首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Three experiments were conducted that were designed to evaluate our ability to predict essential amino acid (EAA) needs of hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. In the first experiment, six diets containing various amino acid profiles were fed to triplicate groups of fish initially weighing 7.7 g per fish. At the end of the 8‐week experiment, no significant differences were detected in growth rates or feed efficiencies (FE) between fish fed a practical diet containing 510 g kg?1 herring fish meal (FM) and fish fed a purified diet containing the amino acid profile of herring fish meal (CAA‐FM). Growth responses of fish fed purified diets containing 100 (HSB), 110 (HSB110), 120 (HSB120) or 140 g 100 g?1 (HSB140) of the amino acid profile of hybrid striped bass whole‐bodies were significantly lower than those of fish fed diet FM. In the second experiment, triplicate groups of fish (5.6 g per fish) were fed diets containing various energy : protein (E : P) ratios (34.8, 41.2, 47.5 and 53.9 kJ g?1 protein) and one of two amino acid profiles (CAA‐FM and HSB120) in a 4 × 2 factorial design. Carbohydrate concentration was varied to achieve the desired energy concentrations. At the end of the 8‐week experiment, weight gain and FE were significantly higher in fish fed diets formulated to simulate the amino acid profile of herring fish meal (CAA‐FM) compared with fish fed diets formulated to contain 120 g 100 g?1 of the amino acid profile of hybrid striped bass whole‐bodies (HSB120). Weight gain, FE and survival data indicated the optimum dietary E : P was 41.2 kJ g?1 protein. Dietary treatments in the final experiment included three amino acid profiles and four levels of lipid in a 3 × 4 incomplete factorial design. Dietary amino acid treatments included the amino acid profile of herring fish meal (CAA‐FM) or 120 g 100 g?1 of the predicted EAA requirement profile for hybrid striped bass (HSB120). The amino acid profile of the remaining dietary treatment (PRED+) was similar to that of the HSB120 treatment, but contained additional threonine, isoleucine and tryptophan. Diets CAA‐FM and HSB120 contained either 90, 130, 170 or 210 g kg?1 lipid, whereas diet PRED+ contained 130 g kg?1 lipid. Dietary treatments were fed for 10 weeks to triplicate groups of fish initially weighing 81.0 g per fish. Weight gain and FE were not significantly affected by dietary amino acid profile. Feed efficiency was significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with fish fed diets containing 90–170 g kg?1 lipid. Intraperitoneal fat (IPF) ratio and hepatosomatic index (HSI) values generally increased as dietary lipid concentrations increased. Total liver lipid concentrations were significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with those of fish fed 90–130 g kg?1 lipid. Results of this study indicate an appropriate dietary amino acid profile can be predicted for hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. Further, the optimum E : P appears to be 40 kJ g?1 protein.  相似文献   

2.
Two experiments were conducted to determine the effects of phytase on growth, apparent phosphorus (P), calcium (Ca), iron (Fe), zinc (Zn), magnesium (Mg), and copper (Cu) absorption, and apparent protein digestibility by striped bass Morone saxatills fed a high phytate diet. In experiment one, four diets with graded levels of phytase supplementation, 0, 500, 1,000, and 2,000 phytase units/kg of diet (PUkg), and a diet supplemented with inorganic P (positive control, total P, 0.73%; phytin P, 0.35%) were assigned to duplicate tanks, and were fed to fingerling striped bass for 16 wk. A digestibility trial was conducted at weeks 16–18, using 0.5% Cr2O3 as an indigestible marker in the diets. Phytase was sprayed post-extrusion on the basal diet (P-total, 0.58%; P-phytin, 0.35%). Experiment two consisted of a 2-wk digestibility trial with three treatments: 0 (basal; total P, 0.73%; phytin P, 0.34%), 1,000, and 2,000 PU/kg, assigned to four, three and three replicate tanks respectively. Each tank contained an average of 20 striped bass (mean weight: 400 9). The diet used was similar to the basal in experiment one, which was modified to have low essential trace mineral concentrations, in order to increase the sensitivity of the assay. In experiment one, significant improvements (P≤ 0.05) in growth, feed conversion ratios, and vertebral and scale ash concentrations of fish at the end of the experiment were achieved with either added inorganic P or increasing phytase supplementations. Results from both digestibility trials indicated that P absorption was improved with the addition of at least 500 PUkg. Absorptions of Ca and Fe were significantly increased (P≤ 0.05) and Zn absorption marginally improved (P≤ 0.06) when at least 2,000 PU/kg was supplemented to the diet. Protein digestibility, Mg and Cu absorption were not significantly different in any treatment. Whole carcass P retention was significantly improved with the addition of 1,000 PU/kg, and 2,000 PU/kg, when compared to fish fed the basal diet, 500 PU/kg and positive control treatments. Results from these experiments indicate that phytase supplementation of at least 1,000 PU/kg is adequate to maintain growth rate and health comparable to an inorganic P supplemented diet. In addition, bioavailability and utilization of P is increased with increasing phytase supplementation. Diet supplementation of 2,000 PU/kg increased Ca, Fe, and Zn digestibility by striped bass fed a high phytate diet.  相似文献   

3.
A 2 × 3 factorial design with triplicates examined the interaction between dietary inorganic phosphorus (IP) and phytase on growth, mineral utilization and phosphorus (P) mineralization in juvenile red sea bream. The treatments were three levels of dietary IP supplementation at 0, 2.5 and 5 g kg?1, either without or with phytase supplementation [2000 FTU kg?1; phytase unit is defined as the amount of enzyme activity which liberates 1 micromol of inorganic phosphorus per minute at pH 5.5 and 37 °C at a substrate concentration (sodium phytate) of 5.1 mmol L?1]. Juvenile red sea bream (IBW = 1.3 g ± 0.1) were stocked twelve fish per tank and fed for 50 days. Growth and feed efficiency were significantly (P < 0.05) enhanced by both dietary P and phytase supplementation. Feed intake and survival rate were not significantly affected by the dietary treatments. Both dietary IP and phytase supplementation significantly increased plasma IP and Mg levels. Concentration of vertebral mineral and scale P was significantly increased by both dietary treatments. A skeletal malformation syndrome of scoliosis occurred in fish fed both non‐IP and non‐phytase supplemented diet. Interaction between main dietary effects was detected for vertebral Zn, scale P and whole‐body ash and Mg content. With regard to growth and other examined productivity traits, phosphorus requirement of juvenile red sea bream can be met if supplemented with 2000 FTU phytase kg?1 or in the absence of phytase, by dietary inclusion of 2.5–5 g kg?1 of IP.  相似文献   

4.
Requirements for six of the 10 indispensable amino acids (IAA) have not been quantified for hybrid striped bass. In this study, we estimate the requirement for l ‐tryptophan by nonlinear regression analysis of several growth indicators. Fifteen isocaloric, isonitrogenous diets were formulated to contain 1.0, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8, 3.1, 3.4, 3.7, 4.0, 5.0, 6.0, 10.0 or 14 g l ‐tryptophan kg?1 diet and fed to reciprocal cross hybrid striped bass for 7 weeks. After 5 weeks, survival of fish receiving the basal diet was 40% while surviving fish fed this diet were in poor health. Survival of fish receiving 1.3 g Trp kg?1 diet declined to 70% by termination of the trial. Survival in other treatments was 100%. Fish weight gain was 100% or greater for fish receiving 1.6 g Trp kg?1 diet or more. Hepatosomatic index, muscle ratio and intraperitoneal fat (IPF) ratio also responded to dietary tryptophan concentration. IPF was inversely related to dietary tryptophan concentration. The dietary tryptophan requirement was estimated to be between 2.1 and 2.5 g kg?1 diet (6–7 g kg?1 protein), depending on response variable, using four‐ and five‐parameter saturation kinetics models. These findings will increase the precision of diets formulated for hybrid striped bass.  相似文献   

5.
Six isonitrogenous (320 g kg?1) and isolipidic (60 g kg?1) diets were formulated with graded levels (0, 5, 10 and 15 g kg?1) of dicalcium phosphate (DCP) and fungal phytase (750 and 1500 FTU kg?1 diet). Tra catfish (Pangasianodon hypophthalmus), 9.6 g, were fed the diets for 12 weeks. Each experimental diet was fed to eight replicates of fish to apparent satiation. At the end of the trial, fish fed the diets containing 15 g kg?1 DCP, 750 and 1500 FTU kg?1 phytase had higher growth performances, protein efficiency ratio and phosphorus retention than those fed the control diet, 5 g kg?1 DCP and 10 g kg?1 DCP diets (P < 0.05). Whole body ash and phosphorus concentration of fish fed the 10 g kg?1 DCP and 15 g kg?1 DCP diets were significantly higher than those of fish fed the control diet. Higher apparent digestibility coefficient of phosphorus was observed in fish fed the phytase supplemented diets. The present results indicate that supplementation of phytase at 750 FTU kg?1 and 1500 FTU kg?1 improves growth performances, feed and phosphorus utilization. The supplementation can completely replace dicalcium phosphate or other phosphorus sources in tra catfish feed and reduce the phosphorus discharge into environment.  相似文献   

6.
Economical, nutritious diets for hybrid striped bass (HSTB) are required for the continued expansion and sustainability of this industry. Turkey meal (TM) is a by‐product of the US turkey industry and is a potentially‐valuable local, alternative protein source for use in aquaculture diets because of its excellent nutritional composition and quality. TM may substitute for more expensive fish meal (FM)‐based diets; however, there are no published data with regard to using this ingredient in sunshine bass diets. Therefore, a 16‐week feeding trial was conducted with juvenile (36 g) sunshine bass (Morone chrysops × Morone saxatilis) to evaluate growth, feed conversion and body composition when fed diets with decreasing levels of FM (300, 200, 100 and 0 g kg?1) and increasing levels of turkey meal (0, 97, 175 and 264 g kg?1). Four practical diets were formulated to contain 400 g kg?1 protein and similar energy levels. Twenty fish were stocked into each of the 12, 1200‐L circular tanks and were fed twice daily ad libitum. At the conclusion of the feeding trial, there were no significant (P > 0.05) differences in final mean weight, percentage weight gain, specific growth rate and feed conversion ratio among treatments, which averaged 363.7 g, 904.3%, 2.02% day?1 and 1.73, respectively. Percentage survival of fish fed diet 4 (0 g kg?1 FM and 264 g kg?1 TM) was significantly (P > 0.05) lower (survival = 88.3%) than fish fed diet 3 (100 g kg?1 FM and 175 g kg?1 TM; survival = 95%), but not different from fish fed diet 1 (survival = 92.5%) and fish fed diet 2 (survival = 93.3%). Fillet weight and amount of abdominal fat were not significantly different among all treatments and averaged 258 and 58 g kg?1, respectively. Fish fed diet 1 (300 g kg?1 FM, 0 g kg?1 TM) and diet 2 (200 g kg?1 FM and 970 g kg?1 TM) had a significantly (P < 0.05) lower hepatosomatic index (2.83 and 3.01, respectively) than fish fed diet 4 (3.33), but not different (P > 0.05) compared to fish fed diet 3 (3.14). Lipid in the fillet of fish fed diet 2 (197 g kg?1) was significantly (P < 0.05) higher than fish fed all other diets; and the percentage lipid in the fillet of fish fed diet 1 (126 g kg?1) was significantly lower than fish fed diets 2 and 4, but not different (P >0.05) compared to fish fed diet 3. Fillet moisture, protein and ash were similar among fish fed all diets and averaged 748, 798 g kg?1 and 51.0 g kg?1 (dry‐matter basis), respectively. The amino acid composition of fillets was similar among all treatments with a few slight significant differences. Results from the present study indicate that tank‐grown sunshine bass can be fed a diet containing 264 g kg?1 TM with 0 g kg?1 FM, compared to diets containing up to 300 g kg?1 FM, without adverse effects on weight gain, growth rate, feed conversion and body composition. Further research should be conducted using lower‐protein diets to determine minimum protein level for tank‐grown sunshine bass.  相似文献   

7.
This study was designed to evaluate the effects of using soybean meal supplemented with or without methionine (M) and graded levels of phytase (P) to replace high‐level (60%) fish meal in the diets for juvenile Chinese sucker. Seven experimental diets (about 430 g kg?1 crude protein on dry matter basis) were formulated from practical ingredients. The control diet (FM) was formulated to contain 400 g kg?1 white fish meal (FM), whereas in the other six diets (diets 2–7), soybean meal (SBM) was used to replace 60% fish meal with or without methionine (3 g kg ?1) and 0,500, 1000, 1500 and 2000 U kg?1 phytase (designated as SBM, SM, SMP500, SMP1000, SMP1500 and SMP2000, respectively). Results from the feeding trial indicated that SBM without any methionine or phytase supplement replacing about 60% FM significantly affected the growth of fish (< 0.05). Weight gain of fish fed diet SM was significantly higher than the fish fed diet SBM, but still much lower than fish fed the control diet (< 0.05). SBM with methionine and phytase supplement significantly improved the growth of fish and apparent digestibility coefficients of phosphorus compared with the groups which fed diet SBM and diet SM (< 0.05). Weight gain of fish fed SMP1000, SMP1500 and SMP2000 had no significant difference than fish fed control diet. Furthermore, fish fed SMP1500 showed optimum weight gain and ADC of phosphorus between these three groups. This suggested that soybean meal with 3 g kg?1 methionine and 1500 U kg?1 phytase supplement could successfully replace 60% fish meal in the diet for juvenile Chinese sucker without affecting growth and enhanced the apparent digestibility coefficient of phosphorus.  相似文献   

8.
This study evaluated the potential of using poultry by‐product meal (PBM) to replace fish meal in diets for Japanese sea bass, Lateolabrax japonicus. Fish (initial body weight 8.5 g fish?1) were fed six isoproteic and isoenergetic diets in which fish meal level was reduced from 400 g kg?1 (diet C) to 320 (diet PM1), 240 (diet PM2), 160 (diet PM3), 80 (diet PM4) or 0 g kg?1 (diet PM5), using PBM as the fish meal substitute. The weight gain (WG), specific growth rate, nitrogen retention efficiency, energy retention efficiency and retention efficiency of indispensable amino acids were higher in fish fed PM1, PM2, PM3 and PM4 diets than in fish fed diets C or PM5. The phosphorus retention efficiency was lower in fish fed PM3, PM4 and PM5 diets than in fish fed C, PM1 or PM2 diets. Fish fed diet PM5 had the highest feed conversion ratio, total nitrogen waste output (TNW) and total phosphorus waste output (TPW) among the treatments. No significant differences were found in the hepatosomatic index or body contents of moisture, lipid and ash among the treatments. Fish fed diet C had lower condition factor and viscerosomatic index than those of fish fed PM1, PM3, PM4 and PM5 diets. The results of this study indicate that using fish meal and PBM in combination as the dietary protein source produced more benefits in the growth and feed utilization of Japanese sea bass than did using fish meal or PBM alone as the dietary protein source. The dietary fish meal level for Japanese sea bass can be reduced to 80 g kg?1 if PBM is used as a fish meal substitute.  相似文献   

9.
Two digestibility trials and two growth trials were carried out to evaluate the influence of top‐sprayed phytase on apparent digestibility coefficients (ADCs) of protein and mineral and utilization in rainbow trout fed with soybean meal‐based diets. In Trial 1, a semi‐purified diet containing 50% soybean meal was supplemented with graded levels of phytase (0, 500, 1000, 2000 and 4000 U kg?1 diet), and fed to triplicate groups of fish. In Trial 2, commercial‐type extruded feeds containing 36% soybean meal with either 0 or 2000 U phytase kg?1 were fed to five replicate groups of fish. Phytase clearly decreased phytic acid content of feces from 35 to 5 mg and from 34 to 14 mg phytic acid per g faecal dry matter in Trials 1 and 2 respectively. Apparent digestibility coefficient of P improved from 23% to 83% in Trial 1 and from 35% to 54% in Trial 2 by phytase. Apparent protein increased by 1.2% and 3.2%‐units by phytase in Trials 1 and 2. Zinc digestibility was significantly increased in Trial 1, but not in Trial 2. Trials 3 and 4 were conducted to evaluate the influence of phytase on dietary P (Trial 3) and lysine (Trial 4) utilization. Three diets were prepared for each trial: P (Trial 3)‐ or lysine (Trial 4)‐deficient basal diets, basal diets with phytase supplementation (2000 U kg?1) and P (Trial 3)‐ or lysine (Trial 4)‐fortified diets. Rainbow trout (initial weight 20 g) were fed for 10 weeks using four and six replicates for Trials 3 and 4 respectively. Phytase increased P utilization in Trial 3 as demonstrated by an increase in vertebra ash from 24.1% to 45.4%, and by an increase in weight gain from 243% to 459% of the initial weight. Phytase did not increase lysine utilization, since neither protein retention nor weight gain were enhanced by phytase. Supplemental lysine increased protein retention and weight gain to 43.1% and 514%, respectively, and also decreased whole‐body lipid contents significantly from 120 to 123 g kg?1 in fish fed the basal diet and phytase‐supplemented diet to 106 g kg?1 in fish fed with lysine‐fortified diet.  相似文献   

10.
In the majority of experiments, the effects of phytic acid (with or without phytase) are not separated from the effects of adding plant meals containing phytic acid. A 12‐week experiment was conducted with Atlantic salmon (28.9 g) to determine the separate and combined effects of phytic acid and phytase on feed intake, trypsin activity, digestibility and growth. Diets were prepared without phytic acid and phytase; with 2000 U phytase kg?1 diet; with 10 g sodium phytate kg?1 diet; and with 10 g sodium phytate and 2000 U phytase kg?1 diet. The basal diet contained sufficient phosphorus and other minerals to meet salmonid requirements. The addition of phytic acid had no significant effect on feed intake or weight gain, it significantly (P < 0.05) reduced protein digestibility although there was no reduction in trypsin activity. Phytase inclusion neutralized the effect of phytic acid on protein digestibility. Phytase had no effect on feed intake but significantly enhanced growth whether included with or without phytic acid. Feed efficiency ratio was significantly improved for fish fed the diet containing both phytase and phytic acid but not separately. The significance of this experiment was to separate the direct effects of phytase and the direct effects of phytic acid, added in a pure form, from effects due to other components in ingredients containing phytic acid.  相似文献   

11.
A growth trial and a digestibility trial were conducted to evaluate the efficacy of phytase supplemented to practical shrimp feeds. The 5 weeks growth trial evaluated the effects of phytase supplementation in replete phosphorus (P) diets on the performances and compositions of juvenile Pacific white shrimp, Litopenaeus vannamei. No significant differences were observed in final biomass, final mean weight, weight gain, feed conversion ratio (FCR), protein retention and survival across all the treatments. Shrimp reared on the P deficient diet had significantly higher P retention and lower whole body P levels as compared to shrimp fed the other diets. Copper content in the whole shrimp body was significantly increased in the treatment supplemented with 1,000 IU kg?1 feed phytase. The digestibility trial was conducted to study the combined effects of phytase supplementation levels and diet type (plant‐based versus fishmeal‐based) on apparent digestibility coefficients of Pacific white shrimp, Litopenaeus vannamei. There were no effects of diet type so the data was combined. Phytase incorporation at both 500 and 2,000 IU kg?1 significantly improved protein digestibility, whereas P digestibility was enhanced when 2,000 IU kg?1 phytase was supplemented to the diet. Apparent digestibility coefficients of alanine, arginine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, ornithine, phenylalanine, proline, serine, threonine, tyrosine and valine were significantly increased when fed diets contained 500 and 2,000 IU kg?1 phytase supplementation. Results of this work demonstrate that under the conditions of the study growth was not enhanced by phytase supplementation in P replete diets. However, nutrient retention for Cu and digestibility of P, protein and a number of amino acids were enhanced.  相似文献   

12.
Effects of thermal and enzymatic treatments of soybean meal on apparent absorption of total phosphorus, phytate phosphorus, nitrogen (protein), ash, calcium, magnesium, copper, iron, manganese, strontium and zinc were examined using rainbow trout, Oncorhynchus mykiss (Walbaum), as the test species. Absorption of the test nutrients was estimated using yttrium as an inert non-absorbable indicator. Thermal treatments (microwaving, dry roasting, steam heating, cooking) had no measurable effect on the apparent absorption of phosphorus and other minerals. Phytase supplementation increased the apparent absorption of phosphorus, nitrogen (protein), ash, calcium, magnesium, copper, iron, strontium and zinc in low-ash diets containing soybean meal, but had little effect in high-ash diets containing both soybean and fish meal. In low-ash diets, the apparent absorption of phosphorus increased in accord with the level of phytase added to the diet, from 27% (no phytase added) up to 90% (phytase added, 4000 units kg−1 diet) or 93% (predigested with phytase, 200 units kg−1 soybean meal). In high-ash diets, dietary acidification with citric acid decreased the effect of phytase, whereas in low-ash diets, acidification markedly increased the effect of the enzyme. Excretion of phosphorus in the faeces of fish fed a low-ash diet containing phytase-treated soybean meal was 0.32 g per kg diet consumed, a 95%−98% reduction compared with phosphorus excretion by fish consuming commercial trout feeds.  相似文献   

13.
This study was to assess effects of the pretreatment in all‐plant based diets with microbial phytase on phosphorous utilization and growth performance of Nile tilapia (Oreochromis niloticus). Pretreatment trials were conducted using phytase at graded doses to determine the optimal dose of phytase. Available phosphorus (P) levels increased significantly with the increased doses of phytase and the dose of 1000 U kg?1 was most efficient. Based on the pretreatment trials, plant based diets for Nile tilapia were formulated by pretreating with phytase at 1000 U kg?1. Experimental diets were supplemented with graded levels of mono calcium phosphate (MCP) at 25, 18.75, 12.5, 6.25 and 0 g kg ?1 diet. In addition, there were three controls: one phytase control, one inorganic P control and one pretreatment control. The results showed that diets pretreated with phytase gave better growth performance, feed conversion ratio and protein efficiency ratio of Nile tilapia compared with the phytase control diet and pretreatment control diet (P < 0.05). There were no significant differences in growth performance of Nile tilapia between the inorganic control diet and phytase pretreated diets supplemented with MCP at 25, 18.75 and 12.5 g kg?1 (P > 0.05), which resulted in significantly better performance than those at 6.25 and 0 g kg?1 (P < 0.05). Dietary interaction effects of phytase were observed for phosphorus retention efficiency and phosphorus load. Apparent digestibility coefficient of P (ADCp) was improved significantly by phytase pretreatment (P < 0.05). No significant difference was detected on ADC of crude protein among all experimental diets (P > 0.05).  相似文献   

14.
A study was undertaken to investigate the effects of graded dietary levels and different types of carnitine on hybrid striped bass (Morone chrysops × M. saxatilis %) fed different levels of lipid. An incomplete factorial design was utilized in which diets containing lipid at either 5 or 10% were supplemented with l-carnitine at 0, 500, or 1000 mg kg–1 diet, dl-carnitine at 1000 mg kg–1 diet, or carnitine chloride to provide 1000 mg carnitine kg–1 diet. Juvenile hybrid striped bass (3.3 g fish–1) were stocked into individual 38-l aquaria connected as a brackish water (6), recirculating system and fed each diet in triplicate for 9 weeks.Supplementation of the diet with 1000 mg carnitine kg–1 increased muscle carnitine from 35.5 to 47.7 g g–1 tissue. Carnitine supplementation did not result in increased weight gain regardless of carnitine level or type; however, weight gain showed a significant (p<0.05) response to dietary lipid with fish fed diets containing 10% lipid growing 34% more than fish fed diets with 5% lipid. The hepatosomatic index also was unaffected by diet, but the intraperitoneal fat (IPF) ratio was significantly elevated (5.1 vs 3.2%) in fish fed diets with 10% lipid compared to those fed diets with 5% lipid. Fish fed diets containing 1000 mg carnitine kg–1 had increased IPF ratio values at 4.7% compared to 3.9% for fish fed the basal diet. Liver lipid also was responsive to dietary treatment, increasing from 6.7 to 8.8% of wet weight as dietary lipid increased from 5 to 10%. The relative quantities of triglycerides, free fatty acids and phospholipids in muscle and liver were not influenced by carnitine level, carnitine type or dietary lipid level. Supplementation of carnitine does not appear to be beneficial to hybrid striped bass based on either growth performance or body composition.  相似文献   

15.
Phytates are the primary source of phosphorus in animal feeds of plant origin; however, this phytate phosphorus (PP) is only available to growing fish provided it is released from the phytate molecule as inorganic orthophosphate. Two experiments were conducted to compare phytase activity in the intestinal brush border membrane of carnivorous hybrid striped bass Morone chrysops × M. saxatilis, omnivorous tilapia Oreochromis niloticus × O. aureus and omnivorous koi Cyprinus carpio, and to evaluate the capability of these three species for PP digestibility. The results indicate that tilapia exhibit a significantly higher specific intestinal brush border membrane phytase activity of 5 nmol inorganic phosphate released mg−1 protein min−1 than hybrid bass or koi, which do not differ in their lower activities of 3 nmol inorganic phosphate released mg−1 protein min−1. There were no statistical differences among the three species in terms of total intestinal phytase activity, although the level of total intestinal phytase activity exhibited by the two omnivorous species tended to be higher than that of the carnivorous bass. The tilapia were shown to be capable of digesting substantial amounts of dietary PP, with observed apparent PP digestibility values of 50%. The hybrid bass and the koi could digest only 1–2% of the PP present in the diet. It appears that the only species of the three examined for which intestinal phytase activity is of physiologic significance from a practical standpoint of utilizing dietary PP is tilapia. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Three experiments were performed in single-pass, flow-through systems to determine the dietary phosphorus requirement of striped bass Morone saxatilis. In Experiment 1, three semi-purified diets were formulated to contain 0.20, 0.40, or 0.60% total phosphorus (entirely from animal protein) and were fed to striped bass having an average initial weight of 321 g. After 14 wk of feeding, significant differences in bone and scale mineralization were found among treatment groups. At a level of 0.40% dietary phosphorus there was a significant improvement of serum calcium (Ca) and tissue mineralization. In Experiment 2, five diets were formulated with graded levels of monopotassium phosphate to yield total phosphorus levels of 0.15 (no P supplementation), 0.35, 0.55, 0.75, and 0.95% and fed to juvenile striped bass initially weighing an average of 7.9 g. After 6 wk, significant improvement in scale and vertebral mineralization occurred when fish were fed diets containing at least 0.55% phosphorus. Improvements were observed in growth, serum phosphorus, incidence of scoliosis, survival, and feed efficiency when the diet contained at least 0.35% P. In Experiment 3, the dietary phosphorus levels fed were 0.30, 0.38, 0.46, 0.54, and 0.62% total phosphorus using graded levels of monopotassium phosphate. Diets were fed to striped bass fingerlings initially weighing an average of 48 g. After 10 wk, significant improvement in scale, vertebral, and dorsal fin mineralization was observed when dietary phosphorus was at least 0.46%. A summary of the broken-line regression analyses of the data from these experiments indicated that the average total dietary phosphorus level required for optimal growth and mineralization of striped bass was 0.58%.  相似文献   

17.
A feeding trial was conducted to study the effect of partial replacement of dietary monocalcium phosphate (MCP) with neutral phytase on growth performance and phosphorus digestibility in gibel carp, Carassius auratus gibelio (Bloch). Control diet was prepared with 2% MCP but without phytase (P0). Other three experimental diets were prepared by replacement of MCP by 25%, 50% and 75% respectively in comparison with control with supplementation of neutral phytase at 500 U kg?1 diet in each and designated as P25, P50 and P75 respectively. Gibel carp (initial body weight of 30.22 ± 1.98 g) were reared in twelve 300‐L cylindrical fibreglass tanks provided with filtered flow‐through tap water at 26–28°C. After 8‐week experiment, gibel carp fed with P50 had no obvious differences from the control group on weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency rate (PER) and survival rate. Phytase supplementation did not affect body compositions or muscle compositions. Crude protein and phosphorus (P) contents in the faeces of fish fed with the phytase‐supplemented diets were significantly lower than those of the control group. The apparent digestibility coefficients (ADCs) of crude protein and P in gibel carp were increased when fish fed with the diets in which MCP was replaced by neutral phytase. This study suggested that partial replacement of dietary MCP at 50% with neutral phytase was considered as a recommended dietary supplemental level and increased dietary P and protein availability.  相似文献   

18.
It has been recently demonstrated that hybrid striped bass Morone chrysops × M. saxatilis exhibit intestinal phytase activity, an enzyme capable of liberating inorganic orthophosphate from the phytate molecule, thereby making phytate phosphorus (PP) available for absorption and utilization by the fish. However, it was also determined that hybrid bass were able to digest only 1–2% of dietary PP. Therefore, an experiment was conducted to determine if exogenously administered recombinant bovine somatotropin (rbST) would increase intestinal phytase activity in hybrid striped bass to a level that would improve PP availability. The results indicate that exogenous rbST treatment, administered either through intraperitoneal injection or orally, does increase intestinal brush border membrane protein concentration. While injection with rbST led to significant increases in both specific brush border membrane and total intestinal phytase activity, oral rbST administration did not cause similar increases. Total P and PP digestibility were not influenced by rbST administration. While treatment with rbST does have the potential to enhance intestinal phytase activity in hybrid striped bass, it does not appear to increase PP digestibility. This observation limits the hormone's utility as an effective technique for improving PP bioavailability to this species.  相似文献   

19.
A grow‐out experiment was designed to determine the effect of different dietary protein, lipid levels and protein–energy (P:E) ratio on growth performance and feed utilization of the freshwater prawn, Macrobrachium rosenbergii post larvae (PL) culture in pond net enclosures (hapa, 3.75 m?3 each) for 12 weeks (84 days). The experimental treatments were assigned in triplicate. Six test diets were formulated to contain three different protein levels (300, 350 and 400 g kg?1 diet) and two lipid levels (100 and 140 g kg?1 diet) in a factorial manner (3 × 2) to provided six different dietary P:E ratio: 16, 17, 18, 19, 20 and 21 mg CP kJ?1 g?1). The result showed that the highest significant (P≤0.05) survival rate, growth indices and feed utilization were observed for M. rosenbergii PL fed a diet with a P:E ratio of 17 mg CP kJ?1 g1, whereas, the lowest value was recorded for prawns fed a diet with a P:E ratio of 20 mg CP kJ?1 g?1. Whole body contents of protein and lipid were highest (P≤0.05) when fed diets with 21 and 17 mg CP kJ?1 g?1 respectively. Concerning dietary protein levels, the highest (P≤0.05) values for survival and growth indices were observed for PL fed a diet containing 300 g kg?1 diet protein. The same trend was observed for PL fed a diet with 100 g kg?1 diet lipid level, irrespective of dietary protein levels. A diet containing 300 g kg?1 protein and 100 g kg?1 lipid with a dietary P:E ratio of 17 mg CP kJ g?1 is recommended to stimulate growth performance and nutrients utilization efficiency of M. rosenbergii PL.  相似文献   

20.
Two feeding trials of 8 and 10 weeks each were conducted to quantify the dietary lysine requirement of juvenile striped bass, Morone saxatilis. Diets in both experiments contained approximately 420 g crude protein kg–1 and 13.4 MJ digestible energy (DE) kg?1. L ‐Lysine‐HCl was added to the basal diet to yield five and six treatments in the two experiments. Diets in the first experiment were determined to contain 9.2, 14.1, 14.6, 19.9 and 21.0 g available lysine kg?1 on a dry‐matter basis. Diets in the second experiment were determined to contain 14.8, 18.1, 21.3, 24.5, 27.6 and 30.9 g available lysine kg?1 on a dry‐matter basis. Weight gain, specific growth rate (SGR), feed conversion ratio (FCR), and apparent nitrogen utilization (ANU) were significantly (P < 0.05) improved by increasing dietary lysine concentrations to approximately 20 g kg?1 of diet. Least‐squares regression analysis of weight gain and SGR in the first experiment indicated a minimum dietary lysine requirement of 20.1 ± 2 g kg?1 dry diet. Least‐squares regression analysis of the same criteria measured in the second experiment yielded the following estimates of dietary lysine requirements (g kg?1 dry diet): 19.8 ± 2.3 for weight gain, 21.7 ± 1.5 for SGR, 23.7 ± 3.5 for FCR and 18.6 ± 1.3 for ANU. From these results the minimum recommended dietary lysine requirement for optimal growth of juvenile striped bass is approximately 21 g kg?1 dry diet which equates to 49 g kg?1 dietary protein or 1.57 mg kJ?1 DE. Although higher than that reported for hybrid striped bass, this requirement level is similar to those reported for many other fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号