首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucins are large glycoproteins that cover epithelial surfaces of the body and play important roles in prevention of inflammatory and various infectious diseases. In this study, five membrane‐bound and seven secreted mucin genes in the channel catfish were identified. All these identified mucin genes possess at least one PTS, von Willebrand D (VWD) or SEA domains. The expression of the 12 mucin genes in channel catfish was first studied with infection of Edwardsiella ictaluri and Flavobacterium columnare. Expression difference in MUC13a, MUC13, MUC2 and MUC5b was found in the intestine after E. ictaluri infection. Eight mucin gene expressions (except MUC3a, MUC2, MUC4 and MUC5f) were up‐regulated at 4 hr and down‐regulated after 24 hr in the gill with F. columnare infection. Expression level of MUC2 gene was up‐regulated in the intestine with E. ictaluri infection without no significant change in the gill under the F. columnare infection, which indicate that MUC2 is tissue‐specific gene expression and has different immune respond to two bacterial challenge. Taken together, the study showed mucin from the gill by F. columnare challenge induced an obvious response than mucin from the intestine with E. ictaluri infection.  相似文献   

2.
A field study to assess the efficacy of florfenicol (FFC) against enteric septicemia of catfish (ESC) was conducted with pond‐reared channel catfish fingerlings held in 0.1‐acre earthen ponds. Fish were challenged with Edwardsiella ictaluri in a natural pond outbreak or by cohabitation with E. ictaluri‐infected fish held in netpens. Fourteen ponds were assigned in equal number to two treatment groups, that is, either treated (with 10 mg FFC/kg body weight in medicated feed) or not treated (control) for 10 consecutive d. The threshold for enrollment into the study was 0.3% cumulative mortality attributed to ESC. Treatment was initiated on different dates for each pond because each pond was enrolled when 33 fish/pond were diagnosed with ESC based on clinical signs, lesions, or positive cultures. Mortality was monitored during the 10‐d treatment period and during a 14‐d posttreatment observation period. At the end of the 14‐d posttreatment observation period, all fish were euthanized, and 20 fish from each pond were examined by gross necropsy and evaluated for the presence of E. ictaluri by bacterial culture. The odds of a mortality in the control group were 2.20 times the odds of a mortality in the FFC‐treated group. Significantly fewer (P≤ 0.05) FFC‐medicated catfish died in comparison to unmedicated catfish. The minimum inhibitory concentration of FFC for this strain of E. ictaluri was 0.25 μg/mL in all fish that were assayed. The mean zone of inhibition (Kirby Bauer) was 36.8 mm from E. ictaluri isolates of test fish. There were no FFC treatment‐related lesions seen on gross pathology. FFC was efficacious and safe for control of mortality from E. ictaluri infection in catfish.  相似文献   

3.
This study evaluated the efficacy of an oral live‐attenuated Edwardsiella ictaluri vaccine against enteric septicemia of catfish (ESC) in channel and hybrid catfish. The vaccine was delivered one time orally by feeding fish a diet coated with an attenuated E. ictaluri isolate at four doses to deliver between 4 × 106 to 3.2 × 107 viable vaccine cells/g wet feed. Thirty‐five days postvaccination, control and vaccinated fish were challenged with virulent E. ictaluri and mortality was examined for 30 d postchallenge. Mortality of nonvaccinated hybrids (85%) and nonvaccinated channel catfish (73%) was similar but significantly greater than all groups of vaccinated fish. In channel catfish, a trend toward increasing mortality with decreasing dose was observed. Mortality of channel catfish vaccinated with the lowest dose (26.6%) was significantly higher than fish vaccinated with the highest dose (14.1%) but similar to fish vaccinated at the intermediate doses (17.5 and 19.4%). In contrast, mortality of four doses of vaccinated hybrid catfish was similar and ranged between 10.4 and 14.0%. The data demonstrate that the attenuated E. ictaluri vaccine at all four doses tested is effective at reducing ESC‐related mortalities in hybrid and channel catfish.  相似文献   

4.
Juvenile channel catfish Ictalurus punctatus (average initial weight, 6.5 g/fish) were fed twice daily to apparent satiation with practical-type diets containing 0, 50, 150, or 250 mg supplemental vitamin C/kg from L-ascorbyl-2-polyphosphate for 10 wk under laboratory conditions. At the end of the feeding period, one half of the fish were stressed for 2 h by confinement and both stressed and nonstressed fish were exposed to a virulent strain of Edwardsiella ictaluri. Weight gain and feed conversion efficiency were lower for fish fed the basal diet than those fed diets containing supplemental vitamin C. No differences were observed in weight gain and feed conversion among fish fed diets containing supplemental vitamin C. There were no differences in feed consumption and survival (prior to experimental infection) among treatments. No vitamin C deficiency signs except reduced weight gain were observed in fish fed the basal diet. Serum cortisol concentrations were higher in stressed fish than in non-stressed fish. Dietary vitamin C level had no effect on serum cortisol concentration. As dietary vitamin C increased, ascorbate concentration in serum and liver increased. Confinement stress had no effect on serum and liver ascorbate concentrations. Cumulative mortality of channel catfish 21 d subsequent to experimental infection with E. ictaluri was higher for stressed fish than for nonstressed fish. Regardless of stress or nonstress, overall mortality for fish fed the basal diet was lower than the fish fed diets containing supplemental vitamin C. There were no differences in post-infection antibody levels among treatments or between stressed and nonstressed fish. Results from this study indicate that channel catfish require no more than 50 mg/kg dietary vitamin C for normal growth, stress response, and disease resistance.  相似文献   

5.
6.
Columnaris disease, caused by the bacterium Flavobacterium columnare, is currently the most frequently reported bacterial disease affecting farm‐raised channel catfish in the USA. Common treatments against the disease include the use of medicated feed that has led to emergent antibiotic resistant strains of F. columnare. Nigella sativa (Black cumin) is a medicinal herb commonly used by many cultures as a natural remedy for numerous disorders. Recently, we have discovered the antibacterial activity of N. sativa and its oil extract against F. columnare. In this study, we showed N. sativa oil (NSO) strongly inhibited the growth of all of the strains of F. columnare tested and yielded significantly larger zones of inhibition than those produced by oxytetracyclin. We tested the protective effect against columnaris disease in vivo by incorporating NSO (5%) or N. sativa seeds (NSS) (5%) into fish feeds. Fishes (Ictalurus punctatus and Danio rerio) fed amended diets displayed significantly lower mortality than those fed control diets. Per cent mortalities in control groups ranged from 77% to 44% and from 70% to 18% in zebrafish and channel catfish, respectively. A dose study using different NSS concentrations showed that 5% NSS offered the most protection against columnaris disease in channel catfish.  相似文献   

7.
Enteric septicaemia of catfish (ESC) caused by Edwardsiella ictaluri is becoming an increasing problem in aquaculture and has been reported worldwide in a variety of fish species. This study reports ESC in hybrid catfish, Clarias macrocephalus (Günther) × Clarias gariepinus (Burchell), cultured in southern Thailand. The bacteria were identified as E. ictaluri by conventional and rapid identification systems, as well as by genetic and phylogenetic characterization. Analysis of 16S rRNA indicated 100% homology to the 16S rRNA sequence of several E. ictaluri strains in GenBank. Plasmid profiles demonstrated 4.0‐ and 5.6‐kb plasmids, compared with the 4.8‐ and 5.6‐kb plasmids in the US isolates, and representative genes of three of the four known pathogenicity islands of US isolates were present. Serologically, lipopolysaccharide (LPS) purified from the Thai isolates was not recognized by a monoclonal antibody against the LPS of US isolates. Fish experimentally infected with E. ictaluri showed 23–100% mortality within 14 days with a 168‐h LD50 of 6.92 × 107 CFU mL?1 by immersion and a 96‐h LD50 of 1.58 × 106 CFU fish?1 by intraperitoneal injection. Examination of tissue sections obtained from both naturally and experimentally infected fish indicated that infection of hybrid catfish with E. ictaluri produced lesions in several organs including liver, kidney, spleen, heart and brain. Histopathology findings included cellular necrosis, focal haemorrhage, infiltration of lymphocytes and multifocal granulomatous inflammation in the infected organs.  相似文献   

8.
Columnaris disease, caused by the bacterial pathogen Flavobacterium columnare, continues to be a major problem worldwide in both wild and cultured freshwater finfish. Despite the far-reaching negative impacts of columnaris disease, safe and efficacious preventatives and curatives for this disease remain limited. In this study, we evaluated the potential of kaolin (Al2Si205(OH)4), a type of clay, for the prevention of columnaris disease. Channel catfish, Ictalurus punctatus (Rafinesque), fingerlings were experimentally challenged with Flavobacterium columnare in untreated water or with water containing kaolin (1 g L−1). Over the 7-day course of study, kaolin treatment led to significantly (< 0.001) improved survival (96%) as compared to untreated fish (78% survival). Histological examination of the gills revealed that kaolin-treated fish had substantially less gill damage than untreated controls. Quantitative PCR analysis of gill tissue revealed that kaolin significantly reduced F. columnare adhesion (measured at 1 h post-challenge) and colonization (24 h post-challenge). Incubation of kaolin with F. columnare in vitro demonstrated that kaolin reduced the number of F. columnare cells in culture supernatants, presumably through the formation of physical complexes through adsorption. In summary, kaolin can improve survival, reduce gill pathologies and reduce bacterial attachment to key tissues associated with columnaris disease in channel catfish by binding to F. columnare.  相似文献   

9.
Laboratory‐reared, specific pathogen‐free fingerling channel catfish, Ictalurus punctatus, and adult zebrafish, Danio rerio, were each separately exposed by immersion challenge to the etiological agent of “columnaris disease,”Flavobacterium columnare (Japanese Collection of Microorganisms 21327 strain). At 24‐h post‐immersion, fish exhibiting a “saddleback” lesion were fixed whole in 10% neutral buffered formalin. Skin samples approximately 5 mm2 were excised from both the margin and center of each saddleback lesion as well as from corresponding sites in control, non‐challenged, fish before being prepared routinely for scanning electron microscopy (SEM). Skin samples from control channel catfish and zebrafish had uniform, contiguous epidermal cells with continuous or closely apposed cell margins and well‐defined microridges. Channel catfish skin lesion samples had margins typified by epidermal sloughing and lesion centers that exhibited a multitude of rod‐shaped bacterial cells, approximately 3–10 µm long × 0.3–0.5 µm wide, intermingled with cellular debris across a surface characterized by denuded, strongly ridged, or folded dermal connective tissue. Zebrafish skin lesion samples had a multitude of rod‐shaped bacterial cells and exhibited comparable ultrastructural changes but some lacked scales. These findings are the first published SEM observations of columnaris disease and saddleback lesions in channel catfish and zebrafish and thereby advance our understanding of the ultrastructural characteristics of acute‐stage saddleback lesions and columnaris disease pathogenesis.  相似文献   

10.
The effect of sublethal hypoxia exposure on stress and immune responses and susceptibility to Edwardsiella ictaluri infection in juvenile channel catfish, Ictalurus punctatus, was investigated. Fish were monitored for temporal changes in glucose and cortisol concentrations before, during, and after 2 h exposure to sublethal hypoxia (<2 mg/L dissolved oxygen [DO]) and when maintained under normoxic conditions (6.0 ± 0.3 mg/L DO). Both blood glucose and plasma cortisol increased significantly in response to hypoxic conditions. Fish exposed to hypoxic or normoxic conditions were challenged with a high dose (1.3 × 107 colony‐forming units [CFU]/mL) or a low dose (1.3 × 105 CFU/mL) of E. ictaluri or sterile culture broth by 30‐min immersion bath. Approximately 1% of fish in both the normoxic and the hypoxic groups died when challenged with the low dose of E. ictaluri. However, when challenged with the high dose of E. ictaluri, catfish exposed to hypoxic conditions had significantly higher cumulative mortality (36 ± 12.1%) than those maintained under normoxic conditions (12 ± 1.1%). Total hemolytic complement and bactericidal activities and antibody response were lower in hypoxia‐exposed channel catfish, indicating that increased susceptibility of channel catfish to E. ictaluri may be the result of the immunosuppressive effects of the stress response to hypoxia.  相似文献   

11.
Sarafin (sarafloxacin hydrochloride), a new antibacterial, was evaluated in the field on a naturally induced infection of Edwardsiella ictaluri in channel catfish, -Ictalurus punctatus. Healthy channel catfish (mean weight = 50 g) were stocked into nine cages at 200 fish per cage in a pond with an undergoing E. ictaluri infection. Seven days after stocking, dead fish were observed in the cages with clinical signs of enteric septicemia of channel catfish (ESC). After E. ictaluri was confirmed through isolative biochemical tests, medicated feed was applied for five consecutive days. During this period, fish in three control cages received a commercial 32% protein floating feed, three other cages of fish served as positive controls and were fed Romet, and three cages received the test feed with Sarafin. Both medicated feeds reduced the increase in cumulative percent mortality. In the control cages, cumulative percent mortalities continued to increase throughout the study period. Average daily mortality rates were significantly lower following both treatments of medicated feed, and treatments receiving Sarafin showed the greatest reduction in average daily mortality rates. Average daily mortality rates in the control did not change after the medicated feeding period. Toward the end of the study, temperatures reached 30°C, above the active range of ESC infections, and all mortalities ceased.  相似文献   

12.
Flavobacterium columnare causes columnaris disease of farmed and wild freshwater fish. Skin mucus is an important factor in early stages of columnaris pathogenesis, albeit little studied. Our objectives were to (a) characterize the terminal glycosylation pattern (TGP) of catfish mucus, (b) determine the growth of F. columnare in formulated water (FW)‐containing channel catfish (Ictalurus punctatus) or hybrid catfish (Ictalurus punctatus X Ictalurus furcatus) mucus and (c) examine extracellular protease activity of two F. columnare isolates differing in virulence. The TGP of catfish mucus by lectin binding was as follows: alpha‐D‐mannose/alpha‐D‐glucose >N‐acetyl‐beta‐D‐glucosamine >N‐acetyl‐beta‐D‐glucosamine/N‐acetylneuraminic acid >N‐acetyl‐D‐galactosamine >alpha‐D‐galactose/N‐acetyl‐alpha‐D‐galactosamine >beta‐D‐galactose = alpha‐L‐fucose. Virulence studies demonstrated isolate AL‐02‐36 was highly virulent in channel catfish fry (0.1 g) with cumulative mortality of 90%‐100% versus 60% for isolate ALG‐00‐530 at equivalent doses (~3 × 10CFU/ml); a similar result was observed in larger (0.7 g) catfish. In multiple experiments, F. columnare replicated (2‐3 logs) and survived (28 days) in formulated water‐containing catfish mucus. Highly virulent isolate AL‐02‐36 possessed at least 2.5‐ to fivefold higher protease activity following growth in mucus than the less virulent ALG‐00‐530. Flavobacterium columnare utilized catfish mucus as a nutrient source and mucus presence modulated extracellular protease production.  相似文献   

13.
The intraspecific variability of E. ictaluri isolates from different origins was investigated. Isolates were recovered from farm‐raised catfish (Ictalurus punctatus) in Mississippi, USA, tilapia (Oreochromis niloticus) cultured in the Western Hemisphere and zebrafish (Danio rerio) propagated in Florida, USA. These isolates were phenotypically homologous and antimicrobial profiles were largely similar. Genetically, isolates possessed differences that could be exploited by repetitive‐sequence‐mediated PCR and gyrB sequence, which identified three distinct E. ictaluri genotypes: one associated with catfish, one from tilapia and a third from zebrafish. Plasmid profiles were also group specific and correlated with rep‐PCR and gyrB sequences. The catfish isolates possessed profiles typical of those described for E. ictaluri isolates; however, plasmids from the zebrafish and tilapia isolates differed in both composition and arrangement. Furthermore, some zebrafish and tilapia isolates were PCR negative for several E. ictaluri virulence factors. Isolates were serologically heterogenous, as serum from a channel catfish exposed to a catfish isolate had reduced antibody activity to tilapia and zebrafish isolates. This work identifies three genetically distinct strains of E. ictaluri from different origins using rep‐PCR, 16S, gyrB and plasmid sequencing, in addition to antimicrobial and serological profiling.  相似文献   

14.
Cathelicidins are a class of antimicrobial peptides (AMPs) known to possess rapid and direct antimicrobial activities against a variety of microorganisms. Recently identified cathelicidins derived from alligator and sea snake were found to be more effective in inhibiting microbial growth than other AMPs previously characterized. The ability of these two cathelicidins along with the peptides, cecropin and pleurocidin, to protect channel catfish (Ictalurus punctatus, Rafinesque) and hybrid catfish (I. punctatus ♀ × blue catfish, Ictalurus furcatus, Valenciennes ) against Edwardsiella ictaluri, one of the most prevalent pathogens affecting commercial catfish industry, was investigated. Cathelicidin-injected fish (50 µg ml−1 fish−1) that were simultaneously challenged with E. ictaluri through bath immersion at a concentration of ~1 × 106 CFU/ml had increased survival rates compared with other peptide treatments and the infected control. Bacterial numbers were also reduced in the liver and kidney of channel catfish and hybrid catfish in the cathelicidin treatments 24 hr post-infection. After 8 days of challenge, serum was collected to determine immune-related parameters such as bactericidal activity, lysozyme, serum protein, albumin and globulin. These immune-related parameters were significantly elevated in fish injected with the two cathelicidins as compared to other peptide treatments. These results indicate that cathelicidins derived from alligator and sea snake can stimulate immunity and enhance the resistance to E. ictaluri infection in channel catfish and hybrid catfish.  相似文献   

15.
Lytic peptides have been shown in vitro to be toxic to a wide range of fish bacterial pathogens, including Edwardsiella ictaluri, the causative agent for enteric septicemia. Fingerling channel catfish, Ictalurus punctatus, were challenged with an injection of Edwardsiella ictaluri, and lytic peptide was administered with a single intraperitoneal injection 24 hours later. In a second group, lyptic peptide was also administered by osmotic pump 7 days before the bacterial challenge. A range of peptide concentrations (20-400µg/g fish) was used. Mortalities were recorded for 7 days after injection of bacteria, and E. icraluri was isolated and quantified by standard plate counts from livers. Various tissues were examined for abnormalities due to bacteria and peptide treatment. Fish injected with lytic peptide at 400 µg/g had up to a 95% reduction in bacteria and a 65% reduction in mortality compared to complete mortality in bacteria-injected controls. Fish implanted with osmotic pumps had 99.3% reduction in bacterial counts and had 6% mortality. Tissue samples from infected fish showed changes typical of reaction to immunologic stimuli and infection, while control fish injected with saline or peptide had normal gills, spleens, and kidneys. This study shows the potential for enhancing channel catfish disease resistance to E. ictaluri and other diseases by transferring the gene coding for the lytic peptide into channel catfish.  相似文献   

16.
A bacterial infectivity challenge model of Edwardsiella ictaluri in striped catfish was developed. All experiments were conducted using a bacterial isolate of E. ictaluri that had been recovered during a natural outbreak of bacillary necrosis of Pangasianodon (BNP) in farmed striped catfish Pangasianodon hypophthalmus in Vietnam. Time of immersion in 107 CFU.ml−1 had a significant effect on mortality. The immersion bacterial dose of 107 CFU/ml for 30 s resulted in a cumulative percentage mortality of 63%. Three to four days post-bacterial challenge, fish showed gross clinical signs of natural BNP and E. ictaluri was recovered and identified from these fish. Moreover, a cohabitation challenge was evaluated as an alternative challenge method, although the mortalities among the infected fish were lower at around 15%–40%. This study confirmed the horizontal transmission of E. ictaluri in striped catfish and elucidated that cohabitation challenge could be used in reproducing the disease under controlled conditions.  相似文献   

17.
A study was conducted to evaluate the effect of free gossypol from glanded‐cottonseed meal (G‐CSM) (natural free gossypol) or gossypol‐acetic acid on growth performance, body composition, haematology, immune response and resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri challenge. Soya bean meal‐based diets supplemented with 0, 100, 200, 400, and 800 mg kg?1 free gossypol from G‐CSM or gossypol‐acetic acid were fed to juvenile channel catfish in triplicate aquaria to apparent satiation twice daily for 12 weeks. Neither sources nor levels of dietary gossypol significantly influenced the final weight gain, feed intake, feed efficiency and survival of channel catfish. Similarly, whole‐body proximate composition, haematological parameters (red blood cell, white blood cell counts, haemoglobin and haematocrit), serum protein concentration, macrophage chemotaxis ratio, phagocytic activity and antibody production against E. ictaluri 21‐day postinfection were not significantly affected at either dietary sources or levels of gossypol. Gossypol concentrations of liver were linearly related to dietary level of gossypol but the retention rate varied dependent on sources of the dietary gossypol. At dietary gossypol levels of 400 or 800 mg kg?1, total gossypol concentrations in liver of fish fed dietary gossypol from G‐CSM were significantly higher than those of fish fed the corresponding levels of gossypol from gossypol‐acetic acid. The (+)‐isomer of gossypol was predominantly retained in liver regardless of dietary sources of gossypol. The ratio of (+) to (?) gossypol isomers in liver decreased with increasing dietary concentrations of gossypol. Serum lysozyme activity of fish fed dietary gossypol levels of 200 mg kg?1 or higher, either from G‐CSM or gossypol‐acetic acid, was significantly higher than that of the control. At a level of 800 mg kg?1 diet, gossypol from G‐CSM stimulated significantly higher lysozyme activity than gossypol from gossypol‐acetic acid. Fish fed diets containing 400 mg kg?1 gossypol or higher from G‐CSM or 800 mg kg?1 gossypol from gossypol‐acetic acid had significantly increased superoxide anion (O) production. However, neither the sources nor the levels of dietary free gossypol influenced the resistance of juvenile channel catfish to E. ictaluri challenge.  相似文献   

18.
–A dose titration study was conducted to determine the appropriate dosage of florfenicol in feed to control mortality in channel catfish Ictalurus punctatus associated with enteric septicemia of catfish caused by Edwardsiella ictaluri. Six tanks (20 fish/ tank) were assigned to each of the following treatment: 1) not challenged with E. ictaluri and fed unmedicated feed; 2) challenged with E. ictaluri and fed unmedicated feed; 3) challenged and fed 5-mg florfenicol/kg body weight (kg bw); 4) challenged and fed 10-mg florfenicol/kg bw; or 5) challenged and fed 15-mg florfenicol/kg bw. Treatment was initiated the day after inoculation, and feed was administered by hand at 2.5% body weight for 10 consecutive days. Feeding activity was scored for all groups and was noted to be significantly less than the challenged, unmedicated group. Cumulative mortality in the challenged untreated group was 60%. The mortality in the unchallenged untreated group was 0%, and in die 5-, 10-, 15-mg florfenicol/kg bw group was 2.5%, 0.8%, and 2.5%, respectively. The mortality in each challenged, treated group and the non-challenged control group was significantly less than the challenged, unmedicated controls (P < 0.0001 for each contrast). There were no pairwise statistically significant contrasts among the florfenicol treated groups and the non-challenged control group. All 600 fish in the study were necropsied, cultured for bacteria, and examined by gross pathology. No specific lesions that could be associated with the antibiotic were observed. The efficacy of the 10 mg/kg dosage was confirmed in a separate dose confirmation study. In this study, fish in 30 tanks (20 fish/ tank) were infected with E. icraluri by immersion. Two days post-inoculation, fish in 15 tanks were hand-fed unmedicated feed, and 15 tanks were hand-fed medicated feed at a dosage of 10-mg florfenicol/kg bw at 2.5% body weight for 10 d. Feeding activity was scored and was noted to be significantly less than the challenged, unmedicated group. Cumulative mortality in the florfenicol group (14%) was significantly less than cumulative mortality in the untreated group (87.3%) (P < 0.0001). All 600 fish were submitted for bacterial culture, necropsied. and examined for gross pathology, and once again, no specific lesions that could be associated with the antibiotic were observed. The minimum inhibitory concentration of florfenicol against E. ictaluri in both studies was 0.25 ug/mL. Florfenicol was palatable, safe, and efficacious for control of mortality due to infection by E. ictaluri in catfish.  相似文献   

19.
Yellow catfish Pelteobagrus fulvidraco (Richardson) is a commercially important fish generally distributed in Southeast Asian countries. The well‐known aetiological agent of enteric septicaemia of catfish, Edwardsiella ictaluri, was isolated from diseased yellow catfish P. fulvidraco (Richardson) reared at two commercial fisheries in China. The economic losses due to the high mortalities (about 50%) caused by this bacterium have been increasing annually. The affected fish presented two different, typical symptoms: pale gills, slight exophthalmia and a ‘hole in the head’, and haemorrhage on the opercula, in the skin under the jaw, creating a ‘hole under the jaw’. These diseases were found frequently in cultured yellow catfish throughout China. The isolates from both outbreaks were all Gram negative, facultatively anaerobic and short rod. Morphological and biochemical tests and phylogenetic analysis based on the 16S rDNA sequences all strongly indicated that these yellow catfish isolates were highly identical to the known E. ictaluri. In addition, the isolates possessed the typical plasmid profile of E. ictaluri. Experimental infection assays were conducted and pathogenicity (by an intraperitoneal injection) was demonstrated in yellow catfish and channel catfish Ictalurus punctatus. The results showed that yellow catfish isolates were quite conservative phenotypically and genetically, and were able to cause two different, typical symptoms in this fish under unknown conditions and mechanism.  相似文献   

20.
This study evaluated the efficacy of an oral live attenuated Edwardsiella ictaluri vaccine against enteric septicemia of catfish in 20 full‐sib fingerling channel catfish families. The vaccine was delivered orally by feeding fish a diet coated with an attenuated E. ictaluri isolate. Sixty‐nine days postvaccination, control and vaccinated fish were challenged with virulent E. ictaluri and mortality was examined for 21 d postchallenge. Vaccinated fish had significantly lower mortality than nonvaccinated fish following challenge (P < 0.001). Mortality of vaccinated fish was 1.7 ± 1.4% as opposed to 47.8 ± 28.7% in nonvaccinated fish. Relative percent survival ranged from 87.7 to 100% with an average of 95.2 ± 4.0% (±SE) among the 20 families of fish. There were significant differences in mortality among families in nonvaccinated fish (P < 0.01) while there were no differences among vaccinated families of fish. Results indicate that the live attenuated E. ictaluri vaccine is effective at reducing mortality in channel catfish exposed to virulent E. ictaluri. These data demonstrate that genetic differences among healthy families of channel catfish are not major considerations in developing an effective vaccination program utilizing the oral vaccination platform described in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号