首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近十年来,越南将南海的金枪鱼资源作为其"外向型"渔业的重要支撑,不断增加捕捞强度,产量逐年升高。本文总结了越南发展南海金枪鱼渔业的过程,分析了南海金枪鱼资源的开发趋势。越南现代化的金枪鱼捕捞技术主要来自日本,使用的渔具主要有金枪鱼延绳钓、手钓、刺网和小型围网,捕捞的种类主要为鲣鱼、黄鳍金枪鱼和大眼金枪鱼,主要作业区域在西沙群岛南部海域和南沙群岛海域。越南2009年金枪鱼的产量已达到5.9×104t,计划2015年达到30×104t。根据越南海洋渔业研究所(RIMF)的评估,南海中西部的金枪鱼资源量为66~67×104t,可捕量23.3×104t,其中鲣鱼的可捕量21.6×104t,黄鳍金枪鱼和大眼金枪鱼的可捕量1.7×104t。随着全球金枪鱼捕捞配额的缩减和越南"外向型"渔业经济的发展,越南将继续加强对南海金枪鱼资源的开发。  相似文献   

2.
大眼金枪鱼渔场与环境关系的研究进展   总被引:2,自引:0,他引:2  
大眼金枪鱼是金枪鱼远洋渔业的主要捕捞对象。本文从大眼金枪鱼适宜环境因子、大眼金枪鱼渔场变动、资源丰度及其与环境因子间关系的研究方法等几方面总结了大眼金枪鱼渔场与环境关系的研究进展。大眼金枪鱼种群资源丰度的指标主要是CPUE和标准化后的CPUE,CPUE标准化的方法主要是GLM模型和GLM/HBM模型;目前,分析大眼金枪鱼资源变化与环境间关系的研究方法主要有聚类分析法、G IS软件定性分析法和栖息地指数模型。其中,聚类分析适用于研究大眼金枪鱼的渔场变动,包括系统聚类分析法、动态聚类分析法和灰色星座分析法,利用G IS软件定性分析适用于分析单个环境因子对渔场产生的影响;而栖息地指数模型能综合多个环境因子,分析它们共同对渔场产生的影响。  相似文献   

3.
根据1950―2016年的渔获量数据及1955―2016年的单位捕捞努力量(Catch Per Unit Effort,CPUE)数据,采用贝叶斯状态空间剩余产量模型框架JABBA(Just Another Bayesian Biomass Assessment)对印度洋大眼金枪鱼(Thunnus obesus)的资源状况进行评估,分析了渔船效应、CPUE数据尺度对评估结果的影响。结果表明,模型拟合效果对于不同时间跨度下CPUE数据的选择比较敏感。当选用时间跨度为1979―2016年的CPUE数据且考虑渔船效应时,模型拟合效果最好。2016年大眼金枪鱼的资源量为812 kt,最大可持续产量(Maximum Sustainable Yield,MSY)为163 kt,远高于同年渔获量86.81 kt,其资源量具有82.50%的概率处于"健康"状态。当总允许可捕量为69.45~104.17 kt时(2016年渔获量的80%~120%),未来10年大眼金枪鱼的资源量仍高于B_(MSY)(达到MSY所需的生物量)。回顾性分析结果表明,该资源评估结果存在一定程度的回顾性问题,捕捞死亡率和资源量分别存在被低估和高估的现象。将来需要在模型结构设定、CPUE数据选择及模型参数的先验分布设置等方面进一步优化。  相似文献   

4.
大眼金枪鱼渔业现状和生物学研究进展   总被引:1,自引:0,他引:1  
结合各海区大眼金枪鱼的产量,对大眼金枪鱼在各海区的渔业历史和现状,按照不同渔具进行了分析。并对其分布、运动模式、牛理特性、年龄和生长、繁殖、食性以及种群结构等生物学作了具体的阐述。  相似文献   

5.
The environmental processes associated with variability in the catch rates of bigeye tuna in the Atlantic Ocean are largely unexplored. This study used generalized additive models (GAMs) fitted to Taiwanese longline fishery data from 1990 to 2009 and investigated the association between environmental variables and catch rates to identify the processes influencing bigeye tuna distribution in the Atlantic Ocean. The present findings reveal that the year (temporal factor), latitude and longitude (spatial factors), and major regular longline target species of albacore catches are significant for the standardization of bigeye tuna catch rates in the Atlantic Ocean. The standardized catch rates and distribution of bigeye tuna were found to be related to environmental and climatic variation. The model selection processes showed that the selected GAMs explained 70% of the cumulative deviance in the entire Atlantic Ocean. Regarding environmental factors, the depth of the 20 degree isotherm (D20) substantially contributed to the explained deviance; other important factors were sea surface temperature (SST) and sea surface height deviation (SSHD). The potential fishing grounds were observed with SSTs of 22–28°C, a D20 shallower than 150 m and negative SSHDs in the Atlantic Ocean. The higher predicted catch rates were increased in the positive northern tropical Atlantic and negative North Atlantic Oscillation events with a higher SST and shallow D20, suggesting that climatic oscillations affect the population abundance and distribution of bigeye tuna.  相似文献   

6.
A generalized additive model (GAM) was constructed to separate and quantify the effects of fishery‐based (operational) and oceanographic parameters on the bigeye tuna (Thunnus obesus) catch rates at Palmyra Atoll in the central Tropical Pacific. Bigeye catch, the number of hooks per set, and set location from 4884 longline sets spanning January 1994 to December 2003 were used with a temporally corresponding El Niño‐Southern Oscillation (ENSO) indicator built from sea surface height (SSH) data. Observations of environmental data combined with the results from the GAM indicated that there is an increase in bigeye catch rates corresponding to an increase in eastward advection during the winter months of El Niño events. A seasonal pattern with higher bigeye catch rates from December to April and a spatial pattern with higher rates to the northeast and northwest of the atoll were observed during this study period. It is hypothesized that the combination of the eastward advection of the warm pool coupled with vertical changes in temperature during the winter months of El Niño events increases the availability of bigeye tuna in this region. This increase in availability may be due to a change in exploitable population size, location, or both.  相似文献   

7.
研究了2012-2015年中国金枪鱼围网船队大眼金枪鱼(Thunnus obesus)渔获物的特征变化与人工集鱼装置(fish aggregation devices,FAD)禁渔期的关系,文章收集了2012-2015年中国大陆金枪鱼围网船队在中西太平洋的渔捞日志数据,对随附鱼群捕捞努力量与小体大眼金枪鱼和大体大眼金枪鱼的船均产量进行分析比较。结果显示:1)从2013年开始,对随附鱼群投网的次数占总投网次数的比例有所降低,均不超过50%;2)K-S检验显示研究期内禁渔期前后的船均随附鱼群网次存在显著差异(P0.05);3)2013-2015年大眼金枪鱼渔获量的平均水平明显低于2012年;4)从2013年开始,禁渔期结束后的第一个月(即11月)的船均产量都发生猛增;5)从捕捞努力量与渔获量的相关性结果看,不论是小体大眼金枪鱼还是全部大眼金枪鱼,2013年和2014年两者都呈现出显著的强正相关关系(P0.05)。这些结果表明2012年以后中国船队对大眼金枪鱼幼鱼的兼捕水平有所下降,延长FAD禁渔期的管理措施对于保护大眼金枪鱼幼鱼在某些年份可能具有一定的效果。  相似文献   

8.
There is considerable international concern and scientific debate about the current state and future of tuna stocks worldwide and the capacity of Regional Fisheries Management Organisations to manage the associated fisheries effectively. In some cases, this concern has extended to predictions of imminent collapse with minimal chances of recovery, even under a commercial catch moratorium. As a viable alternative to a full fishery closure, the Commission for the Conservation of Southern Bluefin Tuna (CCSBT) has adopted a scientifically tested, adaptive rebuilding strategy for the depleted southern bluefin tuna (Thunnus maccoyii) stock. The management procedure (MP) adopted involves a harvest control rule that fully specifies the total allowable catch as a function of key indicators of stock status, adjusting future harvest levels every three years so as to meet the rebuilding targets agreed by CCSBT. It was chosen from a subset of candidate MPs selected following extensive simulation testing. This involved first selecting a wide range of plausible scenarios for stock status and input data, ranging from pessimistic to optimistic, against which the alternative candidate MPs were tested to ensure that they were robust to important uncertainties. This is the first time that a comprehensively evaluated MP has been adopted for an internationally managed tuna stock. Both the process and the outcomes have broad applicability to other internationally managed stocks.  相似文献   

9.
根据FA0 1950 ~ 2011年世界主要金枪鱼类渔业生产数据统计,将长鳍金枪鱼、黄鳍金枪鱼、大眼金枪鱼和鲣鱼等8种世界主要金枪鱼类每10年的产量总和按不同鱼种和海域进行了总结.结果显示,鲣鱼的累计总产量最高,其平均年产量涨幅最快;除马苏金枪鱼年平均产量有所下降,北方蓝鳍金枪鱼保持稳定外,其他主要金枪鱼类均有增长,但平均增长率最高的是青干金枪鱼.各主要渔区中以中西太平洋海域累计总产量最高,平均年产量有上升趋势,大西洋海域以中东大西洋为产量最高,印度洋海域以西印度洋为产量最高,平均增长率以印度洋海域为最高,其他海域相对持平.我国(包括台湾省)捕获累计总产量最高的是鲣鱼,为418×104 t,占世界总产量比例最高的是长鳍金枪鱼,为22.9%.我国(包括台湾省)主要金枪鱼类捕获总产量占世界总产量比例最高为东南大西洋海域,最低为东南太平洋海域.论文结合世界主要金枪鱼类以及主要捕捞海域的开发现状和我国国情,提出我国目前面临的几点困难以及发展壮大我国金枪鱼渔业的建议.  相似文献   

10.
A new habitat‐based model is developed to improve estimates of relative abundance of Pacific bigeye tuna (Thunnus obesus). The model provides estimates of `effective' longline effort and therefore better estimates of catch‐per‐unit‐of‐effort (CPUE) by incorporating information on the variation in longline fishing depth and depth of bigeye tuna preferred habitat. The essential elements in the model are: (1) estimation of the depth distribution of the longline gear, using information on gear configuration and ocean currents; (2) estimation of the depth distribution of bigeye tuna, based on habitat preference and oceanographic data; (3) estimation of effective longline effort, using fine‐scale Japanese longline fishery data; and (4) aggregation of catch and effective effort over appropriate spatial zones to produce revised time series of CPUE. Model results indicate that effective effort has increased in both the western and central Pacific Ocean (WCPO) and eastern Pacific Ocean (EPO). In the WCPO, effective effort increased by 43% from the late 1960s to the late 1980s due primarily to the increased effectiveness of effort (deeper longline sets) rather than to increased nominal effort. Over the same period, effective effort increased 250% in the EPO due primarily to increased nominal effort. Nominal and standardized CPUE indices in the EPO show similar trends – a decline during the 1960s, a period of stability in the 1970s, high values during 1985–1986 and a decline thereafter. In the WCPO, nominal CPUE is stable over the time‐series; however, standardized CPUE has declined by ~50%. If estimates of standardized CPUE accurately reflect relative abundance, then we have documented substantial reductions of bigeye tuna abundance for some regions in the Pacific Ocean. A decline in standardized CPUE in the subtropical gyres concurrent with stability in equatorial areas may represent a contraction in the range of the population resulting from a decline in population abundance. The sensitivity of the results to the habitat (temperature and oxygen) assumptions was tested using Monte Carlo simulations.  相似文献   

11.
大眼金枪鱼(Thunnus obesus)作为一种具有极高经济价值的公海金枪鱼捕捞对象,其资源状况和管理情况一直受到学者的高度关注,而对其生活史特征,尤其是生长特征的研究,是对大眼金枪鱼进行准确资源评估和合理养护管理的基础和关键部分。本研究基于中国科学观察员于2013―2018年收集的印度洋大眼金枪鱼生物学数据,通过体长-体重关系研究其生长特征,并运用线性混合效应模型分析其生长特征在不同年份、季度和海域间的差异。依据收集的8806尾大眼金枪鱼样本,求得其上颌叉长FL和加工重量GT (去掉鳃、尾鳍和内脏后的重量)之间的幂函数关系式,其中条件因子a的估计均值(95%置信区间)为1.07(0.99~1.14)×10~(-5),异速生长参数b的估计值(95%置信区间)为3.08 (3.07~3.10)。本研究构建了7个不同异质性组合的混合效应模型, AIC值和均方根误差值均表明同时考虑年份、季度和区域差异的模型拟合效果最佳。最佳模型的结果表明,印度洋15°S以南和以北海域的大眼金枪鱼个体生长特征差异极小,北部个体仅略重于南部个体;相比于第三和第四季度,相同体长的大眼金枪鱼在第一和第二季度具有更多的重量; 2015年和2016年采集的个体在同样体长时体重更重,而2014年和2017年的大眼金枪鱼体重比其他年份更轻。本研究结果旨在为大眼金枪鱼的资源评估及渔业管理提供基础资料,异质性的研究方法也可以应用于其他近海、远洋渔业种类的生活史特征、种群特征和资源评估研究。  相似文献   

12.
金枪鱼延绳钓钓具的最适浸泡时间   总被引:2,自引:1,他引:1  
根据2010年10月—2011年1月金枪鱼延绳钓海上调查数据,分两种起绳方式,建立每次作业每一根支绳的浸泡时间计算模型。将钓具的浸泡时间以1 h为间隔分别统计每个区间的支绳数量及大眼金枪鱼(Thunnus obesus)、黄鳍金枪鱼(Thunnus albacores)的渔获尾数,并计算其钓获率(CPUE)。结果表明:1)大眼金枪鱼和黄鳍金枪鱼的CPUE都随浸泡时间的增加呈现先增后减的趋势,这是由于饵料的诱引效果变化及渔获的丢失引起的;2)二次曲线可拟合浸泡时间与大眼金枪鱼和黄鳍金枪鱼CPUE的关系;3)大眼金枪鱼和黄鳍金枪鱼CPUE最高的浸泡时间分别为9.9 h和10.1 h。建议:1)今后在金枪鱼延绳钓作业中,保证每一根支绳在水中的浸泡时间为9.5~10.5 h,以提高捕捞效率并减少副渔获物;2)可把延绳钓钓具的浸泡时间作为有效捕捞努力量,并用于CPUE的标准化。研究结果可用于提高捕捞效率并减少副渔获物的技术方案制订,并为渔业生产和CPUE的标准化提供科学参考。  相似文献   

13.
基于贝叶斯概率的印度洋大眼金枪鱼渔场预报   总被引:1,自引:0,他引:1  
本文采用贝叶斯概率为模型基础框架,利用来自印度洋金枪鱼管理委员会(IOTC)的大眼金枪鱼延绳钓历史渔获统计数据和美国国家海洋大气管理局(NOAA)的海温最优插值再分析数据,进行适用于印度洋金枪鱼延绳钓渔场的模型参数估算与预报模型构建。模型回报精度验证结果表明,印度洋大眼金枪鱼延绳钓渔场综合预报的准确率达到了65.96%。模型预报结果用概率百分比来表示,符合渔业资源分布的客观特点。利用中分辨率成像光谱仪MODIS提供的SST产品进行业务化运行的渔场预报,利用模型结果每周生成印度洋大眼金枪鱼延绳钓渔场概率预报图,用不同大小的圆形来表示渔场概率的高低,可以为印度洋区域的远洋渔业生产提供信息支持。  相似文献   

14.
Catch per unit effort (CPUE) is often used as an index of relative abundance in fisheries stock assessments. However, the trends in nominal CPUE can be influenced by many factors in addition to stock abundance, including the choice of fishing location and target species, and environmental conditions. Consequently, catch and effort data are usually ‘standardized’ to remove the impact of such factors. Standardized CPUE for bigeye tuna, Thunnus obesus, caught by the Taiwanese distant-water longline fishery in the western and central Pacific Ocean (WCPO) for 1964–2004 were derived using three alternative approaches (GLM, GAM and the delta approach), and sensitivity was explored to whether catch-rates of yellowfin tuna and albacore tuna are included in the analyses. Year, latitude, and the catch-rate of yellowfin explained the most of the deviance (32–49%, depending on model configuration) and were identified consistently among methods, while trends in standardized catch-rate differed spatially. However, the trends in standardized catch-rates by area were found to be relatively insensitive to the approach used for standardization, including whether the catch-rates of yellowfin and albacore were included in the analyses.  相似文献   

15.
16.
Habitat models are used to correct estimates of fish abundance derived from pelagic longline fishing gear. They combine information on hook depth with the species’ preferences for ambient environmental conditions to adjust the gear's catchability. We compare depth distributions of bigeye tuna (Thunnus obesus) catch predicted by a habitat model with distributions derived from data collected by observers on longliners in the tropical Pacific Ocean. Our analyses show that the habitat model does not accurately predict the depth distribution of bigeye tuna; its predictions are worse than those from models that assume no effect of depth on catches. Statistical models provided superior fits to the observed depth distribution. The poor performance of the habitat model is probably due to (1) problems in estimating hook depth, (2) fine‐scale variations in environmental conditions, (3) incomplete knowledge of habitat preferences and (4) differences between the distribution of bigeye tuna and their vulnerability to longline gear.  相似文献   

17.
  • 1. This study examines changes in frigate tuna populations in southern Sri Lanka, based on reports from fishers in three age classes. Significantly higher values for best day's catch and largest specimen ever caught were obtained by older fishers than younger ones. Values were also significantly higher during early years, providing clear evidence of a decrease in the resource over time (1951–2007).
  • 2. Older fishers reported best catches further inshore and in shallower waters which, on becoming depleted, forced younger generations to fish in less exploited areas further offshore. Heavy harvesting is also evident from the significantly greater number of sites reported by older fishers as being depleted, compared with observations of younger fishers.
  • 3. These findings contrast markedly with catch and catch per effort patterns from statistics for frigate tuna and bullet tuna (combined) in southern Sri Lanka (1994–2004). No stock decline is evident, and at least one report in the early 1990s advocated increasing exploitation rates by 40% to maximize yields.
  • 4. Although not a primary research objective, fisher observations on frigate tuna populations were also analysed to help evaluate possible effects of the 2004 tsunami. Most fishers reported post‐tsunami decline, but mainly from a larger new generation of fishers, rather than extra boats provided by aid money or (direct or indirect) biophysical impacts from the tsunami.
  • 5. Reliance on fishery statistics, especially for mixed species and over a limited period, can be risky and easily mask true stock status. Evidence of harvesting effects on frigate tuna in southern Sri Lanka is evident using questionnaire data over a longer time scale.
  • 6. This study provides another compelling case of the ‘shifting baseline syndrome’, whereby fishers of different ages have altered perceptions/experiences of their environment. This may be its first reported occurrence in Sri Lanka. Traditional knowledge from this and similar surveys may provide national fishery management with valuable insights and help improve conservation prospects for frigate tuna and other marine resources. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

18.
To analyze the effects of mesoscale eddies, sea surface temperature (SST), and gear configuration on the catch of Atlantic bluefin (Thunnus thynnus), yellowfin (Thunnus albacares), and bigeye tuna (Thunnus obesus) and swordfish (Xiphias gladius) in the U.S. northwest Atlantic longline fishery, we constructed multivariate statistical models relating these variables to the catch of the four species in 62 121 longline hauls made between 1993 and 2005. During the same 13‐year period, 103 anticyclonic eddies and 269 cyclonic eddies were detected by our algorithm in the region 30–55°N, 30–80°W. Our results show that tuna and swordfish catches were associated with different eddy structures. Bluefin tuna catch was highest in anticyclonic eddies whereas yellowfin and bigeye tuna catches were highest in cyclonic eddies. Swordfish catch was found preferentially in regions outside of eddies. Our study confirms that the common practice of targeting tuna with day sets and swordfish with night sets is effective. In addition, bluefin tuna and swordfish catches responded to most of the variables we tested in the opposite directions. Bluefin tuna catch was negatively correlated with longitude and the number of light sticks used whereas swordfish catch was positively correlated with these two variables. We argue that overfishing of bluefin tuna can be alleviated and that swordfish can be targeted more efficiently by avoiding fishing in anticyclonic eddies and in near‐shore waters and using more light sticks and fishing at night in our study area, although further studies are needed to propose a solid oceanography‐based management plan for catch selection.  相似文献   

19.
We evaluated the behavior of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye tuna (T. obesus) associated with drifting fish aggregating devices (FADs) in the equatorial central Pacific Ocean. A total of 30 skipjack [34.5–65.0 cm in fork length (FL)], 43 yellowfin (31.6–93.5 cm FL) and 32 bigeye tuna (33.5–85.5 cm FL) were tagged with coded transmitters and released near two drifting FADs. At one of the two FADs, we successfully monitored the behavior of all three species simultaneously. Several individuals remained around the same FAD for 10 or more days. Occasional excursions from the FAD were observed for all three species, some of which occurred concurrently for multiple individuals. The detection rate was higher during the daytime than the nighttime for all the species, and the detection rate for bigeye tuna was higher than for yellowfin or skipjack tuna. The swimming depth was deeper during the daytime than nighttime for all species. The fish usually remained shallower than 100 m, but occasionally dived to around 150 m or deeper, most often for bigeye and yellowfin tuna during the daytime. The swimming depth for skipjack tuna was shallower than that for bigeye and yellowfin tuna, although the difference was not large, and is probably not sufficient to allow the selective harvest of skipjack and yellowfin tuna by the purse seine fishery. From the detection rate of the signals, bigeye tuna is considered to be more vulnerable to the FAD sets than yellowfin and skipjack tuna.  相似文献   

20.
Successful individual transferable quota (ITQ) management requires a binding (constraining) total allowable catch (TAC). A non‐binding TAC may result in a shift back towards open access conditions, where fishers increasingly compete (‘race’) to catch their share of the total harvest. This process was examined by comparing fishing fleet behaviour and profitability in the Tasmanian southern rock lobster (Jasus edwardsii) fishery (TSRLF), Australia. Between 2008 and 2010, the TSRLF had a non‐binding TAC and effectively reverted to a regulated, limited‐entry fishery. Fishers' uncertainty about future profitability and their ability to take their allocated catch weakened the security characteristic of the ITQ allocation. The low quota lease price contributed to an increase in fleet capacity, while the more limited reduction in quota asset value proved an investment barrier, hindering the autonomous adjustment of quota towards the most efficient fishers. In the TSRLF, catch rates vary more than beach price and are therefore more important for determining daily revenue (i.e., price x catch rate) than market price. Consequently, fishers concentrated effort during times of higher catch rates rather than high market demand. This increased rent dissipation as fishers engaged in competitive race to fish to be the first to exploit the stock and obtain higher catch rates. The history of this fishery emphasizes the need for a constraining TAC in all ITQ fisheries, not only for stock management, but also to manage the security of the ITQ allocation and prevent unanticipated and undesirable changes in fisher behaviour and fishery profitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号