首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract  The application of a drift-foraging bioenergetic model to evaluate the relative influence of prey abundance (invertebrate drift) and habitat (e.g. pool frequency) on habitat quality for young-of-the-year (YOY) and yearling juvenile cutthroat trout, Oncorhynchus clarki (Richardson) is described. Experiments and modelling indicated simultaneous limitation of fish growth by prey abundance and habitat, where depth and current velocity limit the volume of water and prey flowing through a fish's reactive field as well as swimming costs and prey capture success. Predicted energy intake and growth increase along a depth gradient, with slower deeper pool habitat generating higher predicted growth for both YOY and yearling trout. Bioenergetic modelling indicated that fish are constrained to use progressively deeper habitats to meet increasing energy requirements as they grow. Sensitivity of growth to prey abundance identified the need to better understand how variation in invertebrate drift and terrestrial drop affects habitat quality and capacity for drift-feeding fishes.  相似文献   

2.
Invasive species in riparian forests are unique as their effects can transcend ecosystem boundaries via stream‐riparian linkages. The green alder sawfly (Monsoma pulveratum) is an invasive wasp whose larvae are defoliating riparian thin‐leaf alder (Alnus tenuifolia) stands across southcentral Alaska. To test the hypothesis that riparian defoliation by this invasive sawfly negatively affects the flow of terrestrial prey resources to stream fishes, we sampled terrestrial invertebrates on riparian alder foliage, their subsidies to streams and their consumption by juvenile coho salmon (Oncorhynchus kisutch). Invasive sawflies altered the composition of terrestrial invertebrates on riparian alder foliage and as terrestrial prey subsidies to streams. Community analyses supported these findings revealing that invasive sawflies shifted the community structure of terrestrial invertebrates between seasons and levels of energy flow (riparian foliage, streams and fish). Invasive sawfly biomass peaked mid‐summer, altering the timing and magnitude of terrestrial prey subsidies to streams. Contrary to our hypothesis, invasive sawflies had no effect on the biomass of native taxa on riparian alder foliage, as terrestrial prey subsidies, or in juvenile coho salmon diets. Juvenile coho salmon consumed invasive sawflies when most abundant, but relied more on other prey types selecting against sawflies relative to their availability. Although we did not find effects of invasive sawflies extending to juvenile coho salmon in this study, these results could change as the distribution of invasive sawflies expands or as defoliation intensifies. Nevertheless, riparian defoliation by these invasive sawflies is likely having other ecological effects that merits further investigation.  相似文献   

3.
We determined the habitat usage and habitat connectivity of juvenile Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon in continental shelf waters off Washington and Oregon, based on samples collected every June for 9 yr (1998–2006). Habitat usage and connectivity were evaluated using SeaWiFS satellite‐derived chlorophyll a data and water depth. Logistic regression models were developed for both species, and habitats were first classified using a threshold value estimated from a receiver operating characteristic curve. A Bernoulli random process using catch probabilities from observed data, i.e. the frequency of occurrence of a fish divided by the number of times a station was surveyed, was applied to reclassify stations. Zero‐catch probabilities of yearling Chinook and yearling coho salmon decreased with increases in chlorophyll a concentration, and with decreases in water depth. From 1998 to 2006, ~ 47% of stations surveyed were classified as unfavorable habitat for yearling Chinook salmon and ~ 53% for yearling coho salmon. Potentially favorable habitat varied among years and ranged from 9 856 to 15 120 km2 (Chinook) and from 14 800 to 16 736 km2 (coho). For both species, the smallest habitat area occurred in 1998, an El Niño year. Favorable habitats for yearling Chinook salmon were more isolated in 1998 and 2005 than in other years. Both species had larger and more continuous favorable habitat areas along the Washington coast than along the Oregon coast. The favorable habitats were also larger and more continuous nearshore than offshore for both species. Further investigations on large‐scale transport, mesoscale physical features, and prey and predator availability in the study area are necessary to explain the spatial arrangement of juvenile salmon habitats in continental shelf waters.  相似文献   

4.
Abstract –  We used three-dimensional video analysis of feeding experiments to determine the effects of water depth on prey detection and capture by drift-feeding juvenile coho salmon ( Oncorhynchus kisutch ) and steelhead ( O. mykiss irideus ). Depth treatments were 0.15, 0.30, 0.45 and 0.60 m. Mean prey capture probabilities for both species were constant across all treatments (coho = 0.51, steelhead = 0.39), and did not differ significantly between species. In deeper treatments, capture probabilities were lower nearer the surface than they were nearer the substrate, particularly at the lateral edges of the foraging area. In deeper treatments coho had greater capture probabilities nearer the surface than did steelhead. It is unclear if this was a species difference, or one based on the relative amount of foraging experience the fish had in the wild prior to capture. Prey capture manoeuver characteristics were very similar for both species, including positive relationships between water depth and both prey detection distance and prey interception swimming speed, and no relationship between depth and speed of return to the focal point. Because prey encounter rate is expected to increase with increasing water depth, we used capture probabilities to predict capture rates for coho and steelhead, which increased linearly with water depth. We conclude that any benefit of foraging in deeper water is more likely due to increased encounter rate rather than to increased capture probability.  相似文献   

5.
We studied salmon feeding selectivity and diel feeding chronology in the Columbia River plume. Juvenile chinook and coho salmon were caught by trawling at 2–3 h intervals throughout a diel period on three consecutive days (21–23 June 2000) at stations located 14.8 and 37 km offshore from the mouth of the Columbia River. A total of 170 chinook salmon were caught at the inshore and 79 chinook and 98 coho salmon were caught at the offshore station. After each trawl, potential prey were sampled at different depths with 2–3 different types of nets (1‐m diameter ring net, bongo net, neuston net). Despite the variability in zooplankton abundance, feeding selectivity was surprisingly constant. Both salmon species fed selectively on larger and pigmented prey such as hyperiid amphipods, larval and juvenile fish, various crab megalopae, and euphausiids. Hyperiid amphipods were abundant in the salmon diets and we hypothesize that aggregations of gelatinous zooplankton may facilitate the capture of commensal hyperiid amphipods. Small copepods and calyptopis and furcilia stages of euphausiids dominated the prey field by numbers, but were virtually absent from salmon diet. Juvenile chinook salmon, with increasing body size, consumed a larger proportion of fish. Stomach fullness peaked during morning hours and reached a minimum at night, suggesting a predominantly diurnal feeding pattern. In general, both chinook and coho salmon appear to be selective, diurnal predators, preying mostly on large and heavily pigmented prey items, in a manner consistent with visually oriented, size‐selective predation.  相似文献   

6.
Abstract  This study investigated the effects of low summer discharge on habitat, prey use and prey availability for age 1 brook trout, Salvelinus fontinalis (Mitchill), in two small streams in Massachusetts, USA. Stream discharge declined substantially from June to August, with corresponding decreases in microhabitat depth and velocity; but fish habitat preferences were consistent throughout the summer, with fish selecting deep, low current velocity locations. Invertebrate drift rate, drift density and trout stomach fullness were significantly greater in June than August samples. Diets were dominated by aquatic-derived prey (chironomid larvae and adult blackflies) in June, but terrestrial invertebrates were the most frequent diet items in August. Consistent occupancy of low-velocity, deep microhabitats with low invertebrate flux rates indicated that, despite variation in habitat and prey conditions, trout adopted a habitat-use strategy of minimising risks and energy costs rather than maximising forage gain. This observation is consistent with, and provides a potential explanation for, the low summer growth rates of brook trout observed in small streams.  相似文献   

7.
Abstract – Cold water temperatures are widely supposed to reduce the food intake of stream salmonids. Although cold temperatures have been documented to reduce swimming ability, digestion and gastric evacuation rates, little is known about how temperature influences the ability of fish to capture prey. We examined the effects of water temperature on the prey capture probability of drift‐feeding juvenile brown trout (Salmo trutta) in a laboratory stream. Temperatures ranged between 5.7 °C and 14 °C. We found significant effects of water temperature on prey capture probability and capture manoeuvre time. The mean capture probability dropped from 96% at 14 °C to 53% at 5.7 °C. At 8 °C and higher temperatures, foraging performances did not differ much among treatments. We suggest that reduced swimming ability could be one of the most important mechanisms for the observed pattern of reduced prey capture probability at cold water temperatures, but prey detection limitations and predator avoidance may play a role. Our results will be of use for bioenergetics‐based drift‐foraging models, which to date have not incorporated a temperature‐dependent prey capture function.  相似文献   

8.
Despite long‐standing interest in foraging modes as an important element of animal space use, few studies document and compare individual foraging mode differences among species and ecological conditions in the wild. We observed and compared foraging modes of 61 wild Arctic charr, Salvelinus alpinus, 42 brown trout, Salmo trutta, and 50 Atlantic salmon, Salmo salar, in their first growing season over a range of habitats in 10 Icelandic streams. We found that although stream salmonids typically sit‐and‐wait to ambush prey from short distances, Arctic charr were more mobile during prey search and prior to prey attack than Atlantic salmon, whereas brown trout were intermediate. In all three species, individuals that were mobile during search were more likely to be moving when initiating attacks on prey, although the strength and the slope of this relationship differed among species. Arctic charr also differed from salmon and trout as more mobile individuals travelled longer distances during prey pursuits. Finally, coupled with published data from the literature, salmonid foraging mobility (both during search and prior to attack) clearly decreased from still water habitats (e.g., brook charr), to slow‐running waters (e.g., Arctic charr) to fast‐running waters (e.g., Atlantic salmon). Hence, our study suggests that foraging mode of young salmonids can vary distinctly among related species and furthers our understanding of the behavioural mechanisms shaping the geographical distribution of wild salmonids.  相似文献   

9.
The effect of habitat on the growth and diet of brown trout, Salmo trutta L., stocked at the same densities in nine stream enclosures, comprising three habitat types of different quality, were tested. The habitats, which were created based on microhabitat preference data, were a shallow water habitat lacking cobbles (habitat 1), a deeper, mixed cobble-bottomed (128-384 mm diameter) habitat (habitat 2) and a large cobble-bottomed (256-384 mm) habitat of intermediate depth (habitat 3). Brown trout were found to have greater increases in total biomass in habitats 2 and 3 than in habitat 1. The pattern for length did not follow that of biomass as trout had greater increases in total length in habitat 2 than in the other two habitats. Biomass of food in trout diets reflected habitat-specific fish biomass changes, with a greater total biomass of prey as well a greater biomass of the leech, Erpobdella, in habitats 2 and 3 than in habitat 1. There were no habitat-specific differences in the biomass of benthic or drifting invertebrates in the enclosures, with the exception of a tendency for an effect of habitat on the biomass of Erpobdella. Although there may have been habitat-specific differences in food resources that were not detected, it is believed that the higher biomass growth in habitats 2 and 3 may have reflected differences in cover afforded by the deeper water and coarser substrates and/or improved foraging opportunities facilitated by the larger volumes of water in the deeper habitats in which the trout could search for prey.  相似文献   

10.
There is concern that expanding beaver (Castor fiber) populations will negatively impact the important economic, recreational and ecological resources of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) populations in Europe. We studied how beaver dams influenced habitat, food resources, growth and movement of juvenile Atlantic salmon and trout on three paired beaver-dammed and beaver-free (control) tributaries of important salmon rivers in central Norway. Lotic reaches of beaver-dammed and control sites were similar in habitat and benthic prey abundance, and ponds were small (<3,000 m2). Though few juvenile salmonids were detected in ponds, trout and salmon were present in habitats below and above ponds (comprising 9%–31% and 0%–57% of the fish collected respectively). Trout dominated control sites (79%–99%), but the greatest proportion of Atlantic salmon were upstream of beaver ponds (0%–57%). Growth rates were highly variable, with no differences in growth between lotic reaches of beaver-dammed and control sites. The condition and densities of juvenile salmon and trout were similar in lotic reaches of beaver-dammed and control sites, though one beaver-dammed site with fine sediment had very few juvenile salmonids. Beaver dams did not block the movement of juvenile salmonids or their ability to use upstream habitats. However, the degree of repeated movements and the overall proportion of fish moving varied between beaver-dammed and control sites. The small scale of habitat alteration and the fact that fish were able to move past dams makes it unlikely that beaver dams negatively impact the juvenile stage of salmon or trout populations.  相似文献   

11.
Abstract – Decreases in body growth with increasing population density may be caused by reduced prey delivery rate. However, changes in food quality because of an increasing inclusion of suboptimal prey in the diet may also contribute to such effects. Here, we test for density‐dependent diet composition by creating spatial variation in Atlantic salmon young‐of‐the‐year (YOY) density in three replicate streams and obtain detailed information on individual positions (±1 m) and diet. Diet breadth with respect to prey size increased with increasing local density for the two most common prey types (Chironomidae and Ephemeroptera). For the largest prey type (Ephemeroptera), there was also an increase in mean prey size with increasing density, suggesting that YOY salmon preferentially utilise the smaller prey among those available. According to optimal foraging theory, changes in diet with increasing local density are likely to come at an energetic cost and hence may contribute to the commonly observed density‐dependent growth of juvenile salmonids.  相似文献   

12.
The planned removal of four dams on the Klamath River (anticipated 2024) will be the largest river restoration effort ever undertaken on the planet. Dam removal will restore access to >50 km of the Klamath River mainstem for coho salmon, but mainstem habitat may not be suitable for rearing juvenile coho salmon. Instead, small tributaries may provide most rearing habitat for reestablishing coho salmon. We used four approaches to evaluate six Klamath River tributaries above existing dams to assess their potential to support juvenile coho salmon: (1) We measured summer temperature regimes and evaluated thermal suitability. (2) We applied an Intrinsic Potential (IP) model to evaluate large-scale geomorphological constraints on coho salmon habitat. (3) We used the Habitat Limiting Factors Model (HLFM) to estimate rearing capacity for juveniles given current habitat conditions. (4) We developed an occupancy model using data from reference tributaries to predict coho salmon rearing distribution. All six streams had summer temperatures cooler than the mainstem Klamath River. However, five of the streams have barriers that will restrict coho salmon to within 5 km of the confluence with the Klamath River and two were disconnected mid-summer. Despite these constraints, the tributaries will likely produce coho salmon. Most streams had high IP in their lower reaches, the HLFM model estimated a total capacity of 105,000 juvenile coho salmon, and the occupancy model predicted juvenile coho salmon will rear throughout the accessible reaches. Protection and habitat enhancement for these tributaries will be important for coho salmon reestablishment post-dam removal.  相似文献   

13.
Beaded streams are prominent across the Arctic Coastal Plain (ACP) of Alaska, yet prey flow and food web dynamics supporting fish inhabiting these streams are poorly understood. Arctic grayling (Thymallus arcticus) are a widely distributed upper‐level consumer on the ACP and migrate into beaded streams to forage during the short 3‐month open‐water season. We investigated energy pathways and key prey resources that support grayling in a representative beaded stream, Crea Creek. We measured terrestrial invertebrates entering the stream from predominant riparian vegetation types, prey types supporting a range of fish size classes, and how riparian plants and fish size influenced foraging habits. We found that riparian plants influenced the quantity of terrestrial invertebrates entering Crea Creek; however, these differences were not reflected in fish diets. Prey type and size ingested varied with grayling size and season. Small grayling (<15 cm fork length (FL)) consumed mostly aquatic invertebrates early in the summer, and terrestrial invertebrates later in summer, while larger fish (>15 cm FL) foraged most heavily on ninespine stickleback (Pungitius pungitius) throughout the summer, indicating that grayling can be insectivorous and piscivorous, depending on size. These findings underscore the potential importance of small streams in Arctic ecosystems as key summer foraging habitats for fish. Understanding trophic pathways supporting stream fishes in these systems will help interpret whether and how petroleum development and climate change may affect energy flow and stream productivity, terrestrial–aquatic linkages and fishes in Arctic ecosystems.  相似文献   

14.
  1. Juvenile Pacific salmon exhibit diverse habitat use and migration strategies to navigate high environmental variability and predation risk during freshwater residency. Increasingly, urbanization and climate-driven hydrological alterations are affecting the availability and quality of aquatic habitats in salmon catchments. Thus, conservation of freshwater habitat integrity has emerged as an important challenge in supporting salmon life-history diversity as a buffer against continuing ecosystem changes.
  2. To inform catchment management for salmon, information on the distribution and movement dynamics of juvenile fish throughout the annual seasonal cycle is needed. A number of studies have assessed the ecology of juvenile coho salmon (Oncorhynchus kisutch) during summer and autumn seasons; catchment use by this species throughout the annual cycle is less well characterized, particularly in high-latitude systems.
  3. Here, n = 3,792 tagged juvenile coho salmon were tracked throughout two complete annual cycles to assess basin-wide distribution and movement behaviour of this species in a subarctic, ice-bearing catchment.
  4. Juvenile coho salmon in the Big Lake basin, Alaska, exhibited multiple habitat use and movement strategies across seasons; however, summer rearing in lotic mainstem environments followed by migration to lentic overwinter habitats was identified as a prominent behaviour, with two-thirds of tracked fish migrating en masse to concentrate in a small subset of upper catchment lakes for the winter. In contrast, the most significant tributary overwintering site (8% of tracked fish) occurred below a culvert and dam, blocking juvenile fish passage to a headwater lake, indicating that these fish may have been restricted from reaching preferred lentic overwinter habitats.
  5. These findings emphasize the importance of maintaining aquatic connectivity to lentic habitats as a conservation priority for coho salmon during freshwater residency.
  相似文献   

15.
In this study, we examined summer and fall freshwater rearing habitat use by juvenile coho salmon (Oncorhynchus kisutch) in the quickly urbanising Big Lake drainage in south‐central Alaska. Habitat use was assessed by regressing fish count data against habitat survey information across thirty study sites using generalised linear mixed models. Habitat associations were examined by age‐0 and age‐1+ cohorts separately, providing an opportunity to compare habitat use across different juvenile coho salmon life stages during freshwater rearing. Regression results indicated that the age‐0 cohorts were strongly associated with shallow, wide stream reaches with in‐stream vegetation, whereas age‐1+ cohorts were associated with deeper stream reaches. Furthermore, associations between fork length and habitat characteristics suggest cohort‐specific habitat use patterns are distinct from those attributable to fish size. Habitat use information generated from this study is being used to guide optimal fish passage restoration planning in the Big Lake drainage. Evidence for habitat use partitioning by age cohort during freshwater juvenile rearing indicates that pooling age cohorts into a single “juvenile” stage for the purposes of watershed management may mask important habitat use dynamics.  相似文献   

16.
Our collaborative work focused on understanding the system of mechanisms influencing the mortality of juvenile pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, Alaska. Coordinated field studies, data analysis and numerical modelling projects were used to identify and explain the mechanisms and their roles in juvenile mortality. In particular, project studies addressed the identification of major fish and bird predators consuming juvenile salmon and the evaluation of three hypotheses linking these losses to (i) alternative prey for predators (prey‐switching hypothesis); (ii) salmon foraging behaviour (refuge‐dispersion hypothesis); and (iii) salmon size and growth (size‐refuge hypothesis). Two facultative planktivorous fishes, Pacific herring (Clupea pallasi) and walleye pollock (Theragra chalcogramma), probably consumed the most juvenile pink salmon each year, although other gadids were also important. Our prey‐switching hypothesis was supported by data indicating that herring and pollock switched to alternative nekton prey, including juvenile salmon, when the biomass of large copepods declined below about 0.2 g m?3. Model simulations were consistent with these findings, but simulations suggested that a June pteropod bloom also sheltered juvenile salmon from predation. Our refuge‐dispersion hypothesis was supported by data indicating a five‐fold increase in predation losses of juvenile salmon when salmon dispersed from nearshore habitats as the biomass of large copepods declined. Our size‐refuge hypothesis was supported by data indicating that size‐ and growth‐dependent vulnerabilities of salmon to predators were a function of predator and prey sizes and the timing of predation events. Our model simulations offered support for the efficacy of representing ecological processes affecting juvenile fishes as systems of coupled evolution equations representing both spatial distribution and physiological status. Simulations wherein model dimensionality was limited through construction of composite trophic groups reproduced the dominant patterns in salmon survival data. In our study, these composite trophic groups were six key zooplankton taxonomic groups, two categories of adult pelagic fishes, and from six to 12 groups for tagged hatchery‐reared juvenile salmon. Model simulations also suggested the importance of salmon density and predator size as important factors modifying the predation process.  相似文献   

17.
Abstract –  Juvenile salmon density was related to invertebrate density in 13 streams within the River Tana, northern Norway. There were only small, nonsignificant, differences in benthic density between streams with and without juvenile salmon. All streams with a high density of juvenile salmon had low benthic densities at the stream mouth. Juvenile salmon were not found, or were in very low densities, in streams where the benthic density at the stream mouth was as high or higher than that in the stream. A multiple regression model showed that parr density was related negatively to benthic density at the stream mouth, water velocity and pH, and positively to benthic density within the stream and the proportion of the substratum covered by moss. The amount of overhanging cover in the different streams explained 93% of the variation in the drift density of terrestrial invertebrates in August. The highest densities of juvenile salmon were found in streams with riparian vegetation, and were thus associated with an abundant supply of drift food, especially terrestrial invertebrates.  相似文献   

18.
Little is known about the food habits of juvenile Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon in marine environments of Alaska, or whether their diets may have contributed to extremely high marine survival rates for coho salmon from Southeast Alaska and much more modest survival rates for Southeast Alaskan Chinook salmon. To address these issues, we documented the spatial and temporal variability of diets of both species collected from marine waters of Southeast Alaska during summers of 1997–2000. Food habits were similar: major prey items of both species included fishes, crab larvae, hyperiid amphipods, insects, and euphausiids. Multivariate analyses of diet composition indicated that the most distinct groups were formed at the smallest spatial and temporal scales (the haul), although groups also formed at larger scales, such as by month or habitat type. Our expectations for how food habits would influence survival were only partially supported. As predicted, Southeast Alaskan coho salmon had more prey in their stomachs overall [1.8% of body weight (BW)] and proportionally far fewer empty stomachs (0.7%) than either Alaskan Chinook (1.4% BW, 5.1% empty) or coho salmon from other regions. However, contrary to our expectations, coho salmon diets contained surprisingly few fish (49% by weight). Apparently, Alaskan coho salmon achieved extremely high marine survival rates despite a diet consisting largely of small, less energetically‐efficient crustacean prey. Our results suggest that diet quantity (how much is eaten) rather than diet quality (what is eaten) is important to marine survival.  相似文献   

19.
The feeding habits of juvenile coho salmon, Oncorhynchus kisutch, in the northern California Current were examined using samples from two different time periods (1980–85 and 1998–2003) of highly contrasting oceanographic conditions. The goal was to test the influence of interannual and interdecadal changes in taxonomic composition of prey, feeding intensity, and size spectra of teleost prey. Analyses were done for samples taken both early in the summer (June) shortly after the salmon enter the ocean, and also in late summer (September) following some ocean residency. Fish prey dominated coho salmon diets by weight during most years, but this trend was more pronounced during the 1980–85 sampling period. In terms of numerical composition, the diets were more variable on an interannual basis, but decapod larvae and euphausiids were important prey in most years. Pteropods and copepods were important prey during weak upwelling or El Niño years, whereas euphausiids were important during strong upwelling or otherwise highly productive years. Hyperiid amphipods comprised a substantial proportion of the diets only in 2000. Coho salmon showed highly significant differences in prey composition among years or between decades both in weight and numerical composition. The percentage of empty stomachs was highly variable by year in both June and September, but was significantly different only for September between decades. In contrast, an index of feeding intensity did not show many significant changes in either comparison. However, the relative size ratios for fish prey consumed were highly variable by year, and larger than average fish prey were consumed during 1998, leading to the highest feeding intensity observed.  相似文献   

20.
Abstract – The objective was to compare juvenile salmon density in 20 streams throughout the very large River Tana, northern Norway, and to relate variation in density to a suite of environmental factors. Four sampling sites were electrofished in each stream (one at the mouth of the stream and three within the stream) in August and October 2000, 2001, 2002. 0+ salmon parr were absent from seven streams, present at the mouth of 11 streams, and present within only two streams, both of which were probably spawning streams. Older parr migrated upstream into most streams and their highest densities were usually found in streams flowing directly into the spawning habitat in the three largest tributaries of the Tana or the river itself. Juvenile salmon were sparse or absent in streams flowing into smaller tributaries. Most streams with high parr densities were those of dense riparian vegetation that provided terrestrial invertebrates as drift food for the salmon parr, cover for fish, cooler stream temperatures in summer, and food for benthic stream invertebrates that were also a source of food for the parr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号