) in 2011 with high freshwater input from the Mississippi River. Generalized additive models (GAMs) were used to explore complex relationships between carangid abundance and physical oceanographic data of sea surface temperature (SST), sea surface height anomaly (SSHA) and salinity. The five most abundant carangid species collected were: Selene setapinnis (34%); Caranx crysos (30%); Caranx hippos (10%); Chloroscombrus chrysurus (9%) and Trachurus lathami (8%). Post‐larval carangids (median standard length [SL] = 10 mm) were less abundant during the spring and early summer, but more abundant during the late summer and fall, suggesting summer to fall spawning for most species. Juvenile carangid (median SL = 23 mm) abundance also increased between the mid‐summer and early fall. Most species showed increased abundance at lower salinities and higher temperatures, suggesting entrainment of post‐larval fishes or feeding aggregations of juveniles at frontal convergence zones between the expansive river plume and dynamic mesoscale eddy water masses. However, responses were species‐ and life‐stage specific, which may indicate fine‐scale habitat partitioning between species. Ordination methods also revealed higher carangid abundances at lower salinities for both post‐larval and juvenile life stages, with species‐ and life‐stage specific responses to SST and SSHA, further suggesting habitat separation between species. Results indicate strong links between physical oceanographic features and carangid distributions in the dynamic northern GoM.  相似文献   

8.
Recruitment variability in many fish populations is postulated to be influenced by climatic and oceanographic variability. However, a mechanistic understanding of the influence of specific variables on recruitment is generally lacking. Feeding ecology is one possible mechanism that more directly links ocean conditions and recruitment. We test this mechanism using juvenile Chinook Salmon (Oncorhynchus tshawytscha) collected off the west coast of Vancouver Island, British Columbia, Canada, in 2000–2009. Stable isotopes of carbon (δ13C), an indicator of temperature or primary productivity, and nitrogen (δ15N), an indicator of trophic position, were taken from muscle tissues of genetically stock‐identified salmon. We also collated large‐scale climate indices (e.g., Pacific Decadal Oscillation, North Pacific Gyre Oscillation), local climate variables (e.g., sea surface temperature) and copepod community composition across these years. We used a Bayesian network to determine how ocean conditions influenced feeding ecology, and subsequent survival rates. We found that smolt survival of Chinook Salmon is predicted by their δ13C value, but not their δ15N. In turn, large‐scale climate variability determined the δ13C values of salmon, thus linking climate to survival through feeding ecology, likely through qualities propagated from the base of the food chain.  相似文献   

9.
We examine the hypothesis that recruitment is more variable in populations on isolated offshore banks than nearby shelf populations. Recruitment of cod (Gadus morhua) and American plaice (Hippoghssoides plates-soides) on Flemish Cap is more variable than in any comparable population. Recruitment of haddock (Melanogrammus aeglefinus) on Rockall Bank is also more variable than in surrounding populations. These results are confirmed both by estimates obtained by virtual population analysis and by research surveys. Recruitment of haddock and herring (Clupea harengus) on Georges Bank is also more variable than in surrounding populations; however, the results for two other groundfish populations, cod and yellowtake flounder (Limanda ferruginae), on Georges Bank are ambiguous. We conclude that marine fish populations on isolated banks are more variable than those on nearby shelf regions.  相似文献   

10.
11.
The inter-annual variability in year class strength (1976–2000) of North Sea herring (Clupea harengus) was investigated using Paulik diagrams based on survey data and Virtual Population Analysis. The herring life cycle was split into five stages: spawning stock biomass (SSB), egg production, larvae, fish with 0 winter rings on the otolith (0-wr), 1-wr and 2-wr. Surveys were used as indices and Paulik analysis revealed relationships between stages. In 80% of the years, year class strength reflected SSB. Poorer than expected year classes were determined during the larva to 0-wr phase, whilst stronger than expected year classes were apparently determined during the 0-wr to 1-wr stage. There was no clear relationship between survival of young stages of herring and the abundance of Calanus finmarchicus but the year class strength of 0-wr and 1-wr had a negative relationship to bottom water temperature. Lower sea water temperatures in the North Sea are associated with higher Calanus abundance. The analysis shows that the strength of aberrant year classes of North Sea herring is determined between the pelagic larval and the juvenile stages.  相似文献   

12.
Dispersion during the larval phase is of central importance in the dynamics of marine fish and invertebrate populations. Rapid transport or dispersion of larvae may contribute to connectivity and mixing, whereas spatial persistence (retention) is hypothesized to favour stock complexity and local subpopulations. Larval retention, while rarely quantified, may be defined in species with protracted spawning by the spatial co‐occurrence of larvae of different sizes or ages. The spatial distributions of larval Atlantic herring (Clupea harengus) were examined from 22 annual autumn surveys (1975–1998) and 9 spring surveys (1975–1984) from the Bay of Fundy, a region with large tides and residual flow. Larvae of all sizes (3–27 mm in length, from hatch to nearly 4 months post‐hatch) were observed each year in two major aggregations; one off southwestern Nova Scotia, and the other in the mid‐inner Bay of Fundy off the northwestern shore of Nova Scotia. Two similar aggregations were evident over 5 months later from 9 spring surveys (1975–1984), despite the residual flow that would have swept the larvae from the region within 1 month. Larval retention was apparent from overlapping centres of mass of different size (=age) classes of larvae, and tested using a size diversity index, based on the co‐occurrence of 1‐mm‐size categories, derived from protracted spawning of several weeks. Geospatial ‘hot spots’ (Gi* statistic) of four size (age) classes were evident at specific stations in the 50–100 m bathymetric zone and not elsewhere. These metrics provide quantitative measures of retention that may be applied to many ichthyoplankton data sets. One of the three main spawning areas collapsed during the study period after a period of intense fishing and failed to rebuild, but there was no substantial change in the location of larval hotspots in subsequent years. While larval retention does not directly relate to each spawning location, larval retention in the Bay of Fundy contributes to the complex ‘metapopulation’ structure of herring stocks in the western Atlantic.  相似文献   

13.
Variation in recruitment and growth of age‐0 yellow perch, Perca flavescens (Mitchill), was modelled across a range of nine eastern South Dakota glacial lakes to: (i) estimate factors influencing recruitment and growth dynamics during early ontogeny; and (ii) determine the relative importance of biotic versus abiotic processes in regulating recruitment and growth dynamics. Results provide a framework for future investigations and suggest that abiotic factors were more important in regulating recruitment of age‐0 yellow perch, whereas biotic factors were more important in regulating growth. Recruitment was positively related to springtime water levels and temperature and negatively related to spawning stock biomass and springtime wind conditions. By contrast, growth was negatively related to abundance of conspecifics and potential competitors (i.e. bluegill, Lepomis macrochirus Rafinesque) and positively related to abundance of potential predators [i.e. walleye, Sander vitreus (Mitchill) and northern pike, Esox lucius Linnaeus].  相似文献   

14.
Fisheries acoustics surveys were conducted around the Chiswell Island rookery in the northern Gulf of Alaska at night in April and August 2003 to assess seasonal changes in prey available to Steller sea lions (Eumetopias jubatus) foraging around the rookery. Adult walleye pollock (Theragra chalcogramma) ≥28 cm fork length was the dominant biomass in the upper 50 m of the water column in both months, increasing from 122.8 kg/nmi2 in April to 457.9 kg/nmi2 in August. A similar pattern was observed for Pacific herring (Clupea pallasii), which averaged 2.8 and 65.6 kg/nmi2 in April and August, respectively. Incidental trawl catch suggested the appearance of age-0 pollock and juvenile salmonids (Oncorhynchus spp.) around the rookery in August as well. The increased biomass of these key prey species is linked to increased foraging trip durations by lactating sea lions from Chiswell Island, and supports the general view that sea lions in the northern Gulf of Alaska are not food limited during summer months.  相似文献   

15.
The upper‐layer net‐zooplankton community in Prince William Sound, Alaska, is characterized by strong seasonality. Abundance and wet‐weight biomass in the upper 50 m drop to fewer than 100 individuals and 10 mg m?3 in February before rebounding to 5000 individuals and 600 mg m?3 in June. Copepods dominate in all months, but are augmented by other prominent taxa, particularly pteropods and larvaceans during the late spring, summer and fall. The small copepods Pseudocalanus, Acartia and Oithona are common. Though much less abundant, larger calanoids like Neocalanus, Calanus and Metridia contribute substantially to the biomass in spring and early summer. Meroplankters like barnacle nauplii are also occasionally very abundant. Neocalanus, Calanus and Pseudocalanus all exhibit ontogenetic vertical displacement of populations when stage 5 copepodites (C5) leave the surface in late May and early June for deep water. This seasonality has implications for food‐webs supporting juvenile pink salmon (Oncorhynchus gorbuscha) and Pacific herring (Clupea pallasi) in Prince William Sound.  相似文献   

16.
The Icelandic summer‐spawning herring (Clupea harengus) stock overwinters in large, dense schools like other herring stocks. In the winter of 2012/2013 around 300 thousand tonnes, or ~70% of the spawning stock, overwintered in a fjord west of Iceland. The inner part of the fjord, where the herring was located, is separated from the outer part with a natural barrier and a built‐up road with a 210 m long bridge. This creates strong tidal currents under the bridge. On 14 December and again on 1 February mass mortalities of herring took place in this location, and the sea floor and the shores were covered with dead herring. Fieldwork, including camera and video recordings on the shore and on a small boat, was conducted 3 and 4 days after the incidents. Results from this indicated that a total of 55 thousand tonnes had died during these two incidents, an amount nearly equal to the total catch from the stock that year. Measurements of environmental conditions in the days following the incidents showed that the oxygen saturation was generally 20%–40% but was as low as 15% (1.1 ml/L). The most likely explanation for the mortalities was oxygen depletion resulting from respiration of the large herring biomass, limited atmospheric‐water gas exchange due to calm and cold weather prior to both incidents and sea ice on part of the fjord, and limited renewal of water coming in and out via tidal currents. Aerobic decomposition of dead herring came additionally in the latter incident.  相似文献   

17.
Oceanographic processes and ecological interactions can strongly influence recruitment success in marine fishes. Here, we develop an environmental index of sablefish recruitment with the goal of elucidating recruitment‐environment relationships and informing stock assessment. We start with a conceptual life‐history model for sablefish Anoplopoma fimbria on the US west coast to generate stage‐ and spatio‐temporally‐specific hypotheses regarding the oceanographic and biological variables likely influencing sablefish recruitment. Our model includes seven stages from pre‐spawn female condition through benthic recruitment (age‐0 fish) for the northern portion of the west coast U.S. sablefish stock (40°N–50°N). We then fit linear models and use model comparison to select predictors. We use residuals from the stock‐recruitment relationship in the 2015 sablefish assessment as the dependent variable (thus removing the effect of spawning stock biomass). Predictor variables were drawn primarily from ROMS model outputs for the California Current Ecosystem. We also include indices of prey and predator abundance and freshwater input. Five variables explained 57% of the variation in recruitment not accounted for by the stock‐recruitment relationship in the sablefish assessment. Recruitment deviations were positively correlated with (i) colder conditions during the spawner preconditioning period, (ii) warmer water temperatures during the egg stage, (iii) stronger cross‐shelf transport to near‐shore nursery habitats during the egg stage, (iv) stronger long‐shore transport to the north during the yolk‐sac stage, and (v) cold surface water temperatures during the larval stage. This result suggests that multiple mechanisms likely affect sablefish recruitment at different points in their life history.  相似文献   

18.
To anticipate the response of fish populations to climate change, we developed a framework that integrates requirements in all life stages to assess impacts across the entire life cycle. The framework was applied on plaice (Pleuronectes platessa) and Atlantic herring (Clupea harengus) in the North Sea, Atlantic cod (Gadus morhua) in the Norwegian/Barents Seas and European anchovy (Engraulis encrasicolus) in the Bay of Biscay. In each case study, we reviewed habitats required by each life stage, habitat availability, and connectivity between habitats. We then explored how these could be altered by climate change. We documented environmental processes impacting habitat availability and connectivity, providing an integrated view at the population level and in a spatial context of potential climate impacts. A key result was that climate‐driven changes in larval dispersion seem to be the major unknown. Our summary suggested that species with specific habitat requirements for spawning (herring) or nursery grounds (plaice) display bottlenecks in their life cycle. Among the species examined, anchovy could cope best with environmental variability. Plaice was considered to be least resilient to climate‐driven changes due to its strict connectivity between spawning and nursery grounds. For plaice in the North Sea, habitat availability was expected to reduce with climate change. For North Sea herring, Norwegian cod and Biscay anchovy, climate‐driven changes were expected to have contrasting impacts depending on the life stage. Our review highlights the need to integrate physiological and behavioural processes across the life cycle to project the response of specific populations to climate change.  相似文献   

19.
Abstract Seven abiotic and biotic variables were tested to determine whether they influence the recruitment to age two of yellow perch, Perca flavescens (Mitchill), in waters of southern Lake Michigan, USA. Recruitment was analysed using a Ricker stock‐recruitment relationship that accounts for density dependency. Significant model variables tested individually and ranked by total variance explained included the abundance of sexually mature yellow perch, alewife, Alosa pseudoharengus (Wilson) and spottail shiner, Notropis hudsonius (Clinton). Variables found unrelated to recruitment or generally less explanatory included the abundance of round goby, Neogobius melanostomus (Pallus), mean water temperature, variation in water temperature and water clarity. The best‐fitting multivariable model explained 69% of the recruitment variability and included abundances of sexually mature yellow perch, alewife and spottail shiner. These results suggest that yellow perch recruitment in southern Lake Michigan is regulated in part by biotic interactions with other species of the near‐shore community, including alewife and spottail shiners, in addition to the abundance of reproductively mature yellow perch.  相似文献   

20.
Seasonal and inter‐annual variability in the abundance and biomass of copepodid stages of the sub‐arctic oceanic copepod, Neocalanus plumchrus, was studied during the January–May growth season, using an 11‐yr time series of zooplankton samples collected over the upper 100 m of the water column. Abundance and biomass peaks occur in March/April. Abundance and biomass of N. plumchrus were significantly negatively correlated with sea surface temperature and significantly positively correlated with sea surface chlorophyll a, salinity, and density above the pycnocline. The seasonal integrated abundance and biomass of N. plumchrus declined during the warm years (2003–05), and increased during the cold years (2006–08). The date when 50% of the population had passed through stage C5 was significantly negatively correlated with temperature – earlier in warm years and later in cold years. In 3 yr (2003, 2007 and 2008), a second cohort appeared in mid‐May, as indicated by the presence of stages C1 and C2 in the samples. Unusually high abundances of N. plumchrus in the spring of 2007 and 2008 were associated with cool ocean temperatures and an early spring transition in the NCC ecosystem, suggesting that the NCC ecosystem has returned to a cold phase. We discuss the merits of a hypothesis that the N. plumchrus population observed off Oregon is a local population as opposed to one that is expatriated from the Gulf of Alaska.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号