首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The spider crab Maja brachydactyla is overexploited on the NW coast of Spain. Aquaculture of this species can be the solution to the problem, and consequently, several attempts of intensive larval rearing have been conducted. However, most of the studies already published do not provide enough zoo technical data, especially in terms of larval and prey densities or the nutritional quality of diets used for rearing.Three experiments were carried out to evaluate the conditions for intensive larval rearing of M. brachydactyla. Larval stocking density (10, 50 and 100 larvae L− 1), prey:larva ratio (15, 30 and 60 enriched Artemia larva− 1) and diet (enriched Artemia, non-enriched Artemia and polychaete supplement) effects on growth and survival of this species were studied. For larval culture nine, 35 L, 150 μm mesh-bottomed PVC cylinders (triplicates for each treatment and larval stage) connected to a recirculation unit, were used. Temperature and salinity were kept constant at 18 °C and 36‰ respectively. A 12 to 18 day trial was conducted for each experiment and samples of larvae were collected at each larval stage (zoea I, zoea II, megalopa) in the inter-molt phase and at first juvenile. Survival, carapace length and width, dry weight (DW), and proximate biochemical content (protein, carbohydrates and total lipid) as well as lipid class composition were determined.Stocking densities of 100 larvae L− 1 resulted in higher growth in DW and higher content in lipids and protein for zoea I (ZI) and zoea II (ZII) than 10 larvae L− 1. However, survival decreased with increasing stocking density.The use of 60 preys larva− 1 produced larvae with significantly higher DW and protein content, especially at ZII stage, than lower prey densities. Survival rate obtained feeding 60 preys larva− 1 up to the megalopa stage was almost two-fold (42.2%) the rate obtained using 15 preys larva− 1 (24.8%).Larvae fed on enriched Artemia (EA) showed an increase in weight up to megalopa (518.9 ± 26.5 μg) in contrast to larvae fed on non-enriched prey (A) (467.9 ± 6.9 μg). Variation in DW correlated with the total lipid content (L) of the larvae (LEA = 70.1 ± 37.5 μg ind− 1; L= 28.9 ± 3.2 μg ind− 1) especially in terms of neutral lipids. The use of an initial density of at least 50 larvae L− 1 and 60 enriched Artemia larva− 1 can be considered the most adequate rearing parameters in order to obtain good results in growth and survival of M. brachydactyla.  相似文献   

2.
Tiger shrimp Penaeus monodon were intensively grown from PL15 for 56 d in tank systems at stocking densities of 1000 and 2000 shrimp m− 3, with and without the addition of artificial substrates (AquaMat® (buoyant and non-buoyant) and polyethylene mesh) at each density. Shrimp growth was significantly greater at the lower density and when substrates were added. Mean shrimp weight at harvest ranged from 0.64 ± 0.06 g (2000 shrimp m− 3, no added substrate) to 1.17 ± 0.01 g (1000 shrimp m− 3, added substrate). Survival was high and averaged 79.5 ± 2.7% across all treatments. The addition of substrates significantly increased survival at both stocking densities; however, survival was not significantly affected by stocking density. A maximum harvest density of 1645 shrimp m− 3 and biomass of 1.27 kg m− 3 were produced at a stocking density of 2000 m− 3 with added substrates. Both harvest density and biomass significantly increased with stocking density and addition of substrates. The feed conversion ratio (FCR) of formulated feed was significantly lower when substrates were added. The results show that growth of P. monodon juveniles was inversely related to stocking density during intensive production. However, production output was significantly increased by addition of artificial substrates, which enhanced both growth and survival.  相似文献   

3.
The current study investigated acute toxicity to ammonia of the South African abalone, Haliotis midae, from three size classes relevant to mariculture operations, and the chronic impact of sub-lethal ammonia levels on growth of juvenile abalone.Results showed that tolerance to ammonia (at pH 7.8 and Ta = 15 °C) increases with body size (i.e. age) as indicated by 36 h LC50 values: juvenile abalone (1-2.5 cm shell length) had the lowest LC50 of 9.8 μg l− 1 FAN, whereas LC50 was 12.9 μg l− 1 FAN in “cocktail”-size abalone (5-8 cm shell length). The highest LC50 of 16.4 μg l− 1 FAN was observed in “brood stock”-size animals (10-15 cm). When “cocktail”-size abalone were allowed to acclimatize to sub-lethal ammonia levels for 48 h, their ammonia tolerance increased compared with non-acclimatized abalone of the same size: LC50 was 2.0 μg l− 1 FAN higher at 14.8 μg l− 1 FAN.Growth of juvenile abalone (1-2.5 cm shell length) during chronic exposure to sub-lethal FAN levels is inhibited: specific growth rate (SGR) is significantly reduced by 58.7% to 0.10 ± 0.03% d− 1 (weight) compared with 0.24 ± 0.06% d− 1 of abalone of a control group (no ammonia).The results demonstrate the negative effects of ammonia not only on survival but also on growth of farmed abalone, both impair profitability of the farming operation. The information from the present study will be helpful in determining water quality requirements in South African abalone farms.  相似文献   

4.
The effects of dietary α-lipoic acid (LA) and vitamin C on the fatty acid (FA) composition in the brain and muscle and vitamins E and C levels in the brain were studied in the fish Piaractus mesopotamicus. A two-factorial design, where diets were devoid or supplemented with ascorbate (500 mg AA kg− 1) and/or lipoic acid (1000 mg kg− 1), was used. The levels of eicosapentaenoic acid (20:5n − 3, EPA) increased (P < 0.01) in muscle polar lipids (PL) in LA groups (6.93% ± 0.43 vs. 5.83% ± 0.40 and 6.68% ± 0.53 vs. 6.00% ± 0.39), and the same trend was also seen in the brain, however not significant. These changes are suggested to be caused by a change in lipid metabolism rather than being a direct effect of protection by LA against lipid peroxidation. No interaction of vitamin C and LA neither effects of LA on vitamin E (15.1-19.2 mg α-tocopherol g− 1 tissue) or vitamin C (total AA, 41.7-89.8 μg g− 1 tissue) in brain was detected.  相似文献   

5.
Juvenile green abalone, Haliotis fulgens (31.3 ± 0.1 mm, 3.7 ± 0.04 g live weight) were reared in laboratory for six months in order to determine their survival, growth, tissue composition, feed consumption (C), feed conversion ratio (FCR) and protein efficiency ratio (PER) under two temperatures (20 °C and 25 °C) and three photoperiods (00:24, 12:12 and 24:00 light:dark hours). Survival was ca. 100% at 20 °C, and between 68% and 75% at 25 °C. The highest gross growth rate (109 ± 4.3 μm d− 1, 69 ± 3.9 mg d− 1) was observed in abalone from the combination 20 °C-00:24 L:D. Slowest GGR (38 ± 4.1 μm d− 1, 26 ± 1.5 mg d− 1) was observed in the combination 25 °C-24:00 L:D. Organisms from 25 °C exhibited signs of the withering syndrome at the end of the experiment. Gross energy content (4.4 to 4.6 kcal g− 1 tissue dry wt, TDW) and crude protein (60 to 68% TDW) were not significantly affected by either temperature or photoperiod, but organisms from 20 °C exhibited lower moisture content (86.8 to 88.6%) and higher tissue:shell ratio (0.34-0.40) than those from 25 °C (88.9 to 92.1%; 0.22-0.31 respectively). Feed consumption markedly increased at night, decreased with age, and was higher at 25 °C than 20 °C, irrespective of photoperiod. Highest C was observed under continuous darkness (0.66 to 0.95% BW d− 1 at 20 °C and 0.84 to 1.25% BW d− 1 at 25 °C), and was lowest under continuous light (0.50 to 0.82% BW d− 1 at 20 °C and 0.71 to 1.02% BW d− 1 at 25 °C). FCR and PER were both affected by temperature but not by photoperiod. Higher PER (2.2 to 3.4) and lower FCR values (0.69 to 1.05) were observed at 20 °C, when compared to 25 °C (PER 1.35 to 2.09, FCR 1.10 to 1.86). Sex ratios were ca. 1:1 in the 00:24 and 12:12 L:D photoperiods, yet ca. 50% of abalone from the 24:00 L:D photoperiod were immature at the end of the experiment. It is concluded that H. fulgens can be best cultured at 20 °C and 00:24 or 12:12 L:D regimes, while sustained temperatures at or above 25 °C may result in cumulative stress, altered physiological rhythms, and delayed maturation.  相似文献   

6.
Hatchery broodstock conditioning and nursery culture of the Chilean flat oyster Ostrea chilensis have been hampered by the poor performance of oysters fed typical microalgal hatchery diets. To determine the feeding capabilities of this species the selective removal and consumption of natural planktonic assemblages and artificial inert particles (polystyrene beads) by juvenile and adult oysters were examined experimentally. The arrangement of the eulaterofrontal cirri of the ctenidia was also examined to infer their potential efficiency of particle selection for feeding. Polystyrene beads of 45 and 15 μm in diameter had high rates of removal from suspensions by both juvenile (45 μm = 70%, 15 μm = 73%) and adult (45 μm = 88%, 15 μm = 87%) oysters. In contrast, beads of 6 μm diameter had lower rates of removal (adults = 68%, juveniles = 53%), while 1 μm beads were not removed at all. Both adult and juvenile oysters feeding upon natural plankton assemblages removed only microphytoplankton (20-75 μm in size) despite the presence of nanophytoplankton (2-20 μm), picophytoplankton (< 2 μm), cyanobacterium Synechoccocus spp. (< 2 μm), and bacterial cells (< 75 μm) in the experimental suspensions. Eulaterofrontal cirri of both juvenile (15.2 μm ± 0.9 SE) and adult oysters (18.9 μm ± 0.3 SE) are the shortest that have been reported for any ostreid species which helps to explain the inability of this species to retain small food particles. The clearance rates for oysters feeding on microphytoplankton only were 1.49 (± 0.05 SE) and 7.1 (± 1.2 SE) l h− 1g− 1 for juveniles and adults respectively. These values are much higher than previously reported for this species being fed smaller sized cultured microalgae. Our results strongly suggest that the difficulties in the nursery and broodstock hatchery culture of this oyster may be due to inappropriate phytoplankton diets. We recommend the provision of cultured microalgae of 20-75 μm in diameter for improving the performance of hatchery maintained juvenile and adult O. chilensis.  相似文献   

7.
African catfish (Clarias gariepinus) (initial body weight: 34.8 ± 4.8 g) and vundu catfish (Heterobranchus longifilis) (initial body weight: 39.1 ± 8.2 g) fingerlings were stocked at densities of 4, 6 or 8 fish m− 3 in traditional fish ponds (whedos) constructed in the floodplain of the Oueme River (South Benin, West Africa), for 70 days from March to June 2005. Fish were fed twice a day with 34% crude protein feed formulated with locally available ingredients. The effects of stocking density were evaluated in growth responses, gross production and body composition. Water quality variables were similar (p > 0.05) in all compartments. Temperature and pH were at the optimum level for fish. Dissolved oxygen ranged from 0.9 to 1.2 mg l− 1 during the experiment and secchi disc transparency was low (< 14 cm). In both species, growth responses increased with the increasing density, significantly in African catfish stocked at density of 8 fish m− 3 compared to the other densities (4 and 6 fish m− 3) but not significantly in vundu catfish. Production data ranged from 3.1 ± 0.5 to 22.8 ± 4.5 t ha− 1 year− 1 in African catfish and from 6.1 ± 1.2 to 15.1 ± 3.1 t ha− 1 year− 1 in vundu catfish. Production increased with increasing stocking densities but only significantly (p < 0.05) between the density of 8 fish m− 3 and the other densities. In both species, carcass fat increased with increasing density (p < 0.05) while carcass protein and moisture decreased (p > 0.05). These results are important because they indicate that, as far as growth rate and production are concerned, African catfish is more profitable than vundu catfish for culture at high density in whedo.  相似文献   

8.
Two carbohydrases (cellulase, lysozyme), three proteases (trypsin, aminopeptidase and non-specific protease), a non-specific lipase, and semiquantitative tests of 19 digestive enzymes were assayed in different gut sections of juvenile red abalone, Haliotis rufescens, in order to identify the regions where digestion takes place and investigate the extent to which diet composition can modify the digestive capacity of abalone. The abalone were fed either fresh kelp (K) or balanced diets containing 25 or 38% crude protein for 6 months. Enzyme assays were carried out on different sections of the abalone's gut at the end of this period. On a weight-specific basis, the digestive gland was the site containing most of the enzymes. On a protein-specific basis, two main digestion regions were identified: the digestive gland-stomach region that is characterized by high activities of cellulase and lysozyme, chymotrypsin and protease, and the mouth-intestine region with a typically high activity of lipase and amino peptidase. Significant dietary effects were observed on the activity of enzymes, especially in the digestive gland. Abalone fed with 25 and 38% crude protein diets exhibited higher cellulase (39.8 ± 4.6 and 14.2 ± 0.8 mU mg− 1 protein, respectively) and lysozyme activities (88.0 ± 20.4 and 56.6 ± 15.7 U, respectively) than those fed with fresh kelp (5.5 ± 0.7 mU mg− 1 protein and 17.1 ± 1.8 U). In contrast, higher protease activity was found in kelp-fed organisms (234.1 ± 20.4 μg product/mg protein) than those fed the 25 and 38% crude protein diets (109.5 ± 20.7 and 119.5 ± 20.5 μg product/mg protein, respectively). Semiquantitative API ZYM assays resulted in no clear food-specific effects on the activity of carbohydrases, proteases, ester hydrolases or phosphohydrolases, yet organ-specific differences were conspicuous in various cases, and generally agreed with quantitative results. It is suggested that the increased carbohydrase activity exhibited by organisms fed the balanced diets resulted from a combination of an increased number of resident bacteria in the abalone's gut and facilitated contact between dietary substrates and digestive cells. The present results indicate that H. rufescens can adjust their enzyme levels in order to maximize the acquisition of dietary protein and carbohydrates. This characteristic can be advantageously used to search for suitable diets in abalone aquaculture.  相似文献   

9.
Participatory research was conducted with poorer farmers in two communities, Girai (G) and Bahagili (B) in NW Bangladesh to assess the production of Nile tilapia seed in irrigated spring rice-fields. All the selected households (G = 15; B = 4) had previous experience producing common carp (Cyprinus carpio) in the rice-fields allocated a separate plot in which a deeper area had been excavated for this trial. Mature GIFT strain Nile tilapia (12 female and 6 male; 121 ± 34 g and 158 ± 54 g size, respectively) were supplied to each household irrespective of the size of their trial plot (mean < 0.15 ha). The trial started in the spring rice season (boro) in February and ended at the end of main season (amon) in December 1999. Management practices, production and sales of fish were monitored weekly.The majority of farmers succeeded in producing fingerlings in their plots; 11% failed totally but around 70% produced more than 2000 fingerlings from a single plot. Production during boro and fallow period was much higher (> 90% total) than during the subsequent amon crop (< 10% total). Total production was highly variable among households but not different between the two study areas (G = 4092 ± 3277; B = 3730 ± 4232 fingerlings household− 1). Daily production of fingerlings per unit area was relatively low (< 1 fish m− 2 day− 1) but efficiency of production was high, averaging 17.3 fingerlings. kg− 1 female day− 1. Mean individual harvest weight was 21 g.Most fingerlings were sold (43%) and/or stocked for further culture in their own grow-out system (39%), but some were used directly for household consumption (17%).  相似文献   

10.
The Australian freshwater fish, silver and golden perch, are increasingly being used for aquaculture. Addition of salt to water is commonly used in commercial aquaculture to reduce stress attributed to high ammonia concentrations. The activities in gill homogenates of ouabain-sensitive Na+/K+-ATPase and NEM-sensitive ATPases (as a measure of H+-ATPases) of silver and golden perch were measured after maintaining the fish in water containing different salt and ammonia concentrations. Six treatments were applied in a 2 × 3 factorial design: two salt treatments, low salt (LS) of 2.5 g l− 1 and high salt (HS) 5 g l− 1, and three ammonia treatments, no added ammonia (NA), low ammonia (LA), 3 mg total ammonia nitrogen (TAN) l− 1 and high ammonia (HA), 5 mg TAN l− 1. In both species, activity of Na+/K+-ATPase was lowest in fish kept in the LSNA treatment (7.4 ± 0.4 μmol Pi mg protein− 1 h− 1 for silver perch and 3.1 ± 0.6 for golden perch) and highest in the HSHA treatment (15.2 ± 1.0 μmol Pi mg− 1 protein h− 1 for silver and 8.4 ± 1.2 for golden perch). In both species there was a significant increase (P < 0.001) in Na+/K+-ATPase activity with increase in salt concentration and with an increase in ammonia concentrations. A significant interaction (P < 0.036) between salt and ammonia on Na+/K+-ATPase activity was observed in silver but not in golden perch. In contrast, the lowest activity for NEM-sensitive ATPase was observed in the HSNA treatment (1.0 ± 0.2 μmol Pi mg− 1 protein h− 1 for silver and 1.5 ± 0.4 for golden perch) and highest in LSHA treatment (2.9 ± 0.4 μmol Pi mg− 1 protein h− 1 for silver and 3.6 ± 1.2 for golden perch). In both species there was a significant decrease in NEM-sensitive ATPase activity with increase in salt concentration and an increase in activity with increase in ammonia (P < 0.003). In silver perch, a significant interaction between the treatments was observed (P < 0.02). The results suggest that in these species of freshwater fish the Na+/K+-ATPase has a role in salt and ammonia homeostasis and that the NEM-sensitive ATPases are more active in fish kept in water with a lower salt content. It is possible that the increase in ammonia resistance when salt is added to the environmental water in commercial aquaculture systems may be due to the effects of salt on gill Na+/K+-ATPase activity rather than the NEM-sensitive ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号