首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of dietary digestible protein/digestible energy (DP/DE) ratios and feeding level on growth, feed efficiency, nutrient and energy usage by Atlantic salmon ( Salmo salar ; initial body weight, 7.0 g/fish) at 15°C was investigated in a 16-week feeding trial. Three diets, differing in their DP and DE contents, namely 37/18 (regular diet, RD), 37/21 (high fat diet, HF) and 44/ 22 (high nutrient-dense diet, HND) g/MJ of dry feed were formulated. DP/DE ratios were 20, 18 and 20 g/MJ for the RD, HF and HND diets, respectively. Salmon were hand-fed three times a day at either 100% or 85% of the feed requirement estimated by a bioenergetics model. At each feeding level, DE intake (kJ/fish) was similar for all three diets. Diet composition did not affect growth rate. However, increasing the digestible energy density from 18 to 22 MJ/kg of dry feed resulted in a significant increase ( P  < 0.05) in feed efficiency. Restricting feed intake significantly decreased live body weight gains for all diets. However, feed efficiency was not affected by feeding level. Diet composition and feeding level did not affect carcass composition and nutrient and energy usage, with the exception of a higher ( P  < 0.05) carcass lipid of fish fed the HF100 diet compared with the fish fed the RD and HND diets and a higher ( P  < 0.05) lipid gain (g/fish) of fish fed the HF100 diet compared with fish fed all the diets at the restricted feeding level. Restricting feeding resulted in significantly lower ( P  < 0.05) energy gain (kJ/fish) compared with fish fed at 100%. Increasing the DE and nutrient density of the diet had no effect on growth but improved feed efficiency and lowered solid wastes (g of solid wastes per kg of fish produced) while dissolved wastes were not affected by dietary ormulation.  相似文献   

2.
The effect of DP/DE ratio in diets for rainbow trout, Oncorhynchus mykiss (Walbaum), was investigated. To evaluate growth and body composition, groups of trout were fed three experimental diets with a constant level of gross energy (25.4 ± 0.12 MJ kg?1 dry matter (DM)) and different digestible protein/digestible energy (DP/DE) ratios (diet A, 16. 35; diet B, 17.21; dietC, 18.23 g Mr?1). Fat, protein and energy digestibility coefficients were not affected by the DP/DE ratio of the diets. Growth and feed utilization improved markedly as dietary DP/DE ratio increased (P < .01). The efficiency of fat, protein and energy utilization tended to increase with increasing DP/DE ratio of the diets. Nitrogen discharge in effluent water per kg of weight gain was not affected by dietary treatments (mean values for: diet A, 29.9; diet B, 29.8; diet C, 29.1 g N kg?1 weight gain) while phosphorus discharge in effluent water fell using diets with a higher DP/DE ratio (mean values for: diet A, 7.3; diet B, 6.7; diet C, 5.9 g P kg?1 weight gain).  相似文献   

3.
蛋白能量比对中华绒螯蟹蛋白酶活力和饲料消化率的影响   总被引:6,自引:0,他引:6  
于1999年6~7月收集中华绒螯蟹(Eriocheir sinensis)粪便,用酸不溶灰分法测定中华绒螯蟹对饲料的消化率,同时测定其胃、肠、肝胰脏蛋白酶活力。结果表明,蛋白质能量比(P/E)28.93mg/kJ水平对中华绒螯蟹胃、肝胰脏蛋白酶活性明显高于P/E27.30mg/KJ和30.31mg/KJ水平饲料蛋白南、脂肪、能量和总表观消化率分别为82.57%、77.59%、83.94%和96.9  相似文献   

4.
This study determined the effect of different dietary protein and lipid levels on growth and survival of juvenile redclaw Cherax quadricarinatus. Nine practical test diets were formulated to contain three crude protein (CP) levels [260, 310 and 360 g kg?1, equivalent to 225, 260 and 296 g kg?1 digestible protein (DP) respectively] at three crude lipid (CL) levels (40, 80 and 120 g kg?1, equivalent to 38, 67 and 103 digestible lipids respectively), with digestible protein : digestible energy (DP : DE) ranging from 14.6 to 22.6 mg protein kJ g?1. Three replicate groups of 15 crayfish (initial weight mean ± SD, 0.71 ± 0.13 g) per diet treatment were stocked in 40 L tanks, at 28 °C for 60 days. The highest mean weight, specific growth rate and biomass, with values of 7.0 g, 3.67% day?1, and 370.2 g m?2, respectively, were achieved by feeding a diet with P : L = 310 : 80 (P < 0.05). The treatments resulted in a survival rate of 80–91%, feed conversion ratio of 1.08–1.61 and protein efficiency ratio of 2.24–3.08. Results indicated that a diet containing 270 g kg?1 DP (equivalent to 320 g kg?1 CP), 75 g kg?1 digestible lipid (DL) with a DP/DE of 18.4 mg protein kJ?1, and 0.031 g protein per animal per day was optimum for juvenile C. quadricarinatus under the tested experimental conditions.  相似文献   

5.
A 9‐wk study was conducted to evaluate the effect of dietary protein and energy on growth performance of juvenile permit, Trachinotus falcatus, growing from approximately 30 to 150 g. Nine experimental diets were formulated to contain three levels of crude protein (400, 450, and 500 g/kg dry matter [DM]); and three levels of crude lipid (100, 200, and 300 g/kg DM) in a 3 × 3 factorial design. Growth rate and feed efficiency were significantly improved with increasing dietary protein levels from 400 to 500 g/kg and with dietary lipid levels from 100 to 200 g/kg. Fish body protein content was positively correlated with dietary ratio of digestible protein (DP) to digestible energy (DE) (P < 0.01, R2 = 0.83), while body lipid was negatively correlated with dietary DP/DE (R2 = 0.55, P < 0.05) but positively correlated with dietary DE levels (R2 = 0.66, P < 0.01). Results showed a protein‐sparing effect, as protein retention was significantly increased by increasing dietary lipid level. In conclusion, the diet containing DP of 392.7 g/kg and DE of 18.8 MJ/kg (DM), corresponding to a DP/DE of 20.9 g/MJ, is suggested as an optimal feed for growth and feed efficiency in juvenile permit.  相似文献   

6.
The objectives of this study were to describe the interactive effects of varying digestible protein (DP) and digestible energy (DE) contents on the feed intake, growth, protein utilization and whole body composition of juvenile mulloway ( Argyrosomus japonicus ) and to determine the optimal DP : DE ratio for growth. This was achieved by feeding mulloway diets containing one of four different DP levels (250–550 g kg−1) at two DE levels (16 or 21 MJ kg−1). Juvenile mulloway were stocked at each of two different sizes (70 or 200 g) in triplicate groups for each dietary treatment and fed twice daily to apparent satiation over 58 days. The results indicated that feed intake was not governed solely by energy demands but was also dependant on the DP content of the diet. Protein utilization did not improve with diets containing decreasing protein and increasing lipid content indicating that mulloway have a limited capacity to spare DP. Optimal DP content was found to be 444–491 g kg−1 depending on the DE content of the diet and the size of mulloway and is within the range reported for other sciaenid species. The use of formulated diets with 28.6 g of DP MJ DE−1 will achieve optimal growth and protein deposition for 70–275 g mulloway.  相似文献   

7.
This study used a curvilinear model to investigate the effects of different digestible energy (DE) levels on the digestible protein (DP) requirements of juvenile snapper Pagrus auratus. For each DE level (15, 18 or 21 MJ kg−1), DP content was increased from about 210–560 g kg−1 in seven evenly spaced increments by formulating a summit diet (highest DP content) and a diluent diet (lowest DP content) at the desired DE level and combining the summit and diluent diets in various ratios to achieve the desired DP content. This ensured the DE level remained relatively stable. Each of the 21 dietary treatments was fed to three replicate groups of snapper twice daily to apparent satiation for 57 days. At the completion of the trial, fish were weighed and killed for chemical analysis. Results indicated that the rapid growth of snapper weighing 30–90 g was highly dependent on the ratio of DP to DE and that optimum protein deposition did not occur until snapper were offered feeds with at least 350 g DPkg−1, irrespective of DE level. According to the fitted models, diets formulated for snapper reared at temperatures from 20–25°C should contain approximately 23 g DP MJ DE−1 to promote optimal weight gain and protein deposition. Based on the feeding regime used in this study, this could be achieved with practical diets containing a DP:DE ratio of 460:20, 420:18 or 350:15.  相似文献   

8.
Three experiments were designed to investigate the heat increment of feeding (HiE) in Chinese shrimp, Fenneropenaeus chinensis . (1) Four groups of shrimp with different weight were fed at four rations to measure oxygen consumption in the following 24 h. (2) Four groups of shrimp with different weight were fed with four rations for 28 days. (3) Fish flesh, shrimp flesh, clam foot, polychaette worm, formulated diet and mixed diet were provided to six groups of shrimp for 30 days. The coefficient of heat increment of feeding ( C HiE) values within 24 h after ingesting 1 g digestible protein (DP) and 1 kJ digestible energy (DE) were 18.57 kJ and 0.45. C HiE values of 1 g DP and 1 kJ DE achieved in the second experiment were 25.06 kJ and 0.57. The energy cost of 1 g wet weight gain, 1 g protein gain and 1 kJ recovered energy were 13.94, 32.16 and 1.07 kJ. They accounted for 69.28%, 26.71% or 40.23% of HiE of the meals needed for these growths. The present results indicated that HiE was a fundamental property of the feed and the energy cost of growth accounted for different fraction when different feeds were ingested.  相似文献   

9.
Cachara, Pseudoplatystoma reticulatum, is a high commercial value carnivorous catfish in Brazil, but whose dietary protein requirement is still unknown. Aiming to determine this requirement, groups of 15 juveniles (16.08 ± 1.13 g) were fed isoenergetic diets (4600 kcal/kg gross energy) with increasing levels of crude protein (30, 35, 40, 45, 50, and 55%). After 60 d, regression analysis revealed a quadratic effect (P < 0.05) of increasing dietary crude protein concentration on growth variables. The highest weight gain and specific growth rate as well as the best feed conversion were shown by fish fed the 50% crude‐protein diet. Similarly, protease activities were significantly higher (P < 0.05) in fish fed 50% crude protein. However, the highest protein retention was observed in fish fed the 45% crude‐protein diet. Protein and dry matter digestibilities did not differ (P > 0.05) for diets containing 40, 45, or 50% crude protein. Therefore, based on weight gain and at a dietary energy concentration of 4600 kcal/kg, the estimated protein requirement for juvenile cachara between 16 and 85 g is 49.25% crude protein. This is equivalent to 44.79% digestible protein and a gross energy to digestible protein ratio of 10.27 kcal/g.  相似文献   

10.
Effects of varying dietary digestible protein (DP) and digestible energy (DE) on protein retention efficiency (PRE), weight gain, protein deposition and carcass composition for silver perch (Bidyanus bidyanus, Mitchell) were studied. Using digestibility data for silver perch, we formulated three series of diets with different DE contents (13, 15 or 17 MJ DE kg?1). For each series, a ‘summit’ diet containing an excess of protein for silver perch (based on previous research) and a ‘diluent’ diet with only 10–13% DP were formulated. By blending the summit and diluent diets together in different ratios, five diets with different DP contents were produced for each DE series. A commercial diet was also included to give 16 experimental diets in total. Eight juvenile fish (mean initial weight 1.2 g) were stocked into each of 64 × 70‐L acrylic aquaria and then each of the 16 diets was randomly allocated to four replicate aquaria. Tanks were supplied with partially recirculated water (75%) at 25–27°C. Fish were fed restrictively, twice per day, based initially on 3.5% body weight day?1 with 40% of the ration given at 08:30 hours and 60% given at 15:00 hours for 59 days. Quadratic functions were fitted to each energy series to describe the relationship between DP content of diets and PRE (the asymptote of these functions were used to predict maximum PRE). For low DE (13 MJ kg?1), mid‐DE (15 MJ kg?1) and high DE (17 MJ kg?1), the dietary DP contents to give maximum PRE were 24.7%, 26.1% and 30.1% respectively. Carcass fat decreased with increasing DP and increasing DP:DE ratio. Varying the dietary protein and DE also influenced other indices of fish performance. ‘Optimum’ dietary protein therefore depends on several factors. For fish fed, restrictively, the protein content needed to maximize PRE is lower than the content needed to maximize weight gain or minimize carcass fat. For fish fed to satiation, the lowest protein content for maximum weight gain is lower than for fish fed restrictively.  相似文献   

11.
Nine experimental diets at three protein (35%, 40% and 45% crude protein) and lipid (5%, 8% and 11% crude lipid) levels with variable digestible protein to digestible energy (DP/DE) ratios ranged from 21.9 to 27.8 g protein MJ?1 were fed to topmouth culter (Culter alburnus Basilewsky) fingerlings (initial weight 6.5 ± 0.9 g) in triplicated groups (30 fish per replicated) for a period of 10 week to assess the optimum dietary DP/DE ratio and the protein sparing effect by utilizing dietary lipid. 27 cages of 1.5 m3 capacity placed in a lake located in Wuhan were used for rearing the fish. At the end of the experiment, maximum weight gain and thermal‐unit growth coefficient was found in fish fed diet D4 with 45% protein, 8% lipid and P/E ratio of 26.2 g protein MJ?1, but without a significant difference compared to fish fed diet D5 with 40% protein, 8% lipid and DP/DE ratio of 25.3 g protein MJ?1. The best flesh quality evaluated by muscle collagen content was found in fish fed D5. High fat accumulation with increasing dietary lipid levels was observed in whole body but not in muscle tissue. Hence, it may be concluded that the optimum formulation for maximum growth and quality of topmouth culter is a diet containing 40% protein and 8% lipid with a resultant DP/DE ratio of 25.3 g protein MJ?1. In addition, the protein sparing effect by inclusion lipid was observed but limited.  相似文献   

12.
This study was undertaken to determine the dietary protein requirement of shi drum (Umbrina cirrosa L.) with an initial weight of 86.3±0.4 g. The fish were fed five isoenergetic diets containing dietary protein levels ranging from 35% to 59% by 6% increments [the estimated digestible protein (DP) levels ranged between 29.6% and 52.8%], and the growth response over a 10‐week period was monitored. Each experimental diet was given to triplicate groups of fish. The final weight, weight gain and daily growth coefficient increased with the dietary protein level, reaching a plateau at the dietary level of 47% protein. The feed conversion ratio improved with increasing dietary protein level. The daily feed intake was significantly lower in fish fed 53% and 59% protein diets compared with those fed 35% protein diet. However, protein intake showed an increasing trend with increasing dietary protein and became significantly different between the 59% and the 35% protein diets. The protein efficiency ratio, protein retention and condition factor were not affected significantly by the dietary treatments. The final body composition was not influenced by the treatments. The recommended dietary protein percentage and DP/digestible energy (DE) ratio for juvenile shi drum diets are 51.4% (45.6% DP) and 28.5 g DP MJ DE?1 respectively.  相似文献   

13.
The present study was designed to investigate the effects of diets containing advanced soy products (enzyme‐treated soy and fermented soy) or corn protein concentrate (CPC) in combination with porcine meal (PM) to completely replace poultry byproduct meal (PBM) on growth performance, body composition, and distal intestine histology of Florida pompano, Trachinotus carolinus. Four experimental diets were formulated to be isonitrogenous and isolipidic, to contain 400 g/kg crude protein and 80 g/kg lipid. A reference diet (PBM diet [PBMD]) contained 150 g/kg PBM and 495 g/kg soybean meal (SBM), and three test diets were formulated replacing PBM with 15 g/kg of CPC (CPC diet [CPCD]) or replacing all SBM and PBM with 535 g/kg fermented soy (fermented soybean meal diet [FSBMD]) or 451.3 g/kg enzyme‐treated soy (enzyme‐treated soybean meal diet [ESBMD]). All three test diets were supplemented with 38 g/kg of PM. Diets were fed based on a percentage of bodyweight adjusted after sampling the fish every 2 weeks to triplicate groups of Florida pompano juveniles (mean weight 8.06 ± 0.22 g). After 8 weeks of feeding, fish fed CPCD and ESBMD performed equally well in terms of final body weight, thermal growth coefficient, and percentage weight gain in comparison to fish fed PBMD. In all cases, feeding FSBMD resulted in poor feed conversion and lower feed intake compared to other treatments. Protein retention efficiency, whole‐body proximate composition, phosphorus, sulfur, potassium, magnesium, calcium, sodium, and zinc contents were not significantly influenced by the dietary treatments. The results obtained in the present histological study showed no significant differences in the thickness of serous layer, muscular layer, and submucosal layer of the intestine among treatments. Fish fed CPCD showed a significant widening of the lamina propria with an increase of cellular infiltration and higher presence of goblet cells compared to other dietary treatment. Based on these results, 451 g/kg ESBM or combination of 150 g/kg of CPC and 495 g/kg SBM supplemented with 38 g/kg PM can be utilized to develop a practical diet for juvenile Florida pompano without impacting growth, nutritive parameters, and several distal intestine health parameters.  相似文献   

14.
Three feeding experiments were conducted in open circuit balance respirometers, to determine the effect of dietary protein level on growth rate, feed utilization and energy metabolism of Clarias gariepinus (Burchell). The feeding level was 2% of the fresh body weight per day. Three energy levels, 8.4, 12.6 and 16.8 kJ calculated metabolizable energy (ME) per gram of feed, were used, while crude protein levels in the diets were 20, 25, 30, 35 and 40%.Growth rate, heat production, metabolizability (ME as percentage of gross energy intake) and protein gain were maximal at the intermediate energy level. Digested protein per gram of growth was lowest at this energy level (determined ME = 13 kJ/g). Growth rate, metabolizability and protein gain increased as protein intake increased. There was no effect of the different protein levels on heat production. The efficiency of protein gain (% of the digestible protein intake) was highest (45–49%) at the intermediate energy level. Efficiency of protein gain (% of digestible intake) decreased slightly when protein intake increased. ME intake per gram of growth was minimal at the 8.4 kJ energy level and decreased at higher protein intake levels.At the highest energy level, growth rate was reduced compared to the intermediate energy level, but efficiency of energy gain, retention of fat and energy were highest. Much of the dietary fat was deposited as lipid reserves. After 4 weeks the growth rate, digestibility, metabolizability, and efficiency of protein- and energy gain (% of digestible or metabolizable intake respectively) were strongly reduced at this energy level.  相似文献   

15.
A study was conducted to determine optimum dietary digestible protein (DP) and digestible energy (DE) levels and DP DE−1 ratio for growth of greater amberjack Seriola dumerili fingerlings. A 3 × 3 factorial design with duplication was used in this study. Nine experimental diets were formulated to contain three levels of crude protein (CP; 420, 470 and 530 g kg−1) and three levels of crude lipid (CL; 130, 180 and 230 g kg−1). Nine groups of fingerling (initial weight 51.8 g) were fed each experimental diet for 40 days. Final body weight, feed efficiency, specific growth rate and energy efficiency were significantly affected by dietary protein and lipid level. These parameters tended to improve with increasing dietary protein level. Conversely, an increase of lipid level negatively affected these parameters. High growth rate and feed efficiency were obtained from fish fed the diet containing 393 g kg−1 DP and 14.2 MJ kg−1 DE (27.7 g MJ−1 DP DE−1). The high DP DE−1 (27.7 g MJ−1) indicates that greater amberjack fingerling are highly dependent on dietary protein as an energy source.  相似文献   

16.
This study compared the ability of juvenile non-transgenic (NT) and transgenic growth hormone (T; gene construct OnMTGH1) coho salmon (Oncorhynchus kisutch) to metabolically utilize energy from lipid and carbohydrate for growth at two dietary protein concentrations. Triplicate groups of size-matched (initial weight, 28.2–29.1 g) NT and T salmon held in 10.5–10.8 °C well water on a natural phototocycle (12.25 h → 8.25 h) were each fed one of four isoenergetic (~ 17.5 MJ of digestible energy (DE)/kg) dry diets twice daily to satiation for 83 days. These diets contained 340 g (LP) or 430 g (HP) of estimated digestible protein (DP)/kg and either 123 g (LL) or 164 g (HL) of estimated digestible lipid (DL)/kg at each DP level (dry weight basis). Estimated digestible carbohydrate (DCHO) concentrations ranged from 45 to 269 g/kg to equalize dietary DE. Under the preceding conditions 46–66% of NT and 18.7–27.5% of T coho, depending upon diet treatment, exhibited no growth or lost weight during the study. NT coho are known to grow slowly or lose weight between the fall equinox and winter solstice but this was unexpected for T coho. Considering all fish T coho, regardless of diet treatment, exhibited significantly higher specific growth rates (SGR) than NT fish due to enhanced feed intake, feed and protein (gross and available deposited) utilization and generally improved available energy utilization. Diet treatment did not affect the growth performance of T fish. Within NT fish, the HP diets supported best gross and available protein and energy utilization. SGR values for growing fish (FG) only followed identical trends to those for all fish in relation to diet treatment. Regardless of fish genotype, terminal hepatosomatic indices for FG were directly related to dietary DCHO content and maximum values were noted in NT fish fed LP–LL (significantly higher than observed in NT or T fish fed HP–HL). Final whole body protein concentrations adjusted for dissimilar fish size were higher in T fish fed HP–HL than in T fish fed LP diets and NT fish fed LP–LL. This was also true for T fish fed HP–LL versus T fish fed the LP diets. Within HP groups, whole body lipid and energy contents were generally higher in NT versus T fish whereas within the LP groups energy content was significantly higher in T versus NT fish and was highest in T fish fed LP–LL. Terminal plasma titres for GH and IGF–1 (all fish) were significantly higher in T than in NT fish and were generally uninfluenced by diet treatment. Non-growing NT and T fish had elevated GH relative to NT and T fish that grew. Also, GH was higher in growing T fish relative to growing NT fish whereas the opposite was true in non-growing fish. Plasma IGF-1 levels were higher in growing NT and T fish than in their respective non-growing counterparts. Within FG only, IGF-1 levels were higher in T versus NT fish.It is concluded that T coho have enhanced ability to effectively utilize DE from DCHO relative to NT fish especially when DP is near the bottom of the optimal range and DL is concurrently suboptimal for NT fish. This is likely due to the elevated titres of GH, IGF-1 and 3,5,3′-triiodo-l-thyronine (measured in another study) in T fish. Also, the enhanced ability of T fish to store energy under these dietary conditions suggests enzymatic improvements in their anaerobic and aerobic metabolism of glucose.  相似文献   

17.
A comparative slaughter, growth assay was carried out using juvenile silver perch to evaluate different inclusion contents of peanut meal, canola meal, meat meal and dehulled field peas. Each ingredient was combined with a nutritionally balanced basal diet composed mainly of fishmeal (27%), soya bean meal (21%), wheat (28%) and sorghum (11%) such that between 15% and 75% of the basal diet was wholly replaced by the test ingredient. In addition, the basal diet was replaced with 15%, 30% or 45% of an inert filler (diatomaceous earth) in order to compare diets containing test ingredients and the inert filler. Fish were fed respective test diets twice a day for 56 days under a slightly restricted feeding regime (90% of apparent satiation) to negate any palatability problems. Weight gain of silver perch decreased steadily as the basal diet was systematically replaced with diatomaceous earth, confirming the limiting contribution to weight gain from the basal diet under a restricted feeding regime. Silver perch fed diets containing a mixture of the basal diet and either peanut meal, meat meal, canola meal or up to 60% field peas gained more weight than fish fed diets containing similar contents of the inert filler, indicating silver perch were able to utilize these ingredients to support growth. Regression analysis was applied to investigate protein and energy retention and models were fitted with 95% confidence and prediction intervals. Inspection of these relationships indicated various outliers which greatly affected the fitted models. We postulate that these outliers represent test diets which contain ingredients that are poorly utilized, or poorly utilized at particular inclusion contents. Removal of these outliers greatly improved the fit of each model. Using this approach, the predicted digestible protein (DP) content that gave maximum protein deposition in silver perch was 41.1%. The DP requirement for maintenance was 0.61 g DP kg BW?0.6 day?1 and the efficiency of DP for growth above maintenance was constant (0.45) after diets containing 45% or more of peanut meal and 75% of field peas were removed from the fitted model. The digestible energy (DE) requirement for maintenance was 36.79 kJ kg BW?0.6 day?1 and the efficiency of digestible energy for growth above maintenance was constant (0.68) after diets containing 75% of field peas and 75% of canola were removed from the fitted model. Adherence of other diets containing test ingredients to the slope of each regression suggests that silver perch are capable of utilizing any of the protein sources tested at all but the inclusion contents described above. Confirmation of this approach under different feeding regimes is required.  相似文献   

18.
A feeding trial was conducted to evaluate dietary protein and lipid requirements for juvenile largemouth bass, Micropterus salmoides. A 4 × 2‐factorial layout included four protein (420, 450, 480, and 510 g/kg) and two lipid (80 and 120 g/kg) levels. Fish (initial weight 8.7 g) were fed the test diets for 8 wk. Weight gain, feed intake, feed conversion ratio, hepatosomatic index, and body composition were dependent on dietary protein level. Nitrogen retention efficiency was independent of dietary protein level, lipid level, and their interaction. Weight gain was higher in fish fed the diet containing 480–510 g/kg crude protein than in fish fed the diet containing 420–450 g/kg crude protein at two dietary lipid levels. The feed intake and weight gain were higher in fish fed the diet containing 484 g/kg crude protein and 115 g/kg crude lipid than in fish fed the diet containing 478 g/kg crude protein and 77 g/kg crude lipid. This study indicated that the suitable dietary protein and lipid levels for largemouth bass are 480–510 g/kg and 120 g/kg, respectively.  相似文献   

19.
A series of studies were designed to examine the degree of variability in the digestibility of protein and energy from lupin (Lupinus angustifolius) kernel meals when fed to rainbow trout (Oncorhynchus mykiss) and the potential implications of this variability. The digestibility of protein and energy from 10 different varieties of lupin kernel meal was assessed where the test ingredient comprised 30% of each test diet. Digesta was collected using faecal stripping techniques. Digestible protein value ranged from 331 to 508 g/kg DM and digestible energy values ranged from 10.6 to 13.3 MJ/kg DM. To examine the implications of variability in digestible protein and energy value, two lupin kernel meals from the extremes of the protein digestibility range (Lupin-1: ADN ~ 70% and Lupin-2: ADN ~ 100%) were chosen for assessment in two growth studies. Soybean meal and a reference diet with fishmeal as the only protein source were also included in the study. In the first growth experiment the test ingredients were included at equal concentrations (40%) in protein-limiting diets (350 g protein/kg DM) and fed at either of two ration levels (restricted and satiety). Diets were formulated on a crude basis so as to place the test variable on the variability in digestible protein value of the diets. In the restricted-fed treatments growth of fish fed the reference diet was highest, but not significantly better than lupin-H. Growth of fish fed the lupin-L diet was significantly poorer than both the reference and lupin-H diets, but not poorer than the soybean diet. The growth responses observed from this experiment clearly showed that the differences in feed intake and/or digestible protein value could be demonstrated in terms of significant differences in growth outcomes. In a second growth study high-nutrient dense extruded diets (400 g protein/kg and 23.5 MJ/kg) were prepared with a more practical level of 25% inclusion of the same test materials. Again the diets were formulated on crude basis so as to place the test variable on the variability in digestible protein and energy value of the diets. Growth of fish restrictively fed the lupin-H diet was highest, but not significantly better than the soybean, reference or lupin-L treatments restrictively fed. Growth of fish satietal fed the soybean diet was significantly poorer than the reference and lupin-H diets, but not compared to the lupin-L diet. The growth responses observed from this experiment showed that the differences in digestible protein and energy value could not be demonstrated in terms of significant differences in growth outcomes, and that feed intake variability and excess nutrient supply masked the effect of this variability; particularly at the satietal feed intake levels.  相似文献   

20.
Protein and energy are two of the main limiting factors for sea urchin growth. However, the requirement of daily protein and energy to maximize gonadal production is still unknown. Paracentrotus lividus were fed three experimental diets: Ulva lactuca, Gracilaria conferta and a prepared diet for 2 months in the fall of 1999 and spring of 2000. Sea urchins from a laboratory‐cultured population of equal age, weight and test diameter were used. Apparent digestibility coefficients (ADC%) for protein and energy, using acid‐insoluble ash as a marker, were measured for all experimental diets. Apparent digestibility coefficients for protein was high (>75%) for all diets. Energy digestibility varied among the diets and was lowest for G. conferta (50–62%). The three diets contained varying digestible protein (DP) to digestible energy (DE) ratios of 25, 26 and 12 mg kJ?1 for U. lactuca, G. conferta and the prepared diet respectively. Digestible protein intake was similar for all treatments, but DE intake was greater for sea urchins fed the prepared diet in both seasons. As a result, the gonad production was significantly higher for urchins fed the prepared diet, suggesting that energy was limiting in the algal diets. Paracentrotus lividus spawned during the spring experiment, resulting in protein loss in all treatments. Protein loss was lowest in the sea urchins fed the prepared diet. Enhanced gonadal growth and gamete development of P. lividus resulted from the higher dietary energy content of the prepared diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号