首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
Chinook salmon, Oncorhynchus tshawytscha (Walbaum), is an important biological and cultural resource in Alaska, but knowledge about Chinook salmon ecology is limited in many regions. From 2009 to 2012, spawning distribution and abundance of a northern Chinook salmon population on the Togiak River in south‐west Alaska were assessed. Chinook salmon preferred deeper mainstem channel spawning habitat, with 12% (14 of 118 tags in 2009) to 21% (22 of 106 tags in 2012) of radio‐tagged fish spawning in smaller order tributaries. Tributary spawners tended to have earlier run timing than mainstem spawners. Chinook salmon exhibited extended holding and backout (entering freshwater but returning to saltwater before completing anadromous migration) behaviours near the mouth of Togiak River, potentially prolonging their exposure to fishery harvest. Mark–recapture total annual run estimates (2010–2012) ranged from 11 240 (2011) to 18 299 (2012) fish. Exploitation of Chinook salmon ranged from 36% (2012) to 55% (2011) during the study period, with incidental fishery catches near the mouth of the river comprising the largest source of harvest.  相似文献   

2.
Abstract – Atlantic salmon (Salmo salar) was once native to Lake Ontario, however, its numbers rapidly declined following colonisation by Europeans and the species was extirpated by 1896. Government agencies surrounding Lake Ontario are currently undertaking a variety of studies to assess the feasibility of reintroducing Atlantic salmon. We released hatchery‐reared adult Atlantic salmon into a Lake Ontario tributary to examine spawning interactions between this species and fall‐spawning exotic salmonids found in the same stream. Chinook salmon, coho salmon and brown trout were observed interacting with spawning Atlantic salmon in nearly one‐quarter of our observation bouts, with chinook salmon interacting most frequently. Whereas a previous investigation found that chinook salmon caused elevated agonistic behaviour and general activity by spawning Atlantic salmon, the present study found that interspecific courtship was the most common form of exotic interaction with spawning Atlantic salmon. In particular, we observed precocial male Chinook salmon courting female Atlantic salmon and defending the female against approach by male Atlantic salmon. We discuss the potential implications of these interactions on the Lake Ontario Atlantic salmon reintroduction programme.  相似文献   

3.
Abstract Many habitat enhancement techniques aimed at restoring salmonid populations have not been comprehensively assessed. The growth and diet of juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), rearing in a reach designed to enhance spawning were evaluated to determine how a non‐target life stage fared in the engineered habitat. Prior work demonstrated differences in food web structure between restored and unenhanced reaches of the Merced River, thus juvenile salmon feeding dynamics were also hypothesised to vary. Dependent variables were compared among fish collected from within and near the upper boundary of the restored reach and in an unenhanced habitat upstream. Diets, otolith‐derived growth and stable isotope‐inferred trophic positions were compared. Baetidae mayflies were particularly important prey in the restored reach, while elsewhere individuals exhibited heterogeneous diets. Salmon residing at the bottom of the restored reach exhibited slightly faster growth rates relative to fish collected elsewhere, although stable isotope and diet analyses suggested that they fed at a relatively low trophic position. Specialised Baetis predation and/or abundant interstitial refugia potentially improved rearing conditions in the restored reach. Data suggest that gravel enhancement and channel realignment designed to augment adult spawning habitat may simultaneously support juvenile Chinook salmon despite low invertebrate food resources.  相似文献   

4.
We determined the habitat usage and habitat connectivity of juvenile Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon in continental shelf waters off Washington and Oregon, based on samples collected every June for 9 yr (1998–2006). Habitat usage and connectivity were evaluated using SeaWiFS satellite‐derived chlorophyll a data and water depth. Logistic regression models were developed for both species, and habitats were first classified using a threshold value estimated from a receiver operating characteristic curve. A Bernoulli random process using catch probabilities from observed data, i.e. the frequency of occurrence of a fish divided by the number of times a station was surveyed, was applied to reclassify stations. Zero‐catch probabilities of yearling Chinook and yearling coho salmon decreased with increases in chlorophyll a concentration, and with decreases in water depth. From 1998 to 2006, ~ 47% of stations surveyed were classified as unfavorable habitat for yearling Chinook salmon and ~ 53% for yearling coho salmon. Potentially favorable habitat varied among years and ranged from 9 856 to 15 120 km2 (Chinook) and from 14 800 to 16 736 km2 (coho). For both species, the smallest habitat area occurred in 1998, an El Niño year. Favorable habitats for yearling Chinook salmon were more isolated in 1998 and 2005 than in other years. Both species had larger and more continuous favorable habitat areas along the Washington coast than along the Oregon coast. The favorable habitats were also larger and more continuous nearshore than offshore for both species. Further investigations on large‐scale transport, mesoscale physical features, and prey and predator availability in the study area are necessary to explain the spatial arrangement of juvenile salmon habitats in continental shelf waters.  相似文献   

5.
Keefer ML, Taylor GA, Garletts DF, Gauthier GA, Pierce TM, Caudill CC. Prespawn mortality in adult spring Chinook salmon outplanted above barrier dams.
Ecology of Freshwater Fish 2010: 19: 361–372. © 2010 John Wiley & Sons A/S Abstract – Dams without fish passage facilities block access to much of the historic spawning habitat of spring Chinook salmon (Oncorhynchus tshawytscha) in Oregon’s Willamette River basin. Adult salmon are routinely outplanted above the dams to supplement natural production, but many die before spawning despite extensive suitable habitat. In 2004–2007, we examined prespawn mortality patterns using live detection and carcass recovery data for 242 radio‐tagged outplants. Total prespawn mortality was 48%, but variability was high, ranging from 0% to 93% for individual release groups. Prespawn mortality was strongly condition dependent, consistently higher for females than males and higher for early release groups. Across years, warm water temperature in the migration corridor and at the collection site was associated with sharply higher mortality. Results highlight a need for better evaluations of the effects of adult mortality on population reintroduction and recovery and relationships among prespawn mortality, dam‐related temperature change and salmon life history and behaviour.  相似文献   

6.
Chinook salmon (Oncorhynchus tschawytscha) populations within the highly modified San Francisco Estuary, California, have seen precipitous declines in recent years. To better understand this decline, a decade of coded‐wire tag release and recovery data for juvenile salmon was combined with physicochemical data to construct models that represented alternative hypotheses of estuarine conditions that influence tag recovery rate in the ocean. An information theoretic approach was used to evaluate the weight of evidence for each hypothesis and model averaging was performed to determine the level of support for variables that represented individual hypotheses. A single best model was identified for salmon released into the Sacramento River side of the estuary, whereas two competitive models were selected for salmon released into the San Joaquin River side of the estuary. Model averaging found that recovery rates were greatest for San Joaquin River releases when estuary water temperatures were lower, and salmon were released at larger sizes. Recovery rate of Sacramento releases was greatest during years with better water quality. There was little evidence that large‐scale water exports or inflows influenced recovery rates in the ocean during this time period. These results suggest that conceptual models of salmon ecology in estuaries should be quantitatively evaluated prior to implementation of recovery actions to maximise the effectiveness of management and facilitate the recovery of depressed Chinook populations.  相似文献   

7.
Salmon from different locations in a watershed can have different life histories. It is often unclear to what extent this variation is a response to the current environmental conditions an individual experiences as opposed to local‐scale genetic adaptation or the environment experienced early in development. We used a mark–recapture transplant experiment in the Shasta River, CA, to test whether life‐history traits of juvenile Chinook salmon Oncorhynchus tshawytscha varied among locations, and whether individuals could adopt a new life history upon encountering new habitat type. The Shasta River, a Klamath River tributary, has two Chinook salmon spawning and juvenile rearing areas, a lower basin canyon (river km 0–12) and upper basin spring complex (river km 40–56), characterised by dramatically different in‐stream habitats. In 2012 and 2013, we created three experimental groups: (i) fish caught, tagged and released in the upper basin; (ii) fish caught at the river mouth (confluence with the Klamath River, river km 0), tagged and released in the upper basin; and (iii) fish caught at the river mouth, tagged and released in the lower basin. Fish released in the upper basin outmigrated later and at a larger size than those released in the lower basin. The traits of fish transplanted to the upper basin were similar to fish originating in the upper basin. Chinook salmon juvenile life‐history traits reflected habitat conditions fish experienced rather than those where they originated, indicating that habitat modification or transportation to new habitats can rapidly alter the life‐history composition of populations.  相似文献   

8.
Yearling Chinook (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) were sampled concurrently with physical variables (temperature, salinity, depth) and biological variables (chlorophyll a concentration and copepod abundance) along the Washington and Oregon coast in June 1998–2008. Copepod species were divided into four different groups based on their water‐type affinities: cold neritic, subarctic oceanic, warm neritic, and warm oceanic. Generalized linear mixed models were used to quantify the relationship between the abundance of these four different copepod groups and the abundance of juvenile salmon. The relationships between juvenile salmon and different copepod groups were further validated using regression analysis of annual mean juvenile salmon abundance versus the mean abundance of the copepod groups. Yearling Chinook salmon abundance was negatively correlated with warm oceanic copepods, warm neritic copepods, and bottom depth, and positively correlated with cold neritic copepods, subarctic copepods, and chlorophyll a concentration. The selected habitat variables explained 67% of the variation in yearling Chinook abundance. Yearling coho salmon abundance was negatively correlated with warm oceanic copepods, warm neritic copepods, and bottom depth, and positively correlated with temperature. The selected habitat variables explained 40% of the variation in yearling coho abundance. Results suggest that copepod communities can be used to characterize spatio‐temporal patterns of abundance of juvenile salmon, i.e., large‐scale interannual variations in ocean conditions (warm versus cold years) and inshore‐offshore (cross‐shelf) gradients in the abundance of juvenile salmon can be characterized by differences in the abundance of copepod species with various water mass affinities.  相似文献   

9.
Chinook salmon (Oncorhynchus tshawytscha) is one of several economically‐important species of salmon found in the Northeast Pacific Ocean. The first months at sea are believed to be the most critical for salmon survival, with the highest rate of mortality occurring during this period. In the present study, we examined interannual diet composition and body condition trends for late‐summer subyearling Chinook salmon caught off Oregon and Washington from 1998 to 2012. Interannual variability was observed in juvenile salmon diet composition by weight of prey consumed. Juvenile subyearling Chinook salmon were mainly piscivorous, with northern anchovy (Engraulis mordax) being especially important, making up half the diet by weight in some years. Annual diets clustered into two groups, primarily defined by their proportion of invertebrate prey (14% versus 39% on average). Diet composition was found to influence adult returns, with salmon from high‐invertebrate years returning in significantly larger numbers 2–3 yrs later. However, years that had high adult returns had overall lower stomach fullness and poorer body condition as juveniles, a counterintuitive result potentially driven by the enhanced survival of less fit individuals in better ocean conditions (top‐down effect). Ocean conditions in years with a higher percentage of invertebrates in salmon diets were significantly cooler from May to August, and bottom‐up processes may have led to a fall plankton community with a larger proportion of invertebrates. Our results suggest that the plankton community assemblage during this first fall may be critical in predicting adult returns of Chinook salmon in the Pacific Northwest.  相似文献   

10.
Fisheries bycatch impacts marine species globally and understanding the underlying ecological and behavioural mechanisms could improve bycatch mitigation and forecasts in novel conditions. Oceans are rapidly warming causing shifts in marine species distributions with unknown, but likely, bycatch consequences. We examined whether thermal and diel depth-use behaviours influenced bycatch of a keystone species (Chinook salmon; Oncorhynchus tshawytscha, Salmonidae) in the largest fishery on the US West Coast (Pacific hake; Merluccius productus, Merlucciidae) with annual consequences in a warming ocean. We used Generalized Additive Models with 20 years of data including 54,509 hauls from the at-sea hake fishery spanning Oregon and Washington coasts including genetic information for five salmon populations. Our results demonstrate that Chinook salmon bycatch rates increased in warm ocean years explained by salmon depth-use behaviours. Chinook salmon typically occupy shallower water column depths compared to hake. However, salmon moved deeper when sea surface temperatures (SSTs) were warm and at night, which increased overlap with hake and exacerbated bycatch rates. We show that night fishing reductions (a voluntary bycatch mitigation strategy) are effective in reducing salmon bycatch in cool SSTs by limiting fishing effort when diel vertical movements bring salmon deeper but becomes less effective in warm SSTs as salmon seek deeper thermal refugia during the day. Thermal and diel behaviours were more pronounced in southern compared with northern salmon populations. We provide mechanistic support that climate change may intensify Chinook salmon bycatch in the hake fishery and demonstrate how an inferential approach can inform bycatch management in a changing world.  相似文献   

11.
Pacific salmon and trout (Oncorhynchus spp., Salmonidae) of the Puget Sound region of Washington State, USA, have experienced recent and longer‐term (multidecadal) variability in abundance while supporting robust fisheries. As part of the post‐season salmon management process, population‐specific estimates of total adult abundance to Puget Sound (Strait of Juan de Fuca) for pink (O. gorbuscha), chum (O. keta), coho (O. kisutch), sockeye (O. nerka), and Chinook (O. tshawytscha) salmon and steelhead trout (O. mykiss) are calculated annually. We compiled annual estimates of body mass, abundance and survival of hatchery‐ and naturally produced salmon from 1970 to 2015 to compare spatial and temporal patterns across species. Average weights of adult salmon and steelhead returning to Puget Sound, with the exception of coho salmon, have decreased since the 1970s. Temporal trends in abundance, survival and productivity varied by species and origin (hatchery vs. naturally produced). Generally, abundance and survival rates of natural‐origin species decreased whereas those of hatchery‐produced species did not, which is in contrast with other studies' general conclusions of decreasing survival among Puget Sound salmonids. Species diversity has decreased in recent years, with salmonids that rely on a short freshwater rearing phase in the natural environment (hatchery‐produced fish and naturally produced pink and chum) representing >90% of total returns in most years. This new information reveals patterns of body size, abundance, survival and productivity across species, life history and rearing type over the past 45 years and, in doing so, demonstrates the strength in multidecadal, multifactor time series to critically evaluate salmonid species.  相似文献   

12.
Water competition in overallocated rivers is often extreme, and climate change exacerbates the challenge of balancing ecosystem and societal water needs. During a severe California drought in 2013–2014, storage in a strategic reservoir dropped to critically low levels, necessitating reduced downstream discharge during Chinook salmon, Oncorhynchus tshawytscha (Walbaum), incubation and rearing. In response, stakeholders developed an adaptive management process to balance competing water needs, including reservoir storage and salmon survival. This approach incorporated decision tree models, integrating salmon life stage transitions to define potential impacts. Life stage‐specific thresholds were identified and monitored to determine management triggers and actions. Flow reduction stranded up to 12% of incubating embryos and thus was used to trigger a flow pulse. Frequency of stranded fry in redds was reduced post‐pulse. Water quality did not change but remained within the species’ tolerance. High densities, poor body condition and aggressive behaviour of stranded fry triggered a second pulse three weeks later. This pulse reduced stranding and initiated downstream migration. Prescribed flow pulses supported outmigration of a keystone species while minimising water use during a critical period. This study evaluated ecological responses to management actions intended to ameliorate stressful low flow conditions and provided a decision‐making framework that can be used when resource use conflicts arise again.  相似文献   

13.
Unusually large returns of several stocks of fall Chinook salmon (Oncorhynchus tshawytscha) from the U.S. Northwest commonly occurred during the late 1980s. These synchronous events seem to have been due to ocean rather than freshwater conditions because natal rivers of these stocks were geographically disconnected. We examined year‐to‐year variability in cohort strength of one of these stocks, Upriver Bright (URB) fall Chinook salmon from the Columbia River Hanford Reach for brood years 1976–99 (recovery years 1979–2002). We used the ocean recovery rate of coded‐wire‐tag (CWT) fish as an index of cohort strength. To analyse year‐to‐year variability in the ocean recovery rate, we applied a log‐linear model whose candidate explanatory variables were ocean condition variables, fishing effort, age of recovered fish, and fish rearing type (hatchery versus wild). Explanatory variables in the best model included fishing effort, and the quadratic term of winter sea surface temperature (SST) measured from coastal waters of British Columbia, Canada during the fish's first ocean year. The coefficient of the quadratic term of SST was significantly negative, so the model shape was convex. Our findings can be used to infer year‐to‐year variability in cohort strength of other fall Chinook salmon whose life history and ocean distributions are similar to the URB fish.  相似文献   

14.
Herein, we describe the prevalence of bacterial infections in Chinook salmon, Oncorhynchus tshawytscha (Walbaum), returning to spawn in two tributaries within the Lake Michigan watershed. Ten bacterial genera, including Renibacterium, Aeromonas, Carnobacterium, Serratia, Proteus, Pseudomonas, Hafnia, Salmonella, Shewanella and Morganella, were detected in the kidneys of Chinook salmon (n = 480) using culture, serological and molecular analyses. Among these, Aeromonas salmonicida was detected at a prevalence of ~15%. Analyses revealed significant interactions between location/time of collection and gender for these infections, whereby overall infection prevalence increased greatly later in the spawning run and was significantly higher in females. Renibacterium salmoninarum was detected in fish kidneys at an overall prevalence of >25%. Logistic regression analyses revealed that R. salmoninarum prevalence differed significantly by location/time of collection and gender, with a higher likelihood of infection later in the spawning season and in females vs. males. Chi‐square analyses quantifying non‐independence of infection by multiple pathogens revealed a significant association between R. salmoninarum and motile aeromonad infections. Additionally, greater numbers of fish were found to be co‐infected by multiple bacterial species than would be expected by chance alone. The findings of this study suggest a potential synergism between bacteria infecting spawning Chinook salmon.  相似文献   

15.
16.
Petrosky CE, Schaller HA. Influence of river conditions during seaward migration and ocean conditions on survival rates of Snake River Chinook salmon and steelhead.
Ecology of Freshwater Fish 2010: 19: 520–536. © 2010 John Wiley & Sons A/S Abstract – Improved understanding of the relative influence of ocean and freshwater factors on survival of at‐risk anadromous fish populations is critical to success of conservation and recovery efforts. Abundance and smolt to adult survival rates of Snake River Chinook salmon and steelhead decreased dramatically coincident with construction of hydropower dams in the 1970s. However, separating the influence of ocean and freshwater conditions is difficult because of possible confounding factors. We used long time‐series of smolt to adult survival rates for Chinook salmon and steelhead to estimate first year ocean survival rates. We constructed multiple regression models that explained the survival rate patterns using environmental indices for ocean conditions and in‐river conditions experienced during seaward migration. Survival rates during the smolt to adult and first year ocean life stages for both species were associated with both ocean and river conditions. Best‐fit, simplest models indicate that lower survival rates for Chinook salmon are associated with warmer ocean conditions, reduced upwelling in the spring, and with slower river velocity during the smolt migration or multiple passages through powerhouses at dams. Similarly, lower survival rates for steelhead are associated with warmer ocean conditions, reduced upwelling in the spring, and with slower river velocity and warmer river temperatures. Given projections for warming ocean conditions, a precautionary management approach should focus on improving in‐river migration conditions by increasing water velocity, relying on increased spill, or other actions that reduce delay of smolts through the river corridor during their seaward migration.  相似文献   

17.
Abstract Habitat mapping along 85 km of river was related to juvenile (15 years of electric fishing) and smolt (3 years of screw‐trapping) abundance data to estimate salmon, Salmo salar L., and sea trout, Salmo trutta L., smolt production in the River Sävarån, northern Sweden. Spawning site selection by radio‐tagged salmon (n = 12) and sea trout (n = 4) was also assessed. Fifty‐one hectares of potential spawning and nursery habitat was found in the main stem river, representing 25% of the total river area. These areas were estimated to yield 1300–7580 salmon and 630–3540 sea trout smolts based on juvenile densities, equating with 3 years of screw‐trap data (2990–5080 salmon and 680–2520 trout smolts, respectively). A hypothetical maximum production of about 19 900 salmon smolts was predicted for the river at a density of 40, 0+ salmon 100 m?2. Tracking adults during the spawning period identified optimal and potential reproductive areas.  相似文献   

18.
Little is known about the food habits of juvenile Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon in marine environments of Alaska, or whether their diets may have contributed to extremely high marine survival rates for coho salmon from Southeast Alaska and much more modest survival rates for Southeast Alaskan Chinook salmon. To address these issues, we documented the spatial and temporal variability of diets of both species collected from marine waters of Southeast Alaska during summers of 1997–2000. Food habits were similar: major prey items of both species included fishes, crab larvae, hyperiid amphipods, insects, and euphausiids. Multivariate analyses of diet composition indicated that the most distinct groups were formed at the smallest spatial and temporal scales (the haul), although groups also formed at larger scales, such as by month or habitat type. Our expectations for how food habits would influence survival were only partially supported. As predicted, Southeast Alaskan coho salmon had more prey in their stomachs overall [1.8% of body weight (BW)] and proportionally far fewer empty stomachs (0.7%) than either Alaskan Chinook (1.4% BW, 5.1% empty) or coho salmon from other regions. However, contrary to our expectations, coho salmon diets contained surprisingly few fish (49% by weight). Apparently, Alaskan coho salmon achieved extremely high marine survival rates despite a diet consisting largely of small, less energetically‐efficient crustacean prey. Our results suggest that diet quantity (how much is eaten) rather than diet quality (what is eaten) is important to marine survival.  相似文献   

19.
Abstract – The relationship between redd superimposition and spawning habitat availability was investigated in the brown trout (Salmo trutta L.) population inhabiting the river Castril (Granada, Spain). Redd surveys were conducted in 24 river sections to estimate the rate of redd superimposition. Used and available microhabitat was evaluated to compute the suitable spawning habitat (SSH) for brown trout. After analysing the microhabitat characteristics positively selected by females, SSH was defined as an area that met all the following five requirements: water depth between 10 and 50 cm, mean water velocity between 30 and 60 cm s?1, bottom water velocity between 15 and 60 cm s?1, substrate size between 4 and 30 mm and no embeddedness. Simple regression analyses showed that redd superimposition was not correlated with redd numbers, SSH or redd density. A simulation‐based analysis was performed to estimate the superimposition rate if redds were randomly placed inside the SSH. This analysis revealed that the observed superimposition rate was higher than expected in 23 of 24 instances, this difference being significant (P < 0.05) in eight instances and right at the limit of statistical significance (P = 0.05) in another eight instances. Redd superimposition was high in sections with high redd density. High superimposition however was not exclusive to sections with high redd density and was found in moderate‐ and low‐redd‐density sections. This suggests that factors other than habitat availability are also responsible for redd superimposition. We argue that female preference for spawning over previously excavated redds may be the most likely explanation for high superimposition at lower densities.  相似文献   

20.
Fecundity is an important demographic parameter that contributes to the productivity of anadromous fish stock dynamics. Yet, studies on fecundity patterns in Pacific salmon (Oncorhynchus spp.) often only include a few years of data, limiting our ability to understand spatio-temporal trends. Here, we used data on 43 hatchery Chinook salmon (Otshawytscha, Salmonidae) populations in Washington State to evaluate whether average fecundity changed over the past three decades. We then used data from a subset of stocks (18) to evaluate the relationship between fecundity and body length. Our results revealed significant changes in fecundity across the 25-year study period with most stocks showing declines in fecundity over the past decade. Results further showed that Chinook salmon have decreased in length over this same period and that annual variation in mean length explains a majority (62%) of annual variation in mean fecundity. Specifically, we estimated that a 1-mm reduction in length results in 7.8 fewer eggs (95% CI = 6.6–8.9). Given that the majority of Pacific Northwest Chinook salmon in the environment and harvested in fisheries originate from hatchery releases and that nearby hatchery and wild populations generally have similar ocean distributions, these results likely reflect patterns for many populations not included. Combined, our results highlight the need to consider changes in body size and egg production when assessing the dynamics of anadromous fish populations and designing management or conservation plans, particularly for depressed populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号