首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 135 毫秒
1.
象山港生态系统结构与功能的Ecopath模型评价   总被引:4,自引:0,他引:4  
为了解象山港生态系统在环境和捕捞等多重因素胁迫下的结构和功能现状,实现象山港基于生态系统的渔业管理和生态承载力评价,本研究根据2011~2014年在象山港开展的渔业资源和生态环境定点调查数据,利用Ecopath with Ecosim 6.4软件构建了象山港生态系统的Ecopath模型,并通过模型系统分析了象山港生态系统食物网结构、能量流动和系统功能的总体特征。模型包含了浮游植物、大型海藻、浮游动物、游泳动物等25个功能组,大体涵盖了象山港生态系统能量流动的整个过程。研究结果表明,象山港生态系统表达能流路径的食物链主要有两条,分别为牧食食物链和碎屑食物链,其中以牧食食物链为主要能流通道。系统中各功能组的营养级在1.00~3.62级。系统总能流为2 210 t·km-2·a-1,主要分布在Ⅰ~Ⅳ营养级上。流量中来自碎屑的比例为38%,初级生产者是系统能量的主要来源。营养级Ⅰ和Ⅱ的利用效率较低,大量初级生产力和次级生产力未能流入更高的营养层次。系统的总能量转换效率为3.8%;总初级生产量/总呼吸量(TPP/TR)为1.52;系统连接指数(CI)为0.342;系统杂食性指数(SOI)为0.182。生态系统总体特征反映了象山港生态系统的营养关系较简单,食物网复杂程度低;系统成熟度和稳定性偏低,抵抗外界干扰的能力较弱。  相似文献   

2.
基于Ecopath模型的大亚湾黑鲷生态容量评估   总被引:3,自引:2,他引:1       下载免费PDF全文
为评估大亚湾黑鲷(Sparusmacrocephalus)的生态容量,根据2015年渔业资源和生态环境调查数据,利用Ecopathwith Ecosim6.5(EwE)软件构建了由26个功能组组成的大亚湾Ecopath模型,分析了大亚湾生态系统的基本特征,并结合食物网结构和能量流动估算了黑鲷的增殖生态容量。结果显示,黑鲷营养级为3.44,营养转化效率为0.302;大亚湾生态系统各功能组的营养级在1~3.95之间,系统总转化效率为7.636%,总初级生产量/总呼吸量为2.142,系统连接指数为0.364,系统杂食性指数为0.210,表明系统各营养级转化效率较低,能量未被充分利用;系统总转化效率低于10%,营养级I、II流向碎屑量占总流向碎屑量的98.11%,说明能量传递发生阻塞,具有增殖空间。经估算黑鲷生态容量为0.034 t/km2,是现存生物量的1.4倍,此时其他浮游生物食性鱼类的转化效率等于1,系统处于平衡状态;达到生态容量前后大亚湾生态系统的总初级生产量/总呼吸量变化很小(变化值为0.001),系统杂食性指数和系统连接指数均没有变化,因此认为放流黑鲷至生态容量对大亚湾生态系统的稳定性和营养结构未产生影响。  相似文献   

3.
基于Ecopath模型的珠江口6种增殖放流种类生态容纳量估算   总被引:1,自引:0,他引:1  
增殖放流是渔业资源养护的重要方式。放流前对放流海域进行生态容纳量评估,有计划地实施增殖放流活动,可避免对原有生态系统造成破坏。文章根据2016年珠江口渔业资源数据,构建了由29个功能组组成的基于珠江口的生态系统通道(Ecopath)模型,利用该模型分析了生态系统的总体特征、食物网结构与混合营养效应,估算了适宜于该水域的6种不同增殖放流种类的生态容纳量。结果表明,功能组营养级范围为1~4.2级,6种适宜放流种类营养级介于2.2~3.7,最高营养级功能组为哺乳动物,系统总流量9 092.447 t·(km~2·a)~(–1),系统总能量转化效率12.23%,连接指数0.370,系统杂食指数0.287。食物链通道主要有2类,以碎屑食物链为主。花鲈(Lateolabrax japonicus)、黑鲷(Acanthopagrus schlegelii)、黄鳍鲷(A. latus)、长毛对虾(Penaeus penicillatus)、墨吉对虾(P. monodon)和波纹巴非蛤(Paphia undulata)的最大容纳量分别为0.094 t·km~(–2)、0.500 t·km~(–2)、0.650 t·km~(–2)、1.580 t·km~(–2)、1.610 t·km~(–2)和75.870 t·km~(–2)。  相似文献   

4.
为研究近年舟山渔场及长江口渔场附近海域三疣梭子蟹(Portunus trituberculatus)放流的合理性,基于该海域2006—2014年间渔业资源调查资料,通过构建Ecopath模型,对该海域生态系统能量流动特征进行了初步分析,并估算了其三疣梭子蟹的增殖容量。结果显示,该海域生态系统主要以底栖生物为主,虾、带鱼(Trichiurus leptures)、三疣梭子蟹食物利用率较高,竹?鱼(Trachurus japonicus)、绿鳍鱼(Chelidonichthys kumu)等食物利用率较低;该海域渔业资源生物可划分为4个营养级,三疣梭子蟹属于中营养级生物;该海域总渔获量为1.614 t·km~(–2) (三疣梭子蟹渔获量为0.057 8 t·km~(–2)),总消耗量为280.744 t·km~(–2),总输出量为790.396 t·km~(–2),总生产量为959.3 t·km~(–2)。三疣梭子蟹生物量密度为0.125 t·km~(–2),生态容量为1.125 t·km~(–2),增殖容量为1 t·km~(–2)。结果表明该海域初级生产力水平较高,海洋生物多分布在第二、第三营养级范围内,生态系统成熟度较低,三疣梭子蟹在该海域内仍有一定的放流空间。  相似文献   

5.
根据 2017 年和 2018 年辽宁省大连市獐子岛海域渔业资源和生态环境调查数据, 利用 Ecopath with Ecosim 6.5 (EwE)软件构建了獐子岛海域 Ecopath 模型, 分析獐子岛海域生态系统的营养级结构和能流特征, 评估了虾夷扇贝底播增殖的生态容量。结果显示: (1)獐子岛海域生态系统的营养级范围为 1~4.365, 最低营养级为浮游植物和有机碎屑, 营养级为 1。处于最高营养级为魟鳐类功能组, 营养级为 4.365。牧食食物链的各营养级之间的平均转换效率为 6.268%, 而碎屑食物链各营养级之间的平均转换效率为 7.698%, 系统的能量流动以碎屑食物链为主, 总系统转化效率为 6.923%, 低于 10%的林德曼转化效率。系统连接指数为 0.219, 系统杂食性指数为 0.174, 系统 Finn 循环指数为 7.790, 系统 Finn 平均路径长度为 2.674, 说明系统的能量并没有被充分利用, 存在能量传递阻塞的情况。2)根据模型估算得到的虾夷扇贝的生态容量为 36.805 t/km2 , 是现存量的 17.5 倍;达到生态容量前后獐子岛生态系统的总初级生产量/总呼吸量变化很小(变化值为 0.26), 系统杂食性指数和系统连接指数均没有明显变化, 对獐子岛生态系统的稳定性和营养结构未产生很大的影响。因此认为虾夷扇贝增殖量尚有很大潜力。  相似文献   

6.
基于Ecopath模型的巢湖生态系统结构与功能初步分析   总被引:4,自引:1,他引:3  
为分析和掌握巢湖生态系统结构与功能的特征参数,结合2007—2010年巢湖渔业资源调查数据,应用Ecopath with Ecosim 6.1软件构建了巢湖生态系统的食物网模型。模型由16个功能组组成,包括初级生产者、主要鱼类、无脊椎动物和有机碎屑等。结果显示,巢湖生态系统食物网主要由4个整合营养级构成,系统规模总流量、总生产量和总消耗量都较大,分别为41 003.08、17 937.42和4 486.67 t/(km2·a);能量流动主要发生在Ⅱ、Ⅲ营养级间;参照Odum的生态系统成熟程度判定指标发现,巢湖生态系统高的生产量和呼吸比值(TPP/TR)和净初级生产量(NPP),以及较低的系统连接指数(CI)、系统杂食指数(SOI)、Finn's循环指数(FCI)和Finn's平均路径长度(FMPL)都表明:巢湖生态系统结构与功能的特征参数远没有达到成熟生态系统的标准,且劣于富营养化的太湖生态系统。从生态系统结构分析发现,导致巢湖生态系统退化的关键原因是浮游植物生物量、生产量过高,被生态系统利用的效率极低,从而导致生物多样性下降、食物网趋于简单、能量流动不畅。  相似文献   

7.
基于营养通道模型的海州湾中国明对虾生态容纳量   总被引:4,自引:2,他引:2       下载免费PDF全文
王腾  张贺  张虎  张硕 《中国水产科学》2016,23(4):965-975
通过增殖放流,增加优质渔业资源、改善种群结构是渔业资源养护的重要手段,而增殖生态容量的研究是科学实施增殖放流的前提。为确定海州湾中国明对虾的生态容纳量,根据2013年连云港海州湾渔业生态修复水域的调查资料,应用Ecopath with Ecosim(EwE)软件中的Ecopath模块,构建了该区域的生态系统能量流动简易模型,计算了放流种类中国明对虾的增殖生态容纳量。结果表明:系统各功能组营养级范围在1~4.42。系统总流量9335.191 t·km~(–2)·a~(–1),系统总初级生产力3892.630 t·km~(–2)·a~(–1),系统初级生产力与总呼吸量的比值为1.331,连接指数为0.415,杂食指数为0.174,Finn循环指数为11.4%,平均能流路径为2.8系统尚处于由衰竭状态向恢复状态转变,还未恢复到成熟态。中国明对虾不是本海域的关键种,当前中国明对虾的生物量为0.04 t·km–2·a–1,中国明对虾的生态容纳量为0.846 t·km~(–2)·a~(–1)。  相似文献   

8.
基于2019年莱州湾芙蓉岛人工鱼礁区渔业资源调查数据,利用Ecopath with Ecosim 6.6 (EwE 6.6)软件构建了芙蓉岛人工鱼礁区生态系统Ecopath模型,系统分析了芙蓉岛人工鱼礁区生态系统的能量流动规律和结构特征,估算了仿刺参(Apostichopus japonicus)的生态容量。Ecopath模型由16个功能组组成,基本涵盖了芙蓉岛人工鱼礁区生态系统能量流动的主要过程。结果发现,生态系统各功能组的营养级范围为1.000~3.978,其中,花鲈(Lateolabrax maculatus)处于最高营养级;生态系统总转换效率为10.6%,来自初级生产者的转换效率为10.8%,来自碎屑的转换效率为10.1%;生态系统总流量为2 596.108 t/(km2·a),其中44%来自碎屑;系统总初级生产量/总呼吸量为1.454,连接指数为0.402,系统杂食指数为0.211,Finn´s循环指数和平均路径长度分别为8.860%和2.980。结果表明,芙蓉岛人工鱼礁区生态系统成熟度和稳定性较低,食物网结构较简单。根据模型计算得出,仿刺参的生态容量为131 t/km2,是现存量的6.55倍,具有较大的增殖潜力。  相似文献   

9.
大亚湾海域生态系统模型研究I:能量流动模型初探   总被引:2,自引:0,他引:2  
主要根据1984~1986年和1986~1987年在大亚湾进行的环境、资源和生态调查资料,应用EcopathwithEcosim(EwE)软件,构建大亚湾海域生态系统初步能量流动模型。文中根据大亚湾游泳动物的食物组成特点,把该海域生态系划分15个功能组,分别是海洋哺乳动物、肉食性鱼类、底栖捕食鱼类、滤食性鱼类、草食性鱼类、蟹类、虾类、头足类、底栖动物、水母、浮游动物、珊瑚、沉水植物、浮游植物和有机碎屑,功能组的划分基本能覆盖大亚湾海域生态系统的能量流动过程。经EwE软件模拟,结果表明:大亚湾海域生态系统的营养级范围为1~3.88级;各营养级的能量转换效率分别为7.2%,11.2%,8.7%,2.9%,可用构建金字塔形状来描述营养流动的转换效率;大亚湾生态系统的总能量传递效率为8·9%,略低于林德曼转换效率(10%左右),可能是由于在该海域大量的沉水植物(马尾藻)未能被充分利用而腐烂所造成;在能量流动过程中,直接来源于碎屑的比例占总流量的48%,而直接来源于初级生产者的比例为52%。  相似文献   

10.
红树林种植 -养殖耦合系统的养殖生态容量   总被引:5,自引:2,他引:3  
养殖容量是渔业可持续发展的核心。根据2008年10月至2009年8月的数据,构建了红树林种植-养殖耦合系统的生态通道模型(ECOPATH),利用该模型分析了耦合系统的能量流动和系统特征,并估算了该系统的养殖生态容量。结果表明,红树林种植-养殖耦合系统生态通道模型由14个功能群构成,各功能群的营养级范围为1.00~3.05。系统内各营养级间的平均能流效率为6.9%,其中7.2%来自碎屑,6.6%来自于初级生产者,能流转化效率低的原因在于系统大部分能量回流至碎屑,表明系统主要以碎屑食物链为主要能流通道。系统的特征统计学参数:总初级生产量/总呼吸量(TPP/TR)为8.021,结合较低的系统连接指数(CI=0.243)、Finn'循环指数(FCI=0.26)和能流平均路径(MPL=2.139),综合表明该生态系统尚处于发育初期。滩涂红树林种植-养殖耦合系统中主要养殖品种为尼罗罗非鱼(Oreochromis niloticus)、草鱼(Ctenopharyngodon idellus)、鲢(Hypophthalmichthys molitrix)和鳙(Aristichthys nobilis)。本研究定义养殖生态容量为不显著改变生态系统食物网结构或能流通量时的最大现存量。结果表明,系统中尼罗罗非鱼、草鱼、鲢和鳙的养殖生态容量分别为5.82t/hm2、1.81t/hm2、2.62t/hm2和4.76t/hm2。研究还分析了ECOPATH模型参数不确定性的影响  相似文献   

11.
为了解黑棘鲷(Acanthopagrus schlegeli)在大亚湾生态系统食物网结构中的地位和作用, 2018 年 3 月至 2019 年 1 月逐月在大亚湾采集黑棘鲷样本, 分析黑棘鲷的食性组成、摄食强度、生态位宽度以及食性随季节和体长变化的趋势。结果表明, 大亚湾黑棘鲷饵料生物组成主要包括藤壶、鱼类、贝类、蟹类、虾类、星虫类、头足类、 水生植物等 8 个类群, 相对重要性指数百分比(IRI%)表明藤壶是最重要的饵料类群(IRI%为 42.41%), 其次依次是鱼类、贝类、蟹类、虾类、星虫类、头足类和水生植物。大亚湾黑棘鲷全年均有摄食, 摄食强度随季节变化显著, 其中胃饱满指数以春、冬季较高, 夏、秋季较低; 而空胃率则以夏季显著高于其他季节。不同季节食性差异明显, 春季主要以藤壶为食, 夏季主要以鱼类为食, 秋季主要以贝类为食, 冬季则主要以藤壶和鱼类为食, 影响食性组成随着季节变化的主要因子为水温、食物资源的可获得性等; 黑棘鲷体长越长, 越倾向于摄食大个体饵料, 摄食强度也越大, 营养生态位宽度先宽后窄。本研究结果将为今后黑棘鲷的保护和人工养殖提供理论依据。  相似文献   

12.
An ecosystem model was constructed for the northern Bay of Bengal (nBoB) using Ecopath (version 6.4.4). The model covered an area of 18,500 km2. There were 32 functional groups in the model including the non-living group, detritus. Trophic levels (TLs) for individual groups ranged from 1.0 to 4.22. Ecotrophic efficiency for most of the small pelagic fishes was found to be greater than 0.7. For hilsa it was 0.853, indicating high exploitation of this fish within the system. The nBoB was estimated to be a low ascendancy area (~?19.2%) with a system overhead of 80.8%, which indicates system stability and a certain maturity. The total system throughput and the total primary production/total respiration estimated for the study area indicate that nBoB is a maturing ecosystem. The mean TL of the catch for the study area was 3.115. The results indicate that the nBoB system is still in a developing stage. The low mean TL of the catch indicates fishing practices targeting fish of lower TLs in the system. In the long run, this may cause fishing down the food web, which will eventually lead to declining catches. These results indicate that present fishing practices are unsustainable for the nBoB ecosystem.  相似文献   

13.
苏程程  单秀娟  杨涛 《水产学报》2021,45(12):1983-1992
关键种及其与群落中其他物种的联系,对维持整个生态系统的稳定性发挥了重要作用。基于2016-2018年山东半岛南部海域渔业资源调查与渔业种类食性文献数据,构建了山东半岛南部海域食物网拓扑结构并计算了拓扑重要性指数,筛选了群落关键种并分析了其年际变化。2016-2018年山东半岛南部海域食物网包含物种20~22个,摄食关系数量59~65个,年际差异不明显;食物网拓扑结构密度范围为0.3048~0.3684,种间关联度为0.1451~0.1634;群落关键种均为鳀(Engraulis japonicus)和黄鮟鱇(Lophius litulon)。鳀作为关键被捕食者,黄鮟鱇作为关键捕食者,两者对群落结构的能量流动和信息传递起关键作用;鳀和黄鮟鱇在2016-2018年均为优势种,但鳀优势度逐年下降,细纹狮子鱼(Liparis tanakae)从2017年开始也成为优势种。  相似文献   

14.
基于Ecopath模型的胶州湾生态系统比较研究   总被引:1,自引:0,他引:1  
文章根据2015–2016年胶州湾渔业资源与生态环境调查数据,并收集20世纪80年代胶州湾渔业资源数据,利用Ecopath with Ecosim 6.5(Ew E)软件构建了由21个功能组组成的胶州湾1980-1982年和2015-2016年两个时期的Ecopath模型,比较分析了不同时期胶州湾生态系统结构和功能变化以及系统发育特征。研究结果显示,与1980-1982年生态系统相比,胶州湾2015-2016年生态系统中大型底层鱼类生物量减少,菲律宾蛤仔(Ruditapes philippinarum)生物量提高,渔获物产出以菲律宾蛤仔为主,渔获平均营养级降低,系统能量转化效率从1980-1982年的15.83%提高到2015-2016年的16.35%,能量流动始终以牧食食物链为主。关键种分析表明,胶州湾生态系统两个时期的关键种均为菲律宾蛤仔。此外,与1980-1982年生态系统相比,2015-2016年胶州湾生态系统整体规模增大,净生产量提高5倍,系统总初级生产量与总呼吸量的比值由1980-1982年的1.267提高到2015-2016年的2.518,系统连接指数、杂食指数与Finn’s循环指数和平均路径长度均减小,说明在过去30多年胶州湾生态系统成熟度和稳定性不断降低,发育过程出现由成熟向幼态的逆行演替现象,目前处于不稳定的幼态阶段。  相似文献   

15.
Lake Taihu is the third largest freshwater lake in China and has provided local communities with valuable fisheries for centuries. However, we have only a limited knowledge of its ecosystem. In this study, a trophic model was constructed for the Lake Taihu ecosystem. This model was used to evaluate and analyze the food web structure and other properties of this ecosystem using data covering the period from 1991 to 1995. Using the model, we evaluated the impacts on local fisheries of various management scenarios comprising two basic management regimes: (1) setting fishing mortality for the top predator (large culters, Erythroculter mongolicus and Erythroculter ilishaeformis) to 0, 0.3, 0.6, 0.9 and 1.2, and (2) adjusting overall fishing effort to 0.25, 0.5, 0.75 and 1.25 times the current level. For both scenarios, fishery profit and cost were evaluated to provide an understanding of how components of the ecosystem interact. We identified possible causes of fishery overexploitation in the lake ecosystem and described the necessity of developing ecosystem-based management. The results showed that Lake Taihu had six theoretical trophic levels (TLs), with the trophic flows primarily occurring through the first five TLs. System properties such as transfer efficiency, Finn's index, Finn's mean length, connectance index, system omnivory index, primary production/respiration ratio, and net primary production all indicated that Lake Taihu was an immature, fairly simple ecosystem in which a relatively low fraction of total primary production was utilized. At the same time, the ecosystem was also experiencing high fishing pressure. Yet despite this, the low ascendency index (25.9%) and high system overhead ratio (74.1%) indicated that the system was highly developed and relatively stable, a condition that might result from the high degree of recycling in the system. Among the harvesting strategies considered, a strategy of either decreasing the fishing mortality of the top predator (large culters) to 0.3 or, alternatively, reducing the overall effort on the system by a factor of 0.75 appeared to be most effective at increasing the efficiency of the fisheries.  相似文献   

16.
1959–2011年莱州湾渔业资源群落食物网结构的年间变化   总被引:7,自引:7,他引:0  

通过对1959-2011年莱州湾渔业资源摄食习性、营养级的分析构建了莱州湾生态系统简化食物网。结果表明莱州湾渔业资源群落食物网经历了以鱼食性种类为主的食物网—以浮游动物食性种类为主的食物网—以浮游动物食性种类和底栖动物食性种类为主但浮游动物食性种类占比大于底栖动物食性种类的食物网—以浮游动物食性种类和底栖动物食性种类为主但底栖动物食性种类占比大于浮游动物食性种类的食物网—以底栖生物食性种类为主的食物网 5个阶段的演变过程。中低营养阶层生物替代高营养阶层生物成为莱州湾生态系统食物网的顶级捕食者食物链越来越短食物网通过碎屑食物链传递的能量成为食物网能流的主体。在1959-2011莱州湾渔业资源群落平均营养级从4.4下降到3.4, 平均以每100.19的速度下降高于整个渤海生态系统的下降速度种类组成的变化、个体小型化以及摄食食物种类的变化是引起莱州湾生态系统营养级波动的主要原因。

  相似文献   

17.
为掌握大亚湾紫海胆(Heliocidaris crassispina)的食性特征,应用碳、氮稳定同位素技术对2015年8月所采集紫海胆样本的稳定同位素特征、营养级和食性特征进行了初步研究。结果表明,大亚湾紫海胆平均δ~(13)C值为-(13.35±1.21)‰,平均δ~(15)N值为(9.14±0.38)‰,平均营养级为2.11±0.14。不同壳径紫海胆之间的碳、氮稳定同位素比值无显著性差异(P0.05)。大亚湾海域紫海胆生活环境周围生物δ~(13)C值分布范围为-20.76‰~-9.93‰,δ~(15)N值分布范围为-0.16‰~14.99‰,营养级范围为1.34~3.77。大亚湾主要生物种类可划分为悬浮物、初级生产者和初级消费者、次级消费者、顶级消费者4个营养组群,其中紫海胆属于次级消费者。8月份调查海域珊瑚稀少,大型海藻密度低且死亡降解形成颗粒有机物(Particulate Organic Matter,POM),陆源POM随降雨大量流入大亚湾,导致紫海胆在8月份摄食偏向碎屑食物链,主要食物来源为POM,平均贡献率为67.3%;其余摄食种类为沉积物(Sediment Organic Matter,SOM)、裂叶马尾藻(Scagassum siliquastrum)、底栖硅藻、浮游动物及浮游植物,平均贡献率分别为9.7%、9.3%、6.7%、3.7%及3.3%。大亚湾紫海胆摄食种类与其栖息地底栖生物存在重叠,具有一定的食物竞争关系。研究表明,分析紫海胆食性特征对了解其所在生态系统中营养级水平具有重要意义。  相似文献   

18.
The carrying capacity of marine shelf ecosystems in southern Brazil for harvestable species is analyzed by (1) quantifying the amount of available primary production appropriated by fisheries catches, (2) evaluating the trend in the mean trophic level of fisheries, and (3) simulating the ecosystem effects of “fishing down the food web” in an intensively exploited shelf region. Fisheries utilize ca. 27 and 53% of total primary production in the southern and south-eastern shelf regions, respectively. Regional variation in the carrying capacity appropriated by fisheries results from differences in the primary production, catch volume and trophic transfer efficiencies. Overall, fisheries landings do not display a trend of decreasing trophic level with time due to the collapse of the sardine fishery and the recent increasing of offshore fishing for higher trophic level species, mainly tunas and sharks. However, the simulations show that fishing down the food web through fisheries that target small pelagic planktivorous fishes, while at first increasing catches in intensively exploited regions, has the potential of decreasing yields, by interrupting major energy pathways to exploited, high-trophic level species. The consequences of these results to the design of precautionary measures for future fishing policies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号